REMARKS ON THE TIGHTNESS OF COCYCLES

JON AARONSON, BENJAMIN WEISS

Dedicated to the memory of Anzelm Iwanik.

ABSTRACT. We prove a generalised tightness theorem for cocycles over an ergodic
probability preserving transformation with values in Polish topological groups. We
also show that subsequence tightness of cocycles over a mixing probability preserving
transformation implies tightness. An example shows that this latter result may fail
for cocycles over a mildly mixing probability preserving transformation.

Let (2,8, m) be a probability space, let T : 2 — € be an ergodic probability
preserving transformation, let G' be a Polish topological group and let ¢ : Q@ — G
be measurable.

We consider S,,, the random walk or cocycle on G defined by
So(w) =€, Sny1(w) = ¢(T"w)Sn(w).

This random walk is generated by the skew product transformation Ty : X x G —
X x G where T (w,y) = (T"w, Sp(w)y). In case G is a locally compact topological
group, Ty preserves the measure m X mg where mg is a left Haar measure on G.

§1 TIGHTNESS THEOREM

We consider the situation where {m — dist. (S,,) : n > 1} is tight in the sense
that V e > 0, 3 C C G compact such that sup,,~; m(S, ¢ C) < e (equivalently,
tightness is precompactness in the space P(G) of probability measures on G). One
way this can happen is when ¢ is cohomologous to a compact-group-valued function,
i.e. there is a compact subgroup K C G and measurable ¢ : Q@ — K, g: Q — G
such that ¢(w) = g(Tw) 1 (w)g(w), then S,(w) = g(T"w) tk,(w)g(w) where
kn(w) = (T tw)p(Th2w) ... p(w) € K.

Tightness theorem.
The distributions {m — dist. (S,) : n > 1} are tight in P(G) <= ¢ is
cohomologous to a compact-group-valued function.
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Remarks about <.

1) The < of the tightness theorem is an easy consequence of the tightness of
a single probability on a Polish space (Prohorov’s theorem, see [Par]) and the
probability preserving property of T'.

2) If m is not absolutely continuous with respect to some T-invariant probability
on (92, B) then < may fail.

In this case, there is a set W € B, m(W) > 0 and a sequence ny — oo such
that {T~"*W : k > 1} are disjoint (such a set is called weakly wandering). Given
a noncompact Polish space G, we choose ¢ € G and a sequence y, € G, yr — 00
(i.e. V compact C C G, yi ¢ C eventually) and define f: Q — G by

ye x €T ™W (k>1),
flz) = o m
xg x€Q\ U T W.
It follows that {m—dist. (foT™) : m > 1} cannot be tight in P(G) since m([foT™* =
yk]) = m(W) - 0.
If G is a noncompact Polish topological group, we set ¢ = f~!f o T and obtain

a coboundary for which the distributions {m — dist. (S,,) : » > 1} are not tight in
P(G).

In case G has no non-trivial compact subgroups, the tightness theorem boils
down to the so-called coboundary theorem:

The distributions {m — dist. (S,) : n > 1} are tight in P(G) <= ¢ is a
coboundary.

The first version of the coboundary theorem seems to be:

L? coboundary theorem [Leo].
If{Z, : n>1} is a wide sense stationary process, then 3 {Y,, : n > 1} wide
sense stationary such that Z, =Y, — Y11 iff sup,>; E(] >0, Zi|?) < .

Proof.

If 3{Y, : n > 1} wide sense stationary such that Z, = Y,, — Y41, then
Sy Z = Vi~ Yoy and | S5, Zella < 2Vill2 ¥ > 1.

Conversely, if || >°7_; Zk|l2 < M V n > 1, then by weak * sequential compactness
of norm bounded sets, 3 N, — oo and ar.v. Y =Y (Z;, Zs,...) such that

1 N, n
N“nz_:k1 '

(where — denotes weak convergence in L2
Write Y, := Y(Z,, Zn41,-..), then {Y,, : n > 1} is a wide sense stationary
process and

a

Nizzn:ZHM —~Y, Vv>1.
& n=1k=1
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because || Zgil n+v|| is uniformly bounded. O
Leonov’s theorem has the ” LP analogues:

LP coboundary theorem.

Let (X,B,m,T) be a probability preserving transformation, and let 1 < p < oo
and let f: X — R be measurable.

3 g € L*(m) such that f =g —goT iff sup,sq | >opey fo T%|, < cc.

The proof of LP coboundary theorem is the same as that of Leonov with Komlos
type convergence replacing weak convergence when p = 1.

