REMARKS ON THE TIGHTNESS OF COCYCLES

Jon Aaronson, Benjamin Weiss
Dedicated to the memory of Anzelm Iwanik.

Abstract

We prove a generalised tightness theorem for cocycles over an ergodic probability preserving transformation with values in Polish topological groups. We also show that subsequence tightness of cocycles over a mixing probability preserving transformation implies tightness. An example shows that this latter result may fail for cocycles over a mildly mixing probability preserving transformation.

Let (Ω, \mathcal{B}, m) be a probability space, let $T: \Omega \rightarrow \Omega$ be an ergodic probability preserving transformation, let G be a Polish topological group and let $\phi: \Omega \rightarrow G$ be measurable.

We consider S_{n}, the random walk or cocycle on G defined by

$$
S_{0}(\omega)=e, \quad S_{n+1}(\omega):=\phi\left(T^{n} \omega\right) S_{n}(\omega)
$$

This random walk is generated by the skew product transformation $T_{\phi}: X \times G \rightarrow$ $X \times G$ where $T_{\phi}^{n}(\omega, y)=\left(T^{n} \omega, S_{n}(\omega) y\right)$. In case G is a locally compact topological group, T_{ϕ} preserves the measure $m \times m_{G}$ where m_{G} is a left Haar measure on G.

§1 Tightness theorem

We consider the situation where $\left\{m-\operatorname{dist} .\left(S_{n}\right): n \geq 1\right\}$ is tight in the sense that $\forall \epsilon>0, \exists C \subset G$ compact such that $\sup _{n \geq 1} m\left(S_{n} \notin C\right)<\epsilon$ (equivalently, tightness is precompactness in the space $\mathcal{P}(G)$ of probability measures on G). One way this can happen is when ϕ is cohomologous to a compact-group-valued function, i.e. there is a compact subgroup $K \subseteq G$ and measurable $\psi: \Omega \rightarrow K, g: \Omega \rightarrow G$ such that $\phi(\omega)=g(T \omega)^{-1} \psi(\omega) g(\omega)$, then $S_{n}(\omega)=g\left(T^{n} \omega\right)^{-1} k_{n}(\omega) g(\omega)$ where $k_{n}(\omega):=\psi\left(T^{n-1} \omega\right) \psi\left(T^{n-2} \omega\right) \ldots \psi(\omega) \in K$.

Tightness theorem.

The distributions $\left\{m-\right.$ dist. $\left.\left(S_{n}\right): n \geq 1\right\}$ are tight in $\mathcal{P}(G) \Longleftrightarrow \phi$ is cohomologous to a compact-group-valued function.

[^0](C)1998 revision 2/12/99

Remarks about \Leftarrow

1) The \Leftarrow of the tightness theorem is an easy consequence of the tightness of a single probability on a Polish space (Prohorov's theorem, see [Par]) and the probability preserving property of T.
2) If m is not absolutely continuous with respect to some T-invariant probability on (Ω, \mathcal{B}) then \Leftarrow may fail.

In this case, there is a set $W \in \mathcal{B}, m(W)>0$ and a sequence $n_{k} \rightarrow \infty$ such that $\left\{T^{-n_{k}} W: k \geq 1\right\}$ are disjoint (such a set is called weakly wandering). Given a noncompact Polish space G, we choose $x_{0} \in G$ and a sequence $y_{k} \in G, y_{k} \rightarrow \infty$ (i.e. \forall compact $C \subset G, y_{k} \notin C$ eventually) and define $f: \Omega \rightarrow G$ by

$$
f(x)= \begin{cases}y_{k} & x \in T^{-n_{k}} W(k \geq 1) \\ x_{0} & x \in \Omega \backslash \bigcup_{k=1}^{\infty} T^{-n_{k}} W\end{cases}
$$

It follows that $\left\{m\right.$-dist. $\left.\left(f \circ T^{n}\right): n \geq 1\right\}$ cannot be tight in $\mathcal{P}(G)$ since $m\left(\left[f \circ T^{n_{k}}=\right.\right.$ $\left.\left.y_{k}\right]\right) \geq m(W) \nrightarrow 0$.

If G is a noncompact Polish topological group, we set $\phi=f^{-1} f \circ T$ and obtain a coboundary for which the distributions $\left\{m-\operatorname{dist} .\left(S_{n}\right): n \geq 1\right\}$ are not tight in $\mathcal{P}(G)$.

In case G has no non-trivial compact subgroups, the tightness theorem boils down to the so-called coboundary theorem:

The distributions $\left\{m-\operatorname{dist} .\left(S_{n}\right): n \geq 1\right\}$ are tight in $\mathcal{P}(G) \Longleftrightarrow \phi$ is a coboundary.

The first version of the coboundary theorem seems to be:
L^{2} coboundary theorem [Leo].
If $\left\{Z_{n}: n \geq 1\right\}$ is a wide sense stationary process, then $\exists\left\{Y_{n}: n \geq 1\right\}$ wide sense stationary such that $Z_{n}=Y_{n}-Y_{n+1}$ iff $\sup _{n>1} \mathbb{E}\left(\left|\sum_{k=1}^{n} Z_{k}\right|^{2}\right)<\infty$.

Proof.
If $\exists\left\{Y_{n}: n \geq 1\right\}$ wide sense stationary such that $Z_{n}=Y_{n}-Y_{n+1}$, then $\sum_{k=1}^{n} Z_{k}=Y_{1}-Y_{n+1}$ and $\left\|\sum_{k=1}^{n} Z_{k}\right\|_{2} \leq 2\left\|Y_{1}\right\|_{2} \forall n \geq 1$.

Conversely, if $\left\|\sum_{k=1}^{n} Z_{k}\right\|_{2} \leq M \forall n \geq 1$, then by weak $*$ sequential compactness of norm bounded sets, $\exists N_{a} \rightarrow \infty$ and a r.v. $Y=Y\left(Z_{1}, Z_{2}, \ldots\right)$ such that

$$
\frac{1}{N_{a}} \sum_{n=1}^{N_{a}} \sum_{k=1}^{n} Z_{k} \rightharpoonup Y
$$

(where \rightharpoonup denotes weak convergence in L^{2}.
Write $Y_{n}:=Y\left(Z_{n}, Z_{n+1}, \ldots\right)$, then $\left\{Y_{n}: n \geq 1\right\}$ is a wide sense stationary process and

$$
\frac{1}{N_{a}} \sum_{n=1}^{N_{a}} \sum_{k=1}^{n} Z_{k+\nu-1} \rightharpoonup Y_{\nu} \quad \forall \nu \geq 1
$$

It follows that

$$
\begin{aligned}
Y_{\nu+1} & \leftharpoonup \frac{1}{N_{a}} \sum_{n=1}^{N_{a}} \sum_{k=\nu+1}^{n+\nu} Z_{k} \\
& =\frac{1}{N_{a}} \sum_{n=1}^{N_{a}}\left(\sum_{k=\nu}^{n+\nu-1} Z_{k}+Z_{n+\nu}-Z_{\nu}\right) \\
& =\frac{1}{N_{a}} \sum_{n=1}^{N_{a}} \sum_{k=1}^{n} Z_{k+\nu-1}+\frac{1}{N_{a}} \sum_{n=1}^{N_{a}} Z_{n+\nu}-Z_{\nu} \\
& \rightharpoonup Y_{\nu}-Z_{\nu}
\end{aligned}
$$

because $\left\|\sum_{n=1}^{N_{a}} Z_{n+\nu}\right\|$ is uniformly bounded.
Leonov's theorem has the " L^{p} analogues:

L^{p} coboundary theorem.

