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Abstract. We prove a generalised tightness theorem for cocycles over an ergodic
probability preserving transformation with values in Polish topological groups. We

also show that subsequence tightness of cocycles over a mixing probability preserving

transformation implies tightness. An example shows that this latter result may fail
for cocycles over a mildly mixing probability preserving transformation.

Let (Ω,B,m) be a probability space, let T : Ω → Ω be an ergodic probability
preserving transformation, let G be a Polish topological group and let φ : Ω → G
be measurable.

We consider Sn, the random walk or cocycle on G defined by

S0(ω) = e, Sn+1(ω) := φ(Tnω)Sn(ω).

This random walk is generated by the skew product transformation Tφ : X×G→
X ×G where Tnφ (ω, y) = (Tnω, Sn(ω)y). In case G is a locally compact topological
group, Tφ preserves the measure m×mG where mG is a left Haar measure on G.

§1 Tightness theorem

We consider the situation where {m − dist. (Sn) : n ≥ 1} is tight in the sense
that ∀ ε > 0, ∃ C ⊂ G compact such that supn≥1m(Sn /∈ C) < ε (equivalently,
tightness is precompactness in the space P(G) of probability measures on G). One
way this can happen is when φ is cohomologous to a compact-group-valued function,
i.e. there is a compact subgroup K ⊆ G and measurable ψ : Ω → K, g : Ω → G
such that φ(ω) = g(Tω)−1ψ(ω)g(ω), then Sn(ω) = g(Tnω)−1kn(ω)g(ω) where
kn(ω) := ψ(Tn−1ω)ψ(Tn−2ω) . . . ψ(ω) ∈ K.

Tightness theorem.

The distributions {m − dist. (Sn) : n ≥ 1} are tight in P(G) ⇐⇒ φ is
cohomologous to a compact-group-valued function.
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Remarks about ⇐.

1) The ⇐ of the tightness theorem is an easy consequence of the tightness of
a single probability on a Polish space (Prohorov’s theorem, see [Par]) and the
probability preserving property of T .

2) If m is not absolutely continuous with respect to some T -invariant probability
on (Ω,B) then ⇐ may fail.

In this case, there is a set W ∈ B, m(W ) > 0 and a sequence nk → ∞ such
that {T−nkW : k ≥ 1} are disjoint (such a set is called weakly wandering). Given
a noncompact Polish space G, we choose x0 ∈ G and a sequence yk ∈ G, yk →∞
(i.e. ∀ compact C ⊂ G, yk /∈ C eventually) and define f : Ω→ G by

f(x) =

{
yk x ∈ T−nkW (k ≥ 1),

x0 x ∈ Ω \
⋃∞
k=1 T

−nkW.

It follows that {m−dist. (f◦Tn) : n ≥ 1} cannot be tight in P(G) sincem([f◦Tnk =
yk]) ≥ m(W ) 9 0.

If G is a noncompact Polish topological group, we set φ = f−1f ◦ T and obtain
a coboundary for which the distributions {m− dist. (Sn) : n ≥ 1} are not tight in
P(G).

In case G has no non-trivial compact subgroups, the tightness theorem boils
down to the so-called coboundary theorem:

The distributions {m − dist. (Sn) : n ≥ 1} are tight in P(G) ⇐⇒ φ is a
coboundary.

The first version of the coboundary theorem seems to be:

L2 coboundary theorem [Leo].

If {Zn : n ≥ 1} is a wide sense stationary process, then ∃ {Yn : n ≥ 1} wide
sense stationary such that Zn = Yn − Yn+1 iff supn≥1 E(|

∑n
k=1 Zk|2) <∞.

Proof.

If ∃ {Yn : n ≥ 1} wide sense stationary such that Zn = Yn − Yn+1, then∑n
k=1 Zk = Y1 − Yn+1 and ‖

∑n
k=1 Zk‖2 ≤ 2‖Y1‖2 ∀ n ≥ 1.