The coboundary theorem is established in [Schl] for the case G = R, and in [Mo-
Sch] for G locally compact, second countable, Abelian without compact subgroups.

The tightness theorem for locally compact, second countable groups was estab-
lished in [Sch2]; related partial results are given in [Co] and [Zim)].

Bradley has proved = of the coboundary theorem assuming only that T is
measurable:
in [Brl] for G = R, in [Br2| for G a Banach space and in [Br3] for G a group of
upper triangular matrices.

The present methods can be stretched to prove the = of the tightness theorem
assuming only that 7' is measurable and invertible.

Basic Lemma.
If the family {P — dist. (S,) : n > 1} is tight in P(G), then 3 P : Q — P(Q)
measurable, such that

Pr,(A) = Pu(¢(w) ™' 4) (A € B(G)).

This basic lemma is implicit in [Brl] for G = R. The general proof is essentially
as in [Brl] (see below).

The coboundary theorem for R is easily established using it ([Brl]). Indeed if
for w € Q, p(w) is defined as the minimal number satisfying
P,((—o0, p(w)]), Pu([p(w),00)) > 1, then p : @ — R is measurable and (since
Pry(A) = Fo(A = ¢(w))) we have p(Tw) = p(w) — ¢(w).

The proof of the tightness theorem given the basic lemma uses a generalisation
of the characterisation of invariant measures for group extensions in [Key-New].
The proof is an adaptation of Lemariczyk’s proof of [Key-New] in [Lem]|. See also
the proof of theorem 8.3.2 in [A].
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Proof of the basic lemma.
Choose first K, C K,4+1--- C G, a sequence of compact sets in G with the
property (ensured by tightness) that
1
(1) m([S, € K;]) < w Von, v>1.
Consider the random measures W, : Q@ — P(G) defined by
=5 nas
n :
Next, for v > 1 let A, C C(K,) be a countable family, dense in C'(K,); and let

A=U 2, A,
We now claim that 3 ny, — oo and L : A — L>°(2) such that

(2) /Gdenk — L(f) weak * in L>*°(Q)V f € A.

This is shown using weak * precompactness of L>(£2)-bounded sets, and a diago-
nalisation.
By possibly passing to a subsequence, we can ensure that V f € A, 3 Ny,

‘/X((/Gfdwnk_ /dena )))dm<2ik Vk> Ny, j<k,

whence ([Rev])

1 N
(3) N};/Gfdwnk%L(f) ae VfeA

and hence (by density) V f € U -, C(K,).
By the Chebyshev-Markov inequality,

1 1 1
m(L(lKg) > 2_1/) — m(Wnk(Kﬁ) > 2_1/) < 2”/ Wi, (KJ)dm < o Vv>1
X

and so by the Borel-Cantelli lemma, L(1x:) < 5 a.e. Vv large

It follows that 3 P : Q — P(G) measurable, such that L(f)(w) = [, fdP, ¥V f €
A.
To see that Pr, = P, o Ryw) (Ry(y) := yg), note that
1 n
/ FW,(Tw) Zf = Zf(sj+1<w>¢<w>—l>
n—|—1

Z—ZfOR¢(w) 1(S5(w))

2] flloo
— R —1dW, + —
/Gfo H(w) (w) n

2[|flloe
pa

= / den(w) o Rd)(w) +
G
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O

Proof of = in the tightness theorem.
Given probabilities w +— p,, on G satisfying

P1w = Pw © L¢(w)_17

define a probability u € P(2 X G) by

WA x B) = / Pw (B)dm(w).

A

We first note that this probability is Ty-invariant:

| wevoTudu= [ uTe) [ v@y)dn)ama)
:/Xu(Ta:)/Gv(y)dex(y)dm(-T)
= [ u@) [ vtw)p.)ama)

:/ U @ vd.
XxG

Almost every ergodic component P of p has a disintegration over m of form

P(Ax B) = /A 5o (B)dm(w)

where w — p, € P(G) is measurable, and pro = pu © Rg(w). Fix one such P.
Define p € P(G) by p(B) := P(2 x B). There are compact sets C; C Cy C ...
such that (J.—; C,, = G mod p. Define compact subsets {K,, : n > 0} by

Ko:={e}, Kni1 = (K, UC,)(K,UC,) YK, UC,)(K,UC,) " .

Evidently, Go := |, —, K, is a subgroup of G and p(G \ Go) = 0 whence
P (G \ Go) = 0 for m-a.e. w € Q.