Let (X, \mathcal{B}, m, T) be a probability preserving transformation, and let $1 \leq p<\infty$ and let $f: X \rightarrow \mathbb{R}$ be measurable.
$\exists g \in L^{1}(m)$ such that $f=g-g \circ T$ iff $\sup _{n \geq 1}\left\|\sum_{k=1}^{n} f \circ T^{k}\right\|_{p}<\infty$.
The proof of L^{p} coboundary theorem is the same as that of Leonov with Komlos type convergence replacing weak convergence when $p=1$.

The coboundary theorem is established in [Sch1] for the case $G=\mathbb{R}$, and in [MoSch] for G locally compact, second countable, Abelian without compact subgroups.

The tightness theorem for locally compact, second countable groups was established in [Sch2]; related partial results are given in [Co] and [Zim].

Bradley has proved \Longrightarrow of the coboundary theorem assuming only that T is measurable:
in $[\mathrm{Br} 1]$ for $G=\mathbb{R}$, in $[\mathrm{Br} 2]$ for G a Banach space and in [Br 3$]$ for G a group of upper triangular matrices.

The present methods can be stretched to prove the \Longrightarrow of the tightness theorem assuming only that T is measurable and invertible.

Basic Lemma.

If the family $\left\{P-\right.$ dist. $\left.\left(S_{n}\right): n \geq 1\right\}$ is tight in $\mathcal{P}(G)$, then $\exists P: \Omega \rightarrow \mathcal{P}(G)$ measurable, such that

$$
P_{T \omega}(A)=P_{\omega}\left(\phi(\omega)^{-1} A\right) \quad(A \in \mathcal{B}(G)) .
$$

This basic lemma is implicit in $[\mathrm{Br} 1]$ for $G=\mathbb{R}$. The general proof is essentially as in [Br1] (see below).

The coboundary theorem for \mathbb{R} is easily established using it ([Br 1$]$). Indeed if for $\omega \in \Omega, \mu(\omega)$ is defined as the minimal number satisfying $P_{\omega}((-\infty, \mu(\omega)]), P_{\omega}([\mu(\omega), \infty)) \geq \frac{1}{2}$, then $\mu: \Omega \rightarrow \mathbb{R}$ is measurable and (since $\left.P_{T \omega}(A)=P_{\omega}(A-\phi(\omega))\right)$ we have $\mu(T \omega)=\mu(\omega)-\phi(\omega)$.

The proof of the tightness theorem given the basic lemma uses a generalisation of the characterisation of invariant measures for group extensions in [Key-New]. The proof is an adaptation of Lemanczyk's proof of [Key-New] in [Lem]. See also the proof of theorem 8.3.2 in [A].

Proof of the basic lemma.

Choose first $K_{\nu} \subset K_{\nu+1} \cdots \subset G$, a sequence of compact sets in G with the property (ensured by tightness) that

$$
\begin{equation*}
m\left(\left[S_{n} \in K_{\nu}^{c}\right]\right) \leq \frac{1}{4^{\nu}} \quad \forall n, \nu \geq 1 \tag{1}
\end{equation*}
$$

Consider the random measures $W_{n}: \Omega \rightarrow \mathcal{P}(G)$ defined by

$$
W_{n}(A):=\frac{1}{n} \sum_{j=1}^{n} 1_{A}\left(S_{j}\right)
$$

Next, for $\nu \geq 1$ let $\mathcal{A}_{\nu} \subset C\left(K_{\nu}\right)$ be a countable family, dense in $C\left(K_{\nu}\right)$; and let $\mathcal{A}=\bigcup_{\nu=1}^{\infty} \mathcal{A}_{\nu}$.

We now claim that $\exists n_{k} \rightarrow \infty$ and $L: \mathcal{A} \rightarrow L^{\infty}(\Omega)$ such that

$$
\begin{equation*}
\int_{G} f d W_{n_{k}} \rightarrow L(f) \text { weak } * \text { in } L^{\infty}(\Omega) \forall \quad f \in \mathcal{A} . \tag{2}
\end{equation*}
$$

This is shown using weak $*$ precompactness of $L^{\infty}(\Omega)$-bounded sets, and a diagonalisation.

By possibly passing to a subsequence, we can ensure that $\forall f \in \mathcal{A}, \exists N_{f}$,

$$
\left\lvert\, \int_{X}\left(\left(\int_{G} f d W_{n_{k}}-L(f)\right)\left(\int_{G} f d W_{n_{j}}-L(f)\right)\right) d m<\frac{1}{2^{k}} \quad \forall k \geq N_{f}\right., j<k
$$

whence ([Rev])

$$
\begin{equation*}
\frac{1}{N} \sum_{k=1}^{N} \int_{G} f d W_{n_{k}} \rightarrow L(f) \text { a.e. } \forall f \in \mathcal{A} \tag{3}
\end{equation*}
$$

and hence (by density) $\forall f \in \bigcup_{\nu=1}^{\infty} C\left(K_{\nu}\right)$.
By the Chebyshev-Markov inequality,

$$
m\left(L\left(1_{K_{\nu}^{c}}\right)>\frac{1}{2^{\nu}}\right) \leftarrow m\left(W_{n_{k}}\left(K_{\nu}^{c}\right)>\frac{1}{2^{\nu}}\right)<2^{\nu} \int_{X} W_{n_{k}}\left(K_{\nu}^{c}\right) d m<\frac{1}{2^{\nu}} \forall \nu \geq 1
$$

and so by the Borel-Cantelli lemma, $L\left(1_{K_{\nu}^{c}}\right) \leq \frac{1}{2^{\nu}}$ a.e. $\forall \nu$ large.
It follows that $\exists P: \Omega \rightarrow \mathcal{P}(G)$ measurable, such that $L(f)(\omega)=\int_{G} f d P_{\omega} \forall f \in$ \mathcal{A}.