Conversely, if ‖
∑n
k=1 Zk‖2 ≤M ∀ n ≥ 1, then by weak ∗ sequential compactness

of norm bounded sets, ∃ Na →∞ and a r.v. Y = Y (Z1, Z2, . . . ) such that

1

Na

Na∑
n=1

n∑
k=1

Zk ⇀ Y

(where ⇀ denotes weak convergence in L2.

Write Yn := Y (Zn, Zn+1, . . . ), then {Yn : n ≥ 1} is a wide sense stationary
process and

1

Na

Na∑
n=1

n∑
k=1

Zk+ν−1 ⇀ Yν ∀ ν ≥ 1.
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It follows that

Yν+1 ↼
1

Na

Na∑
n=1

n+ν∑
k=ν+1

Zk

=
1

Na

Na∑
n=1

(n+ν−1∑
k=ν

Zk + Zn+ν − Zν
)

=
1

Na

Na∑
n=1

n∑
k=1

Zk+ν−1 +
1

Na

Na∑
n=1

Zn+ν − Zν

⇀ Yν − Zν

because ‖
∑Na
n=1 Zn+ν‖ is uniformly bounded. �

Leonov’s theorem has the ”Lp analogues:

Lp coboundary theorem.
Let (X,B,m, T ) be a probability preserving transformation, and let 1 ≤ p < ∞

and let f : X → R be measurable.
∃ g ∈ L1(m) such that f = g − g ◦ T iff supn≥1 ‖

∑n
k=1 f ◦ T k‖p <∞.

The proof of Lp coboundary theorem is the same as that of Leonov with Komlos
type convergence replacing weak convergence when p = 1.

The coboundary theorem is established in [Sch1] for the case G = R, and in [Mo-
Sch] for G locally compact, second countable, Abelian without compact subgroups.

The tightness theorem for locally compact, second countable groups was estab-
lished in [Sch2]; related partial results are given in [Co] and [Zim].

Bradley has proved =⇒ of the coboundary theorem assuming only that T is
measurable:
in [Br1] for G = R, in [Br2] for G a Banach space and in [Br3] for G a group of
upper triangular matrices.

The present methods can be stretched to prove the =⇒ of the tightness theorem
assuming only that T is measurable and invertible.

Basic Lemma.
If the family {P − dist. (Sn) : n ≥ 1} is tight in P(G), then ∃ P : Ω → P(G)

measurable, such that

PTω(A) = Pω(φ(ω)−1A) (A ∈ B(G)).

This basic lemma is implicit in [Br1] for G = R. The general proof is essentially
as in [Br1] (see below).

The coboundary theorem for R is easily established using it ([Br1]). Indeed if
for ω ∈ Ω, µ(ω) is defined as the minimal number satisfying
Pω((−∞, µ(ω)]), Pω([µ(ω),∞)) ≥ 1

2 , then µ : Ω → R is measurable and (since
PTω(A) = Pω(A− φ(ω))) we have µ(Tω) = µ(ω)− φ(ω).

The proof of the tightness theorem given the basic lemma uses a generalisation
of the characterisation of invariant measures for group extensions in [Key-New].
The proof is an adaptation of Lemańczyk’s proof of [Key-New] in [Lem]. See also
the proof of theorem 8.3.2 in [A].
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Proof of the basic lemma.
Choose first Kν ⊂ Kν+1 · · · ⊂ G, a sequence of compact sets in G with the

property (ensured by tightness) that

(1) m([Sn ∈ Kc
ν ]) ≤ 1

4ν
∀ n, ν ≥ 1.

Consider the random measures Wn : Ω→ P(G) defined by

Wn(A) :=
1

n

n∑
j=1

1A(Sj).

Next, for ν ≥ 1 let Aν ⊂ C(Kν) be a countable family, dense in C(Kν); and let
A =

⋃∞
ν=1Aν .

We now claim that ∃ nk →∞ and L : A → L∞(Ω) such that

(2)

∫
G

fdWnk → L(f) weak ∗ in L∞(Ω) ∀ f ∈ A.

This is shown using weak ∗ precompactness of L∞(Ω)-bounded sets, and a diago-
nalisation.