Next, consider the bounded, continuous, R-valued functions on Go: Cp(Gy)
(equipped with the supremum norm) and set

n—oo

C:={f€Cp(Go): sup |f(y)] — O}
yeKS

Evidently C = |J,—, C(K,,) is separable, and f € C = foR,€CV g€ Gy
(since if g € K;, then z ¢ K,,1;, = zg ¢ K,).

For each a € G, Po @, (Qqu(w,y) := (w,ya)) is also an ergodic Ty-invariant
probability (since Ty o Q4 = Qq0Ty), and therefore either PoQ, = P or Po @, L
P. Define H := {a € Gy : Po@Q, = P}, a closed subgroup of Gy. For a.e.
w e Q, pu(Aa) =p,(A) (a€ H, AcB(G)).

Consider the Banach space M(£2 x Gy) of bounded measurable functions 2 x
Gy — R equipped with the supremum norm. We need a separable subspace A C
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M(Q x Gy) which separates the points of 2 X Gg such that f € A = fo(@Q, €
AVY a € Gy. In particular,

a,bEGo,/ fdPoQaz/ fdPoQy, Vfe A = PoQ,=PoQy.
QxG QxG

To obtain such a subspace, fix a compact metric topology on () generating B,
then A = C(Q) ® C is as needed.
By Birkhoft’s ergodic theorem,

n—1
LN foThwy) = [ fdP ae. ¥ felLl(P)
" OxG

Set
1n71
Y::{(w,y)eQxGo: ﬁZfon(w,y)%/ fdP v feA}.
k=0 QxG

Since A is a separable subspace of M(Q2 x Gy), the set Y is determined by a
countable subcollection of A whence Y € B(2 x Gy), and by Birkhoff’s ergodic
theorem P(Y') = 1.

Forwe Q,set Y, ={y € Go: (w,y) € Y}. We claim that Y,, is a coset of H
whenever it is nonempty.

To see this, suppose that a € G, then V f € A and for a.e. (x,y) €Y,

n—1
%ZfoT!;(w,ya)% foQadP:/ fdPoQ "
k=0

QX G QOxG

Thus, (w,ya) € Y iff Po Q! = P, equivalently a € H; and Y,, is indeed a coset of
H whenever it is nonempty (i.e. a.e.).

By the analytic section theorem, 3 h : Q — G measurable such that h(w) € Y,
for a.e. w € Q, whence Y, = h(w)H.

Now let P/ € P(G) be defined by P! (A) := p,(h(w)"tA). Clearly P/ (H) =1
and P/ (Aa) = P/ (A) (a € H, A € B(G)). Thus by [Weil], H is compact and
P!, = mpy, Haar measure on H.

Defining ¥ : Q2 x G — Q x G by ¥(w,y) := (w, h(w)y), we have that Po ¥~1 =
m X mg. IfV::\IloT¢o\If_1 then m x mg oV = m x mg and V = T, where
() = h(w)p(w)h(w) .

Since (2 x G,B(2 x G),m x myg, V) is a probability preserving transformation,
we have that ¢ : Q@ — H. O

§2 SUBSEQUENCE TIGHTNESS

Let (X,B,m,T) be a mixing probability preserving transformation and let ¢ :
X — R be measurable. Bradley showed in [Br4] that if the stochastic process
{¢poT™: n > 1} is strongly Rosenblatt mixing, then
either 1) sup,cg m([|S, — 7] < C]) = 0 V0 < C < o0,
or 2) 3 constants a,, such that {m — dist. (S, — a,): n > 1} is tight (whence ¢ is
cohomologous to a constant).

A weaker version of this generalises to an arbitrary stationary stochastic process
driven by a mixing probability preserving transformation.
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Theorem 2.
Suppose that (X, B,m,T) is a mixing probability preserving transformation and
that ¢ : X — R is measurable.
If 3 ni — 0o and dy, € R such that {m — dist. (Sp, —di) : k > 1} is tight, then
JdaeR and g: Q — R measurable such that p(w) = a + g(Tw) — g(w).
In case supy, |d| < 00, a = 0.

Proof.
Consider (X x X, B® B,m x m,T x T, and ¢,¢' : X x X — R defined by

o(z,y) = o(x), ¢'(z,y) = d(y)-
91 We show first that {m x m — dist. (S, — S},) : n > 1} is tight.
Let € > 0 and choose M > 0 such that m([|Sn, — di| > &]) < § V k> 1.
By mixing of T, V n > 1,
m([|Sp — Sp o T™| > M]) — m x m([|S, — S| > M])
as k — oo. Now

Sy —SpoT™ =5, — SnJrnk + S”’Lk = S’I’lk; - Snk o™

whence
M
M([|Sn=SnoT™ | > M]) = m([|Sn, —Sn,, oT" || > M]) < 2m([|Sn, —di| > —-]) <e.