To see that $P_{T \omega}=P_{\omega} \circ R_{\phi(\omega)} \quad\left(R_{g}(y):=y g\right)$, note that

$$
\begin{aligned}
\int_{G} f d W_{n}(T \omega)=\frac{1}{n} \sum_{j=1}^{n} f\left(S_{j}(T \omega)\right) & =\frac{1}{n} \sum_{j=1}^{n} f\left(S_{j+1}(\omega) \phi(\omega)^{-1}\right) \\
& =\frac{1}{n} \sum_{j=2}^{n+1} f \circ R_{\phi(\omega)^{-1}}\left(S_{j}(\omega)\right) \\
& =\int_{G} f \circ R_{\phi(\omega)^{-1}} d W_{n}(\omega) \pm \frac{2\|f\|_{\infty}}{n} \\
& =\int_{G} f d W_{n}(\omega) \circ R_{\phi(\omega)} \pm \frac{2\|f\|_{\infty}}{n}
\end{aligned}
$$

Proof of \Rightarrow in the tightness theorem.
Given probabilities $\omega \mapsto p_{\omega}$ on G satisfying

$$
p_{T \omega}=p_{\omega} \circ L_{\phi(\omega)^{-1}}
$$

define a probability $\mu \in \mathcal{P}(\Omega \times G)$ by

$$
\mu(A \times B):=\int_{A} p_{\omega}(B) d m(\omega)
$$

We first note that this probability is T_{ϕ}-invariant:

$$
\begin{aligned}
\int_{X \times G}(u \otimes v) \circ T_{\phi} d \mu & =\int_{X} u(T x) \int_{G} v(\phi(x) y) d p_{x}(y) d m(x) \\
& =\int_{X} u(T x) \int_{G} v(y) d p_{T x}(y) d m(x) \\
& =\int_{X} u(x) \int_{G} v(y) d p_{x}(y) d m(x) \\
& =\int_{X \times G} u \otimes v d \mu .
\end{aligned}
$$

Almost every ergodic component P of μ has a disintegration over m of form

$$
P(A \times B):=\int_{A} \tilde{p}_{\omega}(B) d m(\omega)
$$

where $\omega \mapsto \tilde{p}_{\omega} \in \mathcal{P}(G)$ is measurable, and $\tilde{p}_{T \omega}=\tilde{p}_{\omega} \circ R_{\phi(\omega)}$. Fix one such P.
Define $p \in \mathcal{P}(G)$ by $p(B):=P(\Omega \times B)$. There are compact sets $C_{1} \subset C_{2} \subset \ldots$ such that $\bigcup_{n=1}^{\infty} C_{n}=G \bmod p$. Define compact subsets $\left\{K_{n}: n \geq 0\right\}$ by

$$
K_{0}:=\{e\}, K_{n+1}=\left(K_{n} \cup C_{n}\right)\left(K_{n} \cup C_{n}\right)^{-1}\left(K_{n} \cup C_{n}\right)\left(K_{n} \cup C_{n}\right)^{-1}
$$

Evidently, $G_{0}:=\bigcup_{n=1}^{\infty} K_{n}$ is a subgroup of G and $p\left(G \backslash G_{0}\right)=0$ whence $\tilde{p}_{\omega}\left(G \backslash G_{0}\right)=0$ for m-a.e. $\omega \in \Omega$.

Next, consider the bounded, continuous, \mathbb{R}-valued functions on $G_{0}: C_{B}\left(G_{0}\right)$ (equipped with the supremum norm) and set

$$
\mathcal{C}:=\left\{f \in C_{B}\left(G_{0}\right): \sup _{y \in K_{n}^{c}}|f(y)| \underset{n \rightarrow \infty}{\rightarrow} 0\right\}
$$

Evidently $\mathcal{C}=\overline{\bigcup_{n=1}^{\infty} C_{B}\left(K_{n}\right)}$ is separable, and $f \in \mathcal{C} \Longrightarrow f \circ R_{g} \in \mathcal{C} \forall g \in G_{0}$ (since if $g \in K_{i}$, then $x \notin K_{n+i} \Longrightarrow x g \notin K_{n}$).

For each $a \in G, P \circ Q_{a}\left(Q_{a}(\omega, y):=(\omega, y a)\right)$ is also an ergodic T_{ϕ}-invariant probability (since $T_{\phi} \circ Q_{a}=Q_{a} \circ T_{\phi}$), and therefore either $P \circ Q_{a}=P$ or $P \circ Q_{a} \perp$ P. Define $H:=\left\{a \in G_{0}: P \circ Q_{a}=P\right\}$, a closed subgroup of G_{0}. For a.e. $\omega \in \Omega, p_{\omega}(A a)=p_{\omega}(A) \quad(a \in H, A \in \mathcal{B}(G))$.

Consider the Banach space $\mathcal{M}\left(\Omega \times G_{0}\right)$ of bounded measurable functions $\Omega \times$ $G_{0} \rightarrow \mathbb{R}$ equipped with the supremum norm. We need a separable subspace $\mathcal{A} \subset$
$\mathcal{M}\left(\Omega \times G_{0}\right)$ which separates the points of $\Omega \times G_{0}$ such that $f \in \mathcal{A} \Longrightarrow f \circ Q_{a} \in$ $\mathcal{A} \forall a \in G_{0}$. In particular,

$$
a, b \in G_{0}, \int_{\Omega \times G} f d P \circ Q_{a}=\int_{\Omega \times G} f d P \circ Q_{b} \quad \forall f \in \mathcal{A} \Longrightarrow P \circ Q_{a}=P \circ Q_{b}
$$

To obtain such a subspace, fix a compact metric topology on Ω generating \mathcal{B}, then $\mathcal{A}=C(\Omega) \otimes \mathcal{C}$ is as needed.

By Birkhoff's ergodic theorem,

$$
\frac{1}{n} \sum_{k=0}^{n-1} f \circ T_{\phi}^{k}(\omega, y) \rightarrow \int_{\Omega \times G} f d P \text { a.e. } \quad \forall \quad f \in L^{1}(P)
$$

Set

$$
Y:=\left\{(\omega, y) \in \Omega \times G_{0}: \frac{1}{n} \sum_{k=0}^{n-1} f \circ T_{\phi}^{k}(\omega, y) \rightarrow \int_{\Omega \times G} f d P \quad \forall \quad f \in \mathcal{A}\right\} .
$$

Since \mathcal{A} is a separable subspace of $\mathcal{M}\left(\Omega \times G_{0}\right)$, the set Y is determined by a countable subcollection of \mathcal{A} whence $Y \in \mathcal{B}\left(\Omega \times G_{0}\right)$, and by Birkhoff's ergodic theorem $P(Y)=1$.

For $\omega \in \Omega$, set $Y_{\omega}=\left\{y \in G_{0}:(\omega, y) \in Y\right\}$. We claim that Y_{ω} is a coset of H whenever it is nonempty.