By possibly passing to a subsequence, we can ensure that ∀ f ∈ A, ∃ Nf ,∣∣∣∣ ∫
X

(
(

∫
G

fdWnk − L(f))(

∫
G

fdWnj − L(f))

)
dm <

1

2k
∀ k ≥ Nf , j < k,

whence ([Rev])

(3)
1

N

N∑
k=1

∫
G

fdWnk → L(f) a.e. ∀ f ∈ A

and hence (by density) ∀ f ∈
⋃∞
ν=1 C(Kν).

By the Chebyshev-Markov inequality,

m

(
L(1Kc

ν
) >

1

2ν

)
← m

(
Wnk(Kc

ν) >
1

2ν

)
< 2ν

∫
X

Wnk(Kc
ν)dm <

1

2ν
∀ ν ≥ 1

and so by the Borel-Cantelli lemma, L(1Kc
ν
) ≤ 1

2ν a.e. ∀ ν large.

It follows that ∃ P : Ω→ P(G) measurable, such that L(f)(ω) =
∫
G
fdPω ∀ f ∈

A.
To see that PTω = Pω ◦Rφ(ω) (Rg(y) := yg), note that∫

G

fdWn(Tω) =
1

n

n∑
j=1

f(Sj(Tω)) =
1

n

n∑
j=1

f(Sj+1(ω)φ(ω)−1)

=
1

n

n+1∑
j=2

f ◦Rφ(ω)−1(Sj(ω))

=

∫
G

f ◦Rφ(ω)−1dWn(ω)± 2‖f‖∞
n

=

∫
G

fdWn(ω) ◦Rφ(ω) ±
2‖f‖∞
n

.
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Proof of ⇒ in the tightness theorem.
Given probabilities ω 7→ pω on G satisfying

pTω = pω ◦ Lφ(ω)−1 ,

define a probability µ ∈ P(Ω×G) by

µ(A×B) :=

∫
A

pω(B)dm(ω).

We first note that this probability is Tφ-invariant:∫
X×G

(u⊗ v) ◦ Tφdµ =

∫
X

u(Tx)

∫
G

v(φ(x)y)dpx(y)dm(x)

=

∫
X

u(Tx)

∫
G

v(y)dpTx(y)dm(x)

=

∫
X

u(x)

∫
G

v(y)dpx(y)dm(x)

=

∫
X×G

u⊗ vdµ.

Almost every ergodic component P of µ has a disintegration over m of form

P (A×B) :=

∫
A

p̃ω(B)dm(ω)

where ω 7→ p̃ω ∈ P(G) is measurable, and p̃Tω = p̃ω ◦Rφ(ω). Fix one such P .
Define p ∈ P(G) by p(B) := P (Ω× B). There are compact sets C1 ⊂ C2 ⊂ . . .

such that
⋃∞
n=1 Cn = G mod p. Define compact subsets {Kn : n ≥ 0} by

K0 := {e}, Kn+1 = (Kn ∪ Cn)(Kn ∪ Cn)−1(Kn ∪ Cn)(Kn ∪ Cn)−1.

Evidently, G0 :=
⋃∞
n=1Kn is a subgroup of G and p(G \G0) = 0 whence

p̃ω(G \G0) = 0 for m-a.e. ω ∈ Ω.
Next, consider the bounded, continuous, R-valued functions on G0: CB(G0)

(equipped with the supremum norm) and set

C := {f ∈ CB(G0) : sup
y∈Kc

n

|f(y)| →
n→∞

0}.

Evidently C =
⋃∞
n=1 CB(Kn) is separable, and f ∈ C =⇒ f ◦ Rg ∈ C ∀ g ∈ G0

(since if g ∈ Ki, then x /∈ Kn+i =⇒ xg /∈ Kn).
For each a ∈ G, P ◦ Qa (Qa(ω, y) := (ω, ya)) is also an ergodic Tφ-invariant

probability (since Tφ ◦Qa = Qa ◦Tφ), and therefore either P ◦Qa = P or P ◦Qa ⊥
P . Define H := {a ∈ G0 : P ◦ Qa = P}, a closed subgroup of G0. For a.e.
ω ∈ Ω, pω(Aa) = pω(A) (a ∈ H, A ∈ B(G)).

Consider the Banach space M(Ω × G0) of bounded measurable functions Ω ×
G0 → R equipped with the supremum norm. We need a separable subspace A ⊂



6 JON AARONSON, BENJAMIN WEISS

M(Ω×G0) which separates the points of Ω×G0 such that f ∈ A =⇒ f ◦Qa ∈
A ∀ a ∈ G0. In particular,

a, b ∈ G0,

∫
Ω×G

fdP ◦Qa =

∫
Ω×G

fdP ◦Qb ∀ f ∈ A =⇒ P ◦Qa = P ◦Qb.

To obtain such a subspace, fix a compact metric topology on Ω generating B,
then A = C(Ω)⊗ C is as needed.

By Birkhoff’s ergodic theorem,

1

n

n−1∑
k=0

f ◦ T kφ (ω, y)→
∫

Ω×G
fdP a.e. ∀ f ∈ L1(P ).

Set

Y :=

{
(ω, y) ∈ Ω×G0 :

1

n

n−1∑
k=0

f ◦ T kφ (ω, y)→
∫

Ω×G
fdP ∀ f ∈ A

}
.

Since A is a separable subspace of M(Ω × G0), the set Y is determined by a
countable subcollection of A whence Y ∈ B(Ω × G0), and by Birkhoff’s ergodic
theorem P (Y ) = 1.

For ω ∈ Ω, set Yω = {y ∈ G0 : (ω, y) ∈ Y }. We claim that Yω is a coset of H
whenever it is nonempty.

To see this, suppose that a ∈ G, then ∀ f ∈ A and for a.e. (x, y) ∈ Y ,

1

n

n−1∑
k=0

f ◦ T kφ (ω, ya)→
∫

Ω×G
f ◦QadP =

∫
Ω×G

fdP ◦Q−1
a .

Thus, (ω, ya) ∈ Y iff P ◦Q−1
a = P , equivalently a ∈ H; and Yω is indeed a coset of

H whenever it is nonempty (i.e. a.e.).
By the analytic section theorem, ∃ h : Ω → G measurable such that h(ω) ∈ Yω

for a.e. ω ∈ Ω, whence Yω = h(ω)H.
Now let P ′ω ∈ P(G) be defined by P ′ω(A) := pω(h(ω)−1A). Clearly P ′ω(H) = 1

and P ′ω(Aa) = P ′ω(A) (a ∈ H, A ∈ B(G)). Thus by [Weil], H is compact and
P ′ω = mH , Haar measure on H.

Defining Ψ : Ω×G→ Ω×G by Ψ(ω, y) := (ω, h(ω)y), we have that P ◦Ψ−1 =
m ×mH . If V := Ψ ◦ Tφ ◦ Ψ−1 then m ×mH ◦ V = m ×mH and V = Tψ where
ψ(ω) := h(ω)φ(ω)h(ω)−1.

Since (Ω×G,B(Ω×G),m×mH , V ) is a probability preserving transformation,
we have that ψ : Ω→ H. �

§2 Subsequence tightness

Let (X,B,m, T ) be a mixing probability preserving transformation and let φ :
X → R be measurable. Bradley showed in [Br4] that if the stochastic process
{φ ◦ Tn : n ≥ 1} is strongly Rosenblatt mixing, then
either 1) supr∈Rm([|Sn − r| ≤ C])→ 0 ∀0 < C <∞,
or 2) ∃ constants an such that {m− dist. (Sn − an) : n ≥ 1} is tight (whence φ is
cohomologous to a constant).

A weaker version of this generalises to an arbitrary stationary stochastic process
driven by a mixing probability preserving transformation.



REMARKS ON THE TIGHTNESS OF COCYCLES 7

Theorem 2.
Suppose that (X,B,m, T ) is a mixing probability preserving transformation and

that φ : X → R is measurable.
If ∃ nk →∞ and dk ∈ R such that {m− dist. (Snk − dk) : k ≥ 1} is tight, then

∃ a ∈ R and g : Ω→ R measurable such that φ(ω) = a+ g(Tω)− g(ω).
In case supk |dk| <∞, a = 0.