To see this, suppose that $a \in G$, then $\forall f \in \mathcal{A}$ and for a.e. $(x, y) \in Y$,

$$
\frac{1}{n} \sum_{k=0}^{n-1} f \circ T_{\phi}^{k}(\omega, y a) \rightarrow \int_{\Omega \times G} f \circ Q_{a} d P=\int_{\Omega \times G} f d P \circ Q_{a}^{-1}
$$

Thus, $(\omega, y a) \in Y$ iff $P \circ Q_{a}^{-1}=P$, equivalently $a \in H$; and Y_{ω} is indeed a coset of H whenever it is nonempty (i.e. a.e.).

By the analytic section theorem, $\exists h: \Omega \rightarrow G$ measurable such that $h(\omega) \in Y_{\omega}$ for a.e. $\omega \in \Omega$, whence $Y_{\omega}=h(\omega) H$.

Now let $P_{\omega}^{\prime} \in \mathcal{P}(G)$ be defined by $P_{\omega}^{\prime}(A):=p_{\omega}\left(h(\omega)^{-1} A\right)$. Clearly $P_{\omega}^{\prime}(H)=1$ and $P_{\omega}^{\prime}(A a)=P_{\omega}^{\prime}(A) \quad(a \in H, A \in \mathcal{B}(G))$. Thus by [Weil], H is compact and $P_{\omega}^{\prime}=m_{H}$, Haar measure on H.

Defining $\Psi: \Omega \times G \rightarrow \Omega \times G$ by $\Psi(\omega, y):=(\omega, h(\omega) y)$, we have that $P \circ \Psi^{-1}=$ $m \times m_{H}$. If $V:=\Psi \circ T_{\phi} \circ \Psi^{-1}$ then $m \times m_{H} \circ V=m \times m_{H}$ and $V=T_{\psi}$ where $\psi(\omega):=h(\omega) \phi(\omega) h(\omega)^{-1}$.

Since $\left(\Omega \times G, \mathcal{B}(\Omega \times G), m \times m_{H}, V\right)$ is a probability preserving transformation, we have that $\psi: \Omega \rightarrow H$.

§2 SUBSEQUENCE TIGHTNESS

Let (X, \mathcal{B}, m, T) be a mixing probability preserving transformation and let ϕ : $X \rightarrow \mathbb{R}$ be measurable. Bradley showed in $[\mathrm{Br} 4]$ that if the stochastic process $\left\{\phi \circ T^{n}: n \geq 1\right\}$ is strongly Rosenblatt mixing, then either 1) $\sup _{r \in \mathbb{R}} m\left(\left[\left|S_{n}-r\right| \leq C\right]\right) \rightarrow 0 \forall 0<C<\infty$, or 2) \exists constants a_{n} such that $\left\{m-\operatorname{dist}\right.$. $\left.\left(S_{n}-a_{n}\right): n \geq 1\right\}$ is tight (whence ϕ is cohomologous to a constant).

A weaker version of this generalises to an arbitrary stationary stochastic process driven by a mixing probability preserving transformation.

Theorem 2.

Suppose that (X, \mathcal{B}, m, T) is a mixing probability preserving transformation and that $\phi: X \rightarrow \mathbb{R}$ is measurable.

If $\exists n_{k} \rightarrow \infty$ and $d_{k} \in \mathbb{R}$ such that $\left\{m-\right.$ dist. $\left.\left(S_{n_{k}}-d_{k}\right): k \geq 1\right\}$ is tight, then $\exists a \in \mathbb{R}$ and $g: \Omega \rightarrow \mathbb{R}$ measurable such that $\phi(\omega)=a+g(T \omega)-g(\omega)$

In case $\sup _{k}\left|d_{k}\right|<\infty, a=0$.
Proof.
Consider $\left(X \times X, \mathcal{B} \otimes \mathcal{B}, m \times m, T \times T\right.$, and $\phi, \phi^{\prime}: X \times X \rightarrow \mathbb{R}$ defined by $\phi(x, y):=\phi(x), \phi^{\prime}(x, y):=\phi(y)$.

【1 We show first that $\left\{m \times m-\operatorname{dist} .\left(S_{n}-S_{n}^{\prime}\right): n \geq 1\right\}$ is tight.
Let $\epsilon>0$ and choose $M>0$ such that $m\left(\left[\left|S_{n_{k}}-d_{k}\right|>\frac{M}{2}\right]\right)<\frac{\epsilon}{2} \forall k \geq 1$.
By mixing of $T, \forall n \geq 1$,

$$
m\left(\left[\left|S_{n}-S_{n} \circ T^{n_{k}}\right|>M\right]\right) \rightarrow m \times m\left(\left[\left|S_{n}-S_{n}^{\prime}\right|>M\right]\right)
$$

as $k \rightarrow \infty$. Now

$$
S_{n}-S_{n} \circ T^{n_{k}}=S_{n}-S_{n+n_{k}}+S_{n_{k}}=S_{n_{k}}-S_{n_{k}} \circ T^{n}
$$

whence
$m\left(\left[\left|S_{n}-S_{n} \circ T^{n_{k}}\right|>M\right]\right)=m\left(\left[\left|S_{n_{k}}-S_{n_{k}} \circ T^{n}\right| \mid>M\right]\right) \leq 2 m\left(\left[\left|S_{n_{k}}-d_{k}\right|>\frac{M}{2}\right]\right)<\epsilon$.
【2 Next, as in $[\operatorname{Br} 4], \exists a_{n} \in \mathbb{R}$ such that $\left\{m-\operatorname{dist} .\left(S_{n}-a_{n}\right): n \geq 1\right\}$ is tight. To see this, given $\epsilon>0$, let $M(\epsilon)>0$ be such that

$$
m \times m\left(\left[| | S_{n}-S_{n}^{\prime} \mid>M(\epsilon)\right]\right)<\epsilon^{2} \forall n \geq 1
$$

It follows that

$$
\begin{aligned}
m\left(\left\{x \in X: m\left(\left[\mid S_{n}-\right.\right.\right.\right. & \left.\left.\left.\left.S_{n}(x) \mid>M(\epsilon)\right]\right)>\epsilon\right\}\right) \\
& \leq \frac{1}{\epsilon} \int_{X} m\left(\left[\left|S_{n}-S_{n}(x)\right|>M(\epsilon)\right]\right) d m(x) \\
& =\frac{1}{\epsilon} m \times m\left(\left[| | S_{n}-S_{n}^{\prime} \mid>M(\epsilon)\right]\right) \\
& <\epsilon \forall n \geq 1,
\end{aligned}
$$

whence $\exists a_{n}(\epsilon) \in \mathbb{R}$ such that

$$
m\left(\left[\left|S_{n}-a_{n}(\epsilon)\right|>M(\epsilon)\right]\right) \leq \epsilon \forall n \geq 1,
$$

Set $a_{n}=a_{n}(1 / 3)$. For each $0<\epsilon<\frac{1}{2}, n \geq 1$, we have

$$
m\left(\left[\left|S_{n}-a_{n}(\epsilon)\right|<M(\epsilon)\right] \cap\left[\left|S_{n}-a_{n}\right|<M(1 / 3)\right]\right)>0,
$$

whence $\left|a_{n}-a_{n}(\epsilon)\right|<M(1 / 3)+M(\epsilon)$ and

$$
m\left(\left[\left|S_{n}-a_{n}\right|>2 M(\epsilon)+M(1 / 3)\right]\right)<\epsilon \forall n \geq 1
$$

¢ 3 We show that $\exists a \in \mathbb{R}$ such that $\sup _{n \geq 1}\left|a_{n}-n a\right|<\infty$.
To this end, note that $\exists M>0$ such that

$$
\left|a_{k+\ell}-a_{k}-a_{\ell}\right|<M \quad \forall k, \ell \geq 1
$$

Indeed, if $m\left(\left[\left|S_{n}-a_{n}\right|>K\right]\right)<\frac{1}{8} \forall n \geq 1$, then $\left(\right.$ since $\left.S_{k+\ell}=S_{k}+S_{\ell} \circ T^{k}\right)$,
$m\left(\left[\left|S_{k+\ell}-a_{k}-a_{\ell}\right|>2 K\right]\right) \leq m\left(\left[\left|S_{k}-a_{k}\right|>K\right] \cup\left[\left|S_{\ell} \circ T^{k}-a_{\ell}\right|>K\right]\right)<\frac{1}{4}$
whence

$$
m\left(\left[\left|S_{k+\ell}-a_{k}-a_{\ell}\right| \leq 2 K\right] \cap\left[\left[\left|S_{k+\ell}-a_{k+\ell}\right| \leq K\right]\right)>0\right.
$$

and $\left|a_{k+\ell}-a_{k}-a_{\ell}\right| \leq 3 K \quad \forall k, \ell \geq 1$.
By $(\ddagger), \exists N_{k} \rightarrow \infty$ and $b_{\nu} \in \mathbb{R}(\nu \geq 1)$ such that

$$
\frac{1}{N_{k}} \sum_{j=1}^{N_{k}}\left(a_{j+\nu}-a_{j}\right) \rightarrow b_{\nu} \text { as } k \rightarrow \infty \quad \forall \nu \geq 1
$$

It follows from (\ddagger) that

$$
\left|b_{\nu}-a_{\nu}\right|=\lim _{k \rightarrow \infty}\left|\frac{1}{N_{k}} \sum_{j=1}^{N_{k}}\left(a_{j+\nu}-a_{j}-a_{\nu}\right)\right| \leq M
$$

and that

$$
\begin{aligned}
b_{\nu+\mu} & \leftarrow \frac{1}{N_{k}} \sum_{j=1}^{N_{k}}\left(a_{j+\mu+\nu}-a_{j}\right) \\
& =\frac{1}{N_{k}} \sum_{j=1}^{N_{k}}\left(a_{j+\mu}-a_{j}\right)+\frac{1}{N_{k}} \sum_{j=\mu+1}^{N_{k}+\mu}\left(a_{j+\nu}-a_{j}\right) \\
& =\frac{1}{N_{k}} \sum_{j=1}^{N_{k}}\left(a_{j+\mu}-a_{j}\right)+\frac{1}{N_{k}} \sum_{j=1}^{N_{k}}\left(a_{j+\mu}-a_{j}\right) \pm \frac{M+\left|a_{\mu}\right|}{N_{k}} \\
& \rightarrow b_{\mu}+b_{\nu} .
\end{aligned}
$$

Thus $b_{\nu}=\nu a$ and $\left|a_{\nu}-\nu a\right| \leq M$ where $a=b_{1}=\lim _{n \rightarrow \infty} \frac{a_{n}}{n}$.
In case $\sup _{k}\left|d_{k}\right|<\infty$, because of the tightness of $\left\{m-\right.$ dist. $\left.\left(S_{n_{k}}\right): k \geq 1\right\}$ we have that $\sup _{k \geq 1}\left|a_{n_{k}}\right|<\infty$, whence $a=0$.

T4 It now follows from the coboundary theorem that ϕ is cohomologous to a.

§3 An Example

In this section we show that there is a probability preserving transformation (X, \mathcal{B}, m, T) which is mildly mixing in the sense that $\nexists A \in \mathcal{B}, 0<m(A)<1$ such that $\liminf _{n \rightarrow \infty} m\left(A \Delta T^{n} A\right)=0$ (see $\S 2.7$ of $[\mathrm{A}]$), and $\phi: X \rightarrow \mathbb{R}$ measurable such that T_{ϕ} is ergodic and for some $n_{k} \rightarrow \infty, \lim \sup _{k \rightarrow \infty}\left|S_{n_{k}}\right|<\infty m$-almost everywhere.

Chacon's transformation [Cha].

This transformation (X, \mathcal{B}, m, T) is defined inductively on $X:=\bigcup_{n=1}^{\infty} C_{n} \subset \mathbb{R}$ where $m=$ Lebesgue measure.

Here $C_{n}=\bigcup_{k=0}^{\ell_{n}-1} T^{k} J_{n}$ where

- $\ell_{1}=1, \ell_{n+1}=3 \ell_{n}+1\left(\Longrightarrow \ell_{n}=\frac{3^{n}-1}{2}\right)$;
- $\left\{T^{k} J_{n}: 0 \leq k \leq \ell_{n}-1\right\}$ are disjoint intervals of length $\frac{1}{3^{n-1}}$ and $T: T^{k} J_{n} \rightarrow$ $T^{k+1} J_{n}$ is a translation;
- C_{n+1} is obtained by writing $J_{n}=\bigcup_{i=0}^{2} J_{n, i}$ where the $J_{n, i} \quad(i=0,1,2)$ are disjoint intervals of length $\frac{1}{3^{n}}$ and setting $J_{n+1}:=J_{n, 0}$ and

$$
T^{k} J_{n+1}:=\left\{\begin{array}{l}
T^{k} J_{n, 0} \quad 0 \leq k \leq \ell_{n}-1 \\
T^{k-\ell_{n}} J_{n, 1} \quad \ell_{n} \leq k \leq 2 \ell_{n}-1, \\
\mathcal{S}_{n+1} \quad k=2 \ell_{n}, \\
T^{k-2 \ell_{n}-1} J_{n, 2} \quad 2 \ell_{n}+1 \leq k \leq 3 \ell_{n}=\ell_{n+1}-1
\end{array}\right.
$$

where \mathcal{S}_{n+1} is an interval of length $\frac{1}{3^{n}}$, disjoint from C_{n} (called the spacer).
The set X has finite measure which can be normalized to equal one but we keep the standard Lebesgue measure in order to simplify the later formulae. We first give a proof of the ergodicity based on a careful analysis of how the the intervals $T^{k} J_{n}$ approximate arbitrary measurable sets. This analysis will also be the base for our proof of the mild mixing property.