Proof.
Consider (X × X,B ⊗ B,m × m,T × T , and φ, φ′ : X × X → R defined by

φ(x, y) := φ(x), φ′(x, y) := φ(y).
¶1 We show first that {m×m− dist. (Sn − S′n) : n ≥ 1} is tight.
Let ε > 0 and choose M > 0 such that m([|Snk − dk| > M

2 ]) < ε
2 ∀ k ≥ 1.

By mixing of T, ∀ n ≥ 1,

m([|Sn − Sn ◦ Tnk | > M ])→ m×m([|Sn − S′n| > M ])

as k →∞. Now

Sn − Sn ◦ Tnk = Sn − Sn+nk + Snk = Snk − Snk ◦ Tn

whence

m([|Sn−Sn◦Tnk | > M ]) = m([|Snk−Snk◦Tn|| > M ]) ≤ 2m([|Snk−dk| >
M

2
]) < ε.

¶2 Next, as in [Br4], ∃ an ∈ R such that {m− dist. (Sn − an) : n ≥ 1} is tight.
To see this, given ε > 0, let M(ε) > 0 be such that

m×m([||Sn − S′n| > M(ε)]) < ε2 ∀ n ≥ 1.

It follows that

m({x ∈ X : m([|Sn−Sn(x)| > M(ε)]) > ε})

≤ 1

ε

∫
X

m([|Sn − Sn(x)| > M(ε)])dm(x)

=
1

ε
m×m([||Sn − S′n| > M(ε)])

< ε ∀ n ≥ 1,

whence ∃ an(ε) ∈ R such that

m([|Sn − an(ε)| > M(ε)]) ≤ ε ∀ n ≥ 1,

Set an = an(1/3). For each 0 < ε < 1
2 , n ≥ 1, we have

m([|Sn − an(ε)| < M(ε)] ∩ [|Sn − an| < M(1/3)]) > 0,

whence |an − an(ε)| < M(1/3) +M(ε) and

m([|Sn − an| > 2M(ε) +M(1/3)]) < ε ∀ n ≥ 1.
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¶3 We show that ∃ a ∈ R such that supn≥1 |an − na| <∞.
To this end, note that ∃ M > 0 such that

(‡) |ak+` − ak − a`| < M ∀ k, ` ≥ 1.

Indeed, if m([|Sn − an| > K]) < 1
8 ∀ n ≥ 1, then (since Sk+` = Sk + S` ◦ T k),

m([|Sk+` − ak − a`| > 2K]) ≤ m([|Sk − ak| > K] ∪ [|S` ◦ T k − a`| > K]) <
1

4

whence
m([|Sk+` − ak − a`| ≤ 2K] ∩ [[|Sk+` − ak+`| ≤ K]) > 0

and |ak+` − ak − a`| ≤ 3K ∀ k, ` ≥ 1.
By (‡), ∃ Nk →∞ and bν ∈ R (ν ≥ 1) such that

1

Nk

Nk∑
j=1

(aj+ν − aj)→ bν as k →∞ ∀ν ≥ 1.

It follows from (‡) that

|bν − aν | = lim
k→∞

| 1

Nk

Nk∑
j=1

(aj+ν − aj − aν)| ≤M

and that

bν+µ ←
1

Nk

Nk∑
j=1

(aj+µ+ν − aj)

=
1

Nk

Nk∑
j=1

(aj+µ − aj) +
1

Nk

Nk+µ∑
j=µ+1

(aj+ν − aj)

=
1

Nk

Nk∑
j=1

(aj+µ − aj) +
1

Nk

Nk∑
j=1

(aj+µ − aj)±
M + |aµ|

Nk

→ bµ + bν .

Thus bν = νa and |aν − νa| ≤M where a = b1 = limn→∞
an
n .