Denote

$$
\mathcal{C}_{n}:=\left\{U_{n}(K):=\bigcup_{k \in K} T^{k} J_{n}: K \subset\left\{0,1, \ldots, \ell_{n}-1\right\}\right.
$$

For $A \in \mathcal{B}, \epsilon>0$ and $n \geq 1$ define

$$
K_{A, \epsilon}^{(n)}:=\left\{0 \leq k \leq \ell_{n}-1: m\left(T^{k} J_{n} \cap A\right)<\epsilon m\left(J_{n}\right)\right\} \subset\left\{0,1, \ldots, \ell_{n}-1\right\} .
$$

Evidently, for $A, B \in \mathcal{B}$ disjoint and $0<\epsilon<\frac{1}{2}, K_{A, \epsilon}^{(n)}$ and $K_{B, \epsilon}^{(n)}$ are disjoint.
It is standard that $\forall A \in \mathcal{B}, \epsilon>0, \exists N_{A, \epsilon}$ such that

$$
\left|E_{A}^{(n)}\right|<\epsilon \ell_{n} \forall n \geq N_{A, \epsilon} \text { where } E_{A}^{(n)}:=\left\{0,1, \ldots, \ell_{n}-1\right\} \backslash\left(K_{A, \epsilon}^{(n)} \cup K_{A^{c}, \epsilon}^{(n)}\right)
$$

whence (for such n)

$$
m\left(U_{n}\left(K_{A, \epsilon}^{(n)}\right) \backslash A\right)=\sum_{k \in K_{A, \epsilon}^{(n)}} m\left(T^{k} J_{n} \backslash A\right)<\epsilon m\left(C_{n}\right)
$$

and

$$
\begin{aligned}
m\left(A \backslash U_{n}\left(K_{A, \epsilon}^{(n)}\right)\right) & =m\left(A \cap U_{n}\left(K_{A^{c}, \epsilon}^{(n)}\right)\right)+m\left(A \cap U_{n}\left(E_{A}^{(n)}\right)\right) \\
& \leq \sum_{k \in K_{A^{c}, \epsilon}^{(n)}} m\left(T^{k} J_{n} \backslash A\right)+\epsilon m\left(C_{n}\right) \\
& <2 \epsilon m\left(C_{n}\right)
\end{aligned}
$$

and $m\left(A \Delta U_{n}\left(K_{A, \epsilon}^{(n)}\right)\right)<3 \epsilon m\left(C_{n}\right)$. Henceforth, we let $n_{A, \epsilon}$ be the minimal N with $\left|E_{A}^{(n)}\right|<\epsilon \ell_{n} \forall n \geq N$.

Conversely, suppose that $A \in \mathcal{B}$ and $U=U_{n}(K) \in \mathcal{C}_{n}$ satisfy $m(A \Delta U)<\epsilon m(U)$, then

$$
\begin{aligned}
\sum_{k \in K, m\left(T^{k} J_{n} \backslash A\right) \geq \sqrt{\epsilon} m\left(J_{n}\right)} m\left(T^{k} J_{n}\right) & \leq \frac{1}{\sqrt{\epsilon}} \sum_{k \in K, m\left(T^{k} J_{n} \backslash A\right) \geq \sqrt{\epsilon} m\left(J_{n}\right)} m\left(T^{k} J_{n} \backslash A\right) \\
& \leq \frac{1}{\sqrt{\epsilon}} m(U \backslash A) \\
& <\sqrt{\epsilon}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{k \in K^{c}, m\left(T^{k} J_{n} \backslash A^{c}\right) \geq \sqrt{\epsilon} m\left(J_{n}\right)} m\left(T^{k} J_{n}\right) & \leq \frac{1}{\sqrt{\epsilon}} \sum_{k \in K^{c}, m\left(T^{k} J_{n} \backslash A^{c}\right) \geq \sqrt{\epsilon} m\left(J_{n}\right)} m\left(T^{k} J_{n} \backslash A^{c}\right) \\
& \leq \frac{1}{\sqrt{\epsilon}} m(A \backslash U) \\
& <\sqrt{\epsilon}
\end{aligned}
$$

whence

$$
\left|K \backslash K_{A, \epsilon}^{(n)}\right|,\left|K^{c} \backslash K_{A^{c}, \epsilon}^{(n)}\right| \leq \sqrt{\epsilon} \ell_{n}
$$

and $n \geq n_{A, 2 \sqrt{\epsilon}}$.
To see (the well known fact $[\mathrm{Fr}])$ that (X, \mathcal{B}, m, T) is an ergodic measure preserving transformation, let $A \in \mathcal{B}, m(A)>0$ satisfy $T A=A$. Evidently, $K_{A}^{(n)} \neq$ $\emptyset \Longrightarrow K_{A}^{(n)}=\left\{0,1, \ldots, \ell_{n}-1\right\}$ whence $U_{n}\left(K_{A, \epsilon}^{(n)}\right)=C_{n}$.

It follows that $m(A)>m\left(C_{n}\right)(1-3 \epsilon) \forall \epsilon>0, n \geq n_{A, \epsilon}$ whence $A=X \bmod m$.
It was shown that Chacon's transformation (X, \mathcal{B}, m, T) is weakly mixing and not strongly mixing in [Cha]. We claim next that it is mildly mixing. For a related result, see [F-K].

To see this, we'll first need some notation to record how sets in \mathcal{C}_{n} appear in C_{n+2}. Define $e_{j}(0 \leq j \leq 7)$ by

$$
e_{j}:= \begin{cases}0 & j=0,2,3,6 \\ 1 & j=1,4,5,7\end{cases}
$$

$\kappa_{j}=\kappa_{j, n}$ by

$$
\kappa_{0}=0, \kappa_{j+1}:=\kappa_{j}+\ell_{n}+e_{j}
$$

and

$$
X_{j}=X_{j, n}:=\bigcup_{i=0}^{\ell_{n}-1} T^{i+\kappa_{j, n}} J_{n+2} \quad(0 \leq j \leq 8)
$$

then given $n \geq 1, \quad K \subset\left\{0,1, \ldots, \ell_{n}-1\right\}$ and $U=U_{n}(K) \in \mathcal{C}_{n}$, we have that

$$
T^{\kappa_{j, n}}\left(U \cap X_{0}\right)=\bigcup_{i \in K} T^{i+\kappa_{j, n}} J_{n+2}=U \cap X_{j}, \quad(0 \leq j \leq 7)
$$

and

$$
T^{\ell_{n}+e_{j}}\left(U \cap X_{j}\right)=U \cap X_{j+1}
$$

Next suppose that $A \in \mathcal{B}, \epsilon>0$ and $n \geq n_{A, \epsilon}$, then

$$
m\left(T^{i+\kappa_{j, n}} J_{n+2} \cap A\right)<9 \epsilon m\left(J_{n+2}\right) \quad \forall i \in K_{A^{c}, \epsilon}^{(n)}, 0 \leq j \leq 8
$$

and

$$
m\left(T^{i+\kappa_{j, n}} J_{n+2} \backslash A\right)<9 \epsilon m\left(J_{n+2}\right) \quad \forall i \in K_{A, \epsilon}^{(n)}, 0 \leq j \leq 8
$$

whence

$$
m\left(T^{\kappa_{j, n}}\left(A \cap X_{0}\right) \Delta\left(A \cap X_{j}\right)\right)<36 \epsilon
$$

Now suppose that $A \in \mathcal{B} m(A)>0$ satisfies $\liminf _{n \rightarrow \infty} m\left(A \Delta T^{n} A\right)=0$. We claim that $A=T^{-1} A$.

To see this, fix $\epsilon>0$, then $\exists n \geq n_{A, \epsilon}$ and $N \in\left[\ell_{n}, \ell_{n+1}-1\right]$ such that $m\left(A \Delta T^{N} A\right)<\epsilon$, whence $\exists B \in \mathcal{C}_{n}$ such that $m\left(B \Delta T^{N} B\right)<3 \epsilon$. Write $N=a \ell_{n}+b$ where $a=1,2$ and $0 \leq b \leq \ell_{n}$. We have that for $0 \leq j \leq 6-a$,

$$
T^{N} X_{j}=T^{a \ell_{n}+b} X_{j}=T^{b-e_{j, a}} X_{j+a}
$$

where $e_{j, 1}=e_{j}$ and $e_{j, 2}=e_{j}+e_{j+1}$. Thus, on the one hand

$$
T^{N}\left(B \cap X_{j}\right)=T^{N} B \cap T^{N} X_{j} \approx^{3 \epsilon} B \cap T^{N} X_{j}=B \cap T^{b-e_{j, a}} X_{j+a} \quad(0 \leq j \leq 7)
$$

(where $C \approx^{\eta} D$ means $m(C \Delta D)<\eta$) and on the other hand

$$
T^{N}\left(B \cap X_{j}\right)=T^{b-e_{j, a}}\left(B \cap X_{j+a}\right) \quad(0 \leq j \leq 6-a)
$$

whence

$$
\begin{gathered}
B \cap X_{j+a} \approx^{3 \epsilon} T^{-b+e_{j, a}} B \cap X_{j+a} \forall 0 \leq j \leq 6-a, \\
B \approx^{27 \epsilon} T^{-b+e_{j, a}} B \forall 0 \leq j \leq 6-a,
\end{gathered}
$$

whence (choosing j, j^{\prime} with $e_{j, a}-e_{j^{\prime}, a}=1$)

$$
B \approx^{54 \epsilon} T B \Longrightarrow A \approx^{56 \epsilon} T A
$$

The cocycle.

This cocycle $\phi: X \rightarrow \mathbb{Z}$ will be defined successively as a sum of coboundaries.
Define $g^{(n)}: C_{n+2} \rightarrow \mathbb{Z}$ by

$$
g^{(n)}(x)=\left\{\begin{array}{l}
1 \quad x \in \mathcal{S}_{n+1} \\
-3 \quad x \in \mathcal{S}_{n+2} \\
0 \quad \text { else }
\end{array}\right.
$$

Note that

$$
\forall n \geq 1 k \geq n+2, T^{N} X_{i, k}=X_{i+j, k} \quad \Longrightarrow \quad g_{N}^{(n)} \equiv 0 \text { on } X_{i, k}
$$

(this is because $\left.g_{N}^{(n)}\right|_{X_{i, k}}=\left.j g_{\ell_{k}}^{(n)}\right|_{J_{k}}=0$); whereas $\forall U \in \mathcal{C}_{n}$,

$$
U \cap T^{-\left(2 \ell_{n}+1\right)} U \cap\left[g_{2 \ell_{n}+1}^{(n)}=1\right] \supset U \cap \bigcup_{k=0,1,3,7} X_{k, n}=: U \cap Y_{n}
$$

whence

$$
m\left(U \cap T^{-\left(2 \ell_{n}+1\right)} U \cap\left[g_{2 \ell_{n}+1}^{(n)}=1\right]\right) \geq \frac{4}{9} m(U)
$$

Now fix a sequence $n_{k} \nearrow \infty$ such that

- $n_{k+1}>n_{k}+2$;
- $\sum_{j \geq k+1} m\left(\mathcal{S}_{n_{j}}\right)<\frac{m\left(J_{n_{k}}\right)}{45\left(2 \ell_{n_{k}}+1\right)}$ and define

$$
\phi:=\sum_{k=1}^{\infty} g^{\left(n_{k}\right)} .
$$

Ergodicity of T_{ϕ}.

We have by (\ddagger) that $\forall k \geq 1$

$$
\phi_{2 \ell_{n_{k}}+1}=\sum_{j \geq k} g_{2 \ell_{n_{k}}+1}^{\left(n_{j}\right)} \text { on } Y_{n_{k}}
$$

whence

$$
\begin{aligned}
& m\left(Y_{n_{k}} \cap\left[\phi_{2 \ell_{n_{k}}+1} \neq g_{2 \ell_{n_{k}}+1}^{\left(n_{k}\right)}\right]\right) \leq \sum_{j \geq k+1} m\left(\left[g_{2 \ell_{n_{k}}+1}^{\left(n_{j}\right)} \neq 0\right]\right) \\
& \quad \leq\left(2 \ell_{n_{k}}+1\right) \sum_{j \geq k+1} m\left(\mathcal{S}_{n_{j}}\right) \\
& \quad \leq \frac{m\left(J_{n_{k}}\right)}{45}
\end{aligned}
$$

and for $U \in \mathcal{C}_{n_{k}}, U \neq \emptyset$,

$$
\begin{aligned}
m\left(U \cap T^{-\left(2 \ell_{n_{k}}+1\right)}\right. & \left.U \cap\left[\phi_{2 \ell_{n_{k}}+1}=1\right]\right) \\
& \geq m\left(U \cap T^{-\left(2 \ell_{n_{k}}+1\right)} U \cap\left[g_{2 \ell_{n_{k}}+1}^{\left(n_{k}\right)}=1\right)-m\left(\left[\phi_{2 \ell_{n_{k}}+1} \neq g_{2 \ell_{n_{k}}+1}^{\left(n_{k}\right)}\right]\right)\right. \\
& \geq \frac{4}{9} m(U)-\frac{m\left(J_{n_{k}}\right)}{45} \\
& \geq \frac{19 m(U)}{45} .
\end{aligned}
$$