In case supk |dk| <∞, because of the tightness of {m− dist. (Snk) : k ≥ 1} we
have that supk≥1 |ank | <∞, whence a = 0.
¶4 It now follows from the coboundary theorem that φ is cohomologous to a.

�

§3 An Example

In this section we show that there is a probability preserving transformation
(X,B,m, T ) which is mildly mixing in the sense that @ A ∈ B, 0 < m(A) < 1
such that lim infn→∞m(A∆TnA) = 0 (see §2.7 of [A]), and φ : X → R measurable
such that Tφ is ergodic and for some nk → ∞, lim supk→∞ |Snk | < ∞ m-almost
everywhere.
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Chacon’s transformation [Cha].
This transformation (X,B,m, T ) is defined inductively on X :=

⋃∞
n=1 Cn ⊂ R

where m = Lebesgue measure.

Here Cn =
⋃`n−1
k=0 T kJn where

• `1 = 1, `n+1 = 3`n + 1 ( =⇒ `n = 3n−1
2 );

• {T kJn : 0 ≤ k ≤ `n − 1} are disjoint intervals of length 1
3n−1 and T : T kJn →

T k+1Jn is a translation;
• Cn+1 is obtained by writing Jn =

⋃2
i=0 Jn,i where the Jn,i (i = 0, 1, 2) are

disjoint intervals of length 1
3n and setting Jn+1 := Jn,0 and

T kJn+1 :=


T kJn,0 0 ≤ k ≤ `n − 1,

T k−`nJn,1 `n ≤ k ≤ 2`n − 1,

Sn+1 k = 2`n,

T k−2`n−1Jn,2 2`n + 1 ≤ k ≤ 3`n = `n+1 − 1

where Sn+1 is an interval of length 1
3n , disjoint from Cn (called the spacer).

The set X has finite measure which can be normalized to equal one but we keep
the standard Lebesgue measure in order to simplify the later formulae. We first
give a proof of the ergodicity based on a careful analysis of how the the intervals
T kJn approximate arbitrary measurable sets. This analysis will also be the base
for our proof of the mild mixing property.

Denote
Cn := {Un(K) :=

⋃
k∈K

T kJn : K ⊂ {0, 1, . . . , `n − 1}.

For A ∈ B, ε > 0 and n ≥ 1 define

K
(n)
A,ε := {0 ≤ k ≤ `n − 1 : m(T kJn ∩A) < εm(Jn)} ⊂ {0, 1, . . . , `n − 1}.

Evidently, for A,B ∈ B disjoint and 0 < ε < 1
2 , K

(n)
A,ε and K

(n)
B,ε are disjoint.

It is standard that ∀ A ∈ B, ε > 0, ∃ NA,ε such that

|E(n)
A | < ε`n ∀ n ≥ NA,ε where E

(n)
A := {0, 1, . . . , `n − 1} \ (K

(n)
A,ε ∪K

(n)
Ac,ε)

whence (for such n)

m(Un(K
(n)
A,ε) \A) =

∑
k∈K(n)

A,ε

m(T kJn \A) < εm(Cn)

and

m(A \ Un(K
(n)
A,ε)) = m(A ∩ Un(K

(n)
Ac,ε)) +m(A ∩ Un(E

(n)
A ))

≤
∑

k∈K(n)

Ac,ε

m(T kJn \A) + εm(Cn)

< 2εm(Cn)

and m(A∆Un(K
(n)
A,ε)) < 3εm(Cn). Henceforth, we let nA,ε be the minimal N with

|E(n)
A | < ε`n ∀ n ≥ N .
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Conversely, suppose that A ∈ B and U = Un(K) ∈ Cn satisfy m(A∆U) < εm(U),
then ∑

k∈K, m(TkJn\A)≥
√
εm(Jn)

m(T kJn) ≤ 1√
ε

∑
k∈K, m(TkJn\A)≥

√
εm(Jn)

m(T kJn \A)

≤ 1√
ε
m(U \A)

<
√
ε

and ∑
k∈Kc, m(TkJn\Ac)≥

√
εm(Jn)

m(T kJn) ≤ 1√
ε

∑
k∈Kc, m(TkJn\Ac)≥

√
εm(Jn)

m(T kJn \Ac)

≤ 1√
ε
m(A \ U)

<
√
ε

whence

|K \K(n)
A,ε|, |K

c \K(n)
Ac,ε| ≤

√
ε`n

and n ≥ nA,2√ε.

To see (the well known fact [Fr]) that (X,B,m, T ) is an ergodic measure pre-

serving transformation, let A ∈ B, m(A) > 0 satisfy TA = A. Evidently, K
(n)
A 6=

∅ =⇒ K
(n)
A = {0, 1, . . . , `n − 1} whence Un(K

(n)
A,ε) = Cn.

It follows that m(A) > m(Cn)(1−3ε) ∀ ε > 0, n ≥ nA,ε whence A = X mod m.

It was shown that Chacon’s transformation (X,B,m, T ) is weakly mixing and
not strongly mixing in [Cha]. We claim next that it is mildly mixing. For a related
result, see [F-K].

To see this, we’ll first need some notation to record how sets in Cn appear in
Cn+2. Define ej (0 ≤ j ≤ 7) by

ej :=

{
0 j = 0, 2, 3, 6,

1 j = 1, 4, 5, 7;

κj = κj,n by

κ0 = 0, κj+1 := κj + `n + ej

and

Xj = Xj,n :=

`n−1⋃
i=0

T i+κj,nJn+2 (0 ≤ j ≤ 8),

then given n ≥ 1, K ⊂ {0, 1, . . . , `n − 1} and U = Un(K) ∈ Cn, we have that

Tκj,n(U ∩X0) =
⋃
i∈K

T i+κj,nJn+2 = U ∩Xj , (0 ≤ j ≤ 7)
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and
T `n+ej (U ∩Xj) = U ∩Xj+1.

Next suppose that A ∈ B, ε > 0 and n ≥ nA,ε, then

m(T i+κj,nJn+2 ∩A) < 9εm(Jn+2) ∀ i ∈ K(n)
Ac,ε, 0 ≤ j ≤ 8

and
m(T i+κj,nJn+2 \A) < 9εm(Jn+2) ∀ i ∈ K(n)

A,ε, 0 ≤ j ≤ 8;

whence

m

(
Tκj,n(A ∩X0)∆(A ∩Xj)

)
< 36ε.

Now suppose that A ∈ B m(A) > 0 satisfies lim infn→∞m(A∆TnA) = 0. We
claim that A = T−1A.

To see this, fix ε > 0, then ∃ n ≥ nA,ε and N ∈ [`n, `n+1 − 1] such that
m(A∆TNA) < ε, whence ∃ B ∈ Cn such that m(B∆TNB) < 3ε. Write N = a`n+b
where a = 1, 2 and 0 ≤ b ≤ `n. We have that for 0 ≤ j ≤ 6− a,

TNXj = T a`n+bXj = T b−ej,aXj+a

where ej,1 = ej and ej,2 = ej + ej+1. Thus, on the one hand

TN (B ∩Xj) = TNB ∩ TNXj ≈3ε B ∩ TNXj = B ∩ T b−ej,aXj+a (0 ≤ j ≤ 7)

(where C ≈η D means m(C∆D) < η) and on the other hand

TN (B ∩Xj) = T b−ej,a(B ∩Xj+a) (0 ≤ j ≤ 6− a)

whence
B ∩Xj+a ≈3ε T−b+ej,aB ∩Xj+a ∀ 0 ≤ j ≤ 6− a,

B ≈27ε T−b+ej,aB ∀ 0 ≤ j ≤ 6− a,

whence (choosing j, j′ with ej,a − ej′,a = 1)

B ≈54ε TB =⇒ A ≈56ε TA.

The cocycle.
This cocycle φ : X → Z will be defined successively as a sum of coboundaries.
Define g(n) : Cn+2 → Z by

g(n)(x) =


1 x ∈ Sn+1,

−3 x ∈ Sn+2,

0 else.