To show that $T_{\phi}: X \times \mathbb{Z} \rightarrow X \times \mathbb{Z}$ is ergodic, it suffices by [Sch1] to show that if $A \in \mathcal{B}, m(A)>0$ and $k \geq 1$ is large enough, then

$$
m\left(A \cap T^{-\left(2 \ell_{n_{k}}+1\right)} A \cap\left[\phi_{2 \ell_{n_{k}}+1}=1\right]\right)>0
$$

To see this, note that for $k \geq 1$ large enough, $\exists U \in \mathcal{C}_{n}$ with $m(A \Delta U)<\frac{2 m(U)}{45}$ whence

$$
\begin{aligned}
m\left(A \cap T^{-\left(2 \ell_{n_{k}}+1\right)} A \cap\right. & {\left.\left[\phi_{2 \ell_{n_{k}}+1}=1\right]\right) } \\
& \geq m\left(U \cap T^{-\left(2 \ell_{n_{k}}+1\right)} U \cap\left[\phi_{2 \ell_{n_{k}}+1}=1\right]\right)-2 m(A \Delta U) \\
& \geq \frac{m(U)}{3}>0 .
\end{aligned}
$$

Tightness of $\left\{m-\operatorname{dist} .\left(S_{\ell_{n_{k}}}\right): k \geq 1\right\}$.
We first claim that
(\diamond)

$$
\left|\left(\sum_{k=1}^{K} g^{\left(n_{k}\right)}\right)_{\ell_{N}}\right| \leq 3 \forall K \geq 1, N \geq n_{K}+2
$$

To see this, we consider the tower C_{N+2} which consists of C_{N}-blocks, and the spacers $\mathcal{S}_{N+1} \cup \mathcal{S}_{N+2}$, on which latter $\sum_{k=1}^{K} g^{\left(n_{k}\right)} \equiv 0$. The cocycle sum over a C_{N}-block is zero by construction.

An arbitrary cocycle sum of length ℓ_{N} in C_{N+2} begins in the middle of a $C_{N^{-}}$ block, either passes over a spacer interval (in $\mathcal{S}_{N+1} \cup \mathcal{S}_{N+2}$) or not, and continues to the middle of the next C_{N}-block. In the second case, the cocycle sum will be as over a C_{N}-block, and equal zero. In the first case, it will be as over a C_{N}-block less one interval (the one before the starting place) and

$$
\left(\sum_{k=1}^{K} g^{\left(n_{k}\right)}\right)_{\ell_{N}}=-\sum_{k=1}^{K} g^{\left(n_{k}\right)}\left(x_{0}\right)
$$

The claim (\diamond) follows since $\sum_{k=1}^{K} g^{\left(n_{k}\right)}=0,1,-3$.
To prove our tightness claim, we prove that $m\left(\left[\left|S_{\ell_{n_{K}}}\right| \geq 4\right]\right) \rightarrow 0$ as $K \rightarrow \infty$. Indeed, by (\diamond),

$$
\begin{aligned}
m\left(\left[\left|S_{\ell_{n_{K}}}\right| \geq 4\right]\right) & \leq m\left(\left[S_{\ell_{n_{K}}} \neq\left(\sum_{k=1}^{K} g^{\left(n_{k}\right)}\right)_{\ell_{n_{K}}}\right]\right) \\
& =m\left(\left[\left(\sum_{k=K+1}^{\infty} g^{\left(n_{k}\right)}\right)_{\ell_{n_{K}}} \neq 0\right]\right) \\
& \leq \ell_{n_{K}} m\left(\left[\sum_{k=K+1}^{\infty} g^{\left(n_{k}\right)} \neq 0\right]\right) \\
& \leq \ell_{n_{K}} \sum_{k=K+1}^{\infty} m\left(\mathcal{S}_{n_{k}}\right) \\
& \leq \frac{m\left(J_{n_{K}}\right)}{90}
\end{aligned}
$$

References

[A] J. Aaronson, An introduction to infinite ergodic theory, Mathematical surveys and monographs 50, American Mathematical Society, Providence, R.I, U.S., 1997.
[Br1] R.C. Bradley, On a theorem of K. Schmidt, Statist and Probab. Letters 23 (1995), 9-12.
[Br2] , A "coboundary" theorem for sums of random variables taking values in a Banach space., Pacific J. Maths. 178 (1997), 201-224.
[Br3] , A "multiplicative coboundary" theorem for some sequences of random matrices, J. Theor. Probab. 9 (1996), 659-678.
[Br4] _, On the dissipation of the partial sums of a stationary strongly mixing sequence, Stoch. Proc. Appl. 54 (1994), 281-290.
[Cha] R. V. Chacon, Weakly mixing transformations which are not strongly mixing, Proc. Amer. Math. Soc. 22 (1969), 559-562.
[Co] J-P, Conze, Transformations cylindriques et mesures finies invariantes, Ann. Sci. Univ. Clermont Math. 17 (1979), 25-31.
[Fr] N. Friedman, Introduction to ergodic theory, van Nostrand, New York, 1970.
[F-K] N. Friedman, J. King, Rank one lightly mixing, Israel J. Math. 73 (1991), 281-288.
[Key-New] H. Keynes, D. Newton, The structure of ergodic measures for compact group extensions, Israel J. Math. 18 (1974), 363-389.
[Lem] M.Lemańczyk, Ergodic compact Abelian group extensions, Habilitation thesis, Nicholas Copernicus University, Toruń, 1990.
[Leo] V.P. Leonov, On the dispersion of time averages of a stationary random process, Theory Probab. Appl. 6 (1961), 93-101.
[Mo-Sch] C.C. Moore, K. Schmidt, Coboundaries and homomorphisms for nonsingular actions and a problem of H. Helson., Proc. London Math. Soc. 40 (1980), 443-475.
[Rev] P. Revesz, On a problem of Steinhaus, Acta Math. Acad. Sci. Hung. 16 (1965), 311318.
[Par] K. R. Parthasarathy, Introduction to probability and measure., Springer-Verlag New York Inc., New York, 1978.
[Sch1] K. Schmidt, Cocycles of Ergodic Transformation Groups, Lect. Notes in Math. Vol. 1, Mac Millan Co. of India, 1977.
[Sch2] , Amenability, Kazhdan's property T, strong ergodicity and invariant means for ergodic group-actions, Ergodic Theory Dynamical Systems 1 (1981), 223-236.
[Weil] A. Weil, L'integration dans les groupes topologiques et ses applications, Actualites scientifiques et industrielles, vol. 869, Hermann \& Cie., Paris, 1940.
[Zim] R. J. Zimmer, On the cohomology of ergodic group actions, Israel J. Math. 35 (1980), 289-300.

Aaronson: School of Mathematical Sciences, Tel Aviv University, 69978 Tel Aviv, IsRaEl.

Weiss: Mathematical Institute, Hebrew University, Jerusalem, Israel.
E-mail address: weiss@math.huji.ac.il

[^0]: 1991 Mathematics Subject Classification. 28D05.