Note that

(‡) ∀ n ≥ 1 k ≥ n+ 2, TNXi,k = Xi+j,k =⇒ g
(n)
N ≡ 0 on Xi,k



12 JON AARONSON, BENJAMIN WEISS

(this is because g
(n)
N |Xi,k = jg

(n)
`k
|Jk = 0); whereas ∀ U ∈ Cn,

U ∩ T−(2`n+1)U ∩ [g
(n)
2`n+1 = 1] ⊃ U ∩

⋃
k=0,1,3,7

Xk,n =: U ∩ Yn

whence

m(U ∩ T−(2`n+1)U ∩ [g
(n)
2`n+1 = 1]) ≥ 4

9
m(U).

Now fix a sequence nk ↗ ∞ such that
• nk+1 > nk + 2;

•
∑
j≥k+1m(Snj ) <

m(Jnk )

45(2`nk+1) and define

φ :=

∞∑
k=1

g(nk).

Ergodicity of Tφ.
We have by (‡) that ∀ k ≥ 1

φ2`nk+1 =
∑
j≥k

g
(nj)
2`nk+1 on Ynk

whence

m(Ynk∩[φ2`nk+1 6= g
(nk)
2`nk+1]) ≤

∑
j≥k+1

m([g
(nj)
2`nk+1 6= 0])

≤ (2`nk + 1)
∑
j≥k+1

m(Snj )

≤ m(Jnk)

45

and for U ∈ Cnk , U 6= ∅,

m(U ∩ T−(2`nk+1)U ∩ [φ2`nk+1 = 1])

≥ m(U ∩ T−(2`nk+1)U ∩ [g
(nk)
2`nk+1 = 1)−m([φ2`nk+1 6= g

(nk)
2`nk+1])

≥ 4

9
m(U)− m(Jnk)

45

≥ 19m(U)

45
.

To show that Tφ : X × Z→ X × Z is ergodic, it suffices by [Sch1] to show that
if A ∈ B, m(A) > 0 and k ≥ 1 is large enough, then

m(A ∩ T−(2`nk+1)A ∩ [φ2`nk+1 = 1]) > 0.

To see this, note that for k ≥ 1 large enough, ∃ U ∈ Cn with m(A∆U) < 2m(U)
45

whence

m(A ∩ T−(2`nk+1)A∩[φ2`nk+1 = 1])

≥ m(U ∩ T−(2`nk+1)U ∩ [φ2`nk+1 = 1])− 2m(A∆U)

≥ m(U)

3
> 0.
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Tightness of {m− dist. (S`nk ) : k ≥ 1}.
We first claim that

(�)
∣∣∣∣( K∑

k=1

g(nk)

)
`N

∣∣∣∣ ≤ 3 ∀ K ≥ 1, N ≥ nK + 2.

To see this, we consider the tower CN+2 which consists of CN -blocks, and the

spacers SN+1 ∪ SN+2, on which latter
∑K
k=1 g

(nk) ≡ 0. The cocycle sum over a
CN -block is zero by construction.

An arbitrary cocycle sum of length `N in CN+2 begins in the middle of a CN -
block, either passes over a spacer interval (in SN+1 ∪ SN+2) or not, and continues
to the middle of the next CN -block. In the second case, the cocycle sum will be as
over a CN -block, and equal zero. In the first case, it will be as over a CN -block less
one interval (the one before the starting place) and

( K∑
k=1

g(nk)

)
`N

= −
K∑
k=1

g(nk)(x0).

The claim (�) follows since
∑K
k=1 g

(nk) = 0, 1,−3.
To prove our tightness claim, we prove that m([|S`nK | ≥ 4]) → 0 as K → ∞.

Indeed, by (�),

m([|S`nK | ≥ 4]) ≤ m([S`nK 6= (
K∑
k=1

g(nk))`nK ])

= m([(
∞∑

k=K+1

g(nk))`nK 6= 0])

≤ `nKm([
∞∑

k=K+1

g(nk) 6= 0])

≤ `nK
∞∑

k=K+1

m(Snk)

≤ m(JnK )

90
.
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