92 Next, as in [Br4], 3 a,, € R such that {m — dist. (S,, —a,): n > 1} is tight.
To see this, given € > 0, let M(e) > 0 be such that

mox m([[[Sn = S, > M) < V> 1
It follows that
m{z € X+ m(([Sa—Sa(@)| > M(@)]) > )
<+ [ mlS, = Su(@) > M)

:mem([HS — Sy > M(e)])
<eVn>l1,

whence 3 a,(€) € R such that
m((ISn — an(e)] > M(e)]) < e¥n > 1,
Set a, = an(1/3). For each 0 < e < 3, n > 1, we have
m([[Sn — an(€)] < M(e)] N [[Sn — an| < M(1/3)]) >0,
whence |a, — an(€)] < M(1/3) + M (¢) and

m([|Sn — an| > 2M(e) + M(1/3)]) <eVn>1.
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93 We show that 3 a € R such that sup,,»; [a, —na| < co.
To this end, note that 3 M > 0 such that

(1) lapre —ap —ag| <M Yk >1.

Indeed, if m([|S, — an| > K]) < 2 V n > 1, then (since Syi¢ = Sg, + S¢ o T*),

A~ =

m(HS]H_g —ag — ag| > QK]) < m([|Sk — ak| > K] U HSg OTk — ag| > K]) <
whence
m([|Skte — ar — ae| < 2K] N [[|Skye — apte| < K]) >0

and |agye —ar —ap] < 3K YV k, 0> 1.
By (1), 3 Ny, — o0 and b, € R (v > 1) such that

1 &
A (@j4, —aj) = b, as k - 00 Vv >1.
kS

It follows from (1) that

L
by —a] = Bm |5 Z( —a;—a,)| <M

and that

1
butp N, Z(ajJrquv — aj)
ki

= FE (@j+u—@j)+ﬁ E (@j4+v — aj)
k3 k .=
J Jj=p+1
Nk Nk
1 1 M + |a,|
:—E a; —a~+—§ Ay, — aj) £ ——1
Nk j_l( Jt+p J) Nk J_l( Jt+u ]) Nk

— by, + by

Thus b, = va and |a, —va| < M where a = by = lim, 0 %=.

In case supy, |di| < 0o, because of the tightness of {m — dist. (S,,) : k> 1} we
have that supy~; |an, | < 0o, whence a = 0.

€4 It now follows from the coboundary theorem that ¢ is cohomologous to a.
O

§3 AN EXAMPLE

In this section we show that there is a probability preserving transformation
(X,B,m,T) which is mildly mizing in the sense that # A € B, 0 < m(A) < 1
such that liminf,,_,.o m(AAT™A) = 0 (see §2.7 of [A]), and ¢ : X — R measurable
such that T} is ergodic and for some nj; — oo, limsup,_, . [Sy,| < 0o m-almost
everywhere.
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Chacon’s transformation [Chal.

This transformation (X, B, m,T) is defined inductively on X := (J;~, C,, C R
where m = Lebesgue measure.

Here C,, = 2”2_01 T*J, where
o l1=1, L1 =30, +1 (= £, =351);
o {T*J,: 0<k<{,—1} are disjoint intervals of length 3%1 and T : TFJ, —
T*+1J, is a translation;
e (), is obtained by writing J, = U?:o Jn,i where the J,; (i = 0,1,2) are

disjoint intervals of length 3% and setting J,41 := Jy 0 and

Tk.]n’o Oékggn_L

Tk_E"Jn,l by < k <26, -1,

Sn+1 k= 26”’

TF26= ] 0 20, +1< k<30, =/l —1

TF g1 =

where S,,11 is an interval of length 3%, disjoint from C,, (called the spacer).

The set X has finite measure which can be normalized to equal one but we keep
the standard Lebesgue measure in order to simplify the later formulae. We first
give a proof of the ergodicity based on a careful analysis of how the the intervals
T, approximate arbitrary measurable sets. This analysis will also be the base
for our proof of the mild mixing property.

Denote

Co = {Un(K) := | J T"Jn: K C{0,1,....4, —1}.
keK

For A€ B, e >0 and n > 1 define
K‘(sz ={0<k<l,—1: m(TF],NA) <em(J,)} c{0,1,...,6, —1}.

Evidently, for A, B € B disjoint and 0 < € < %, Kﬁci and K](gnz are disjoint.
It is standard that V A € B, € >0, 3 N4 such that

IBY| < el ¥ > Nae where BYY := {0,1,...,6, — 1} \ (K{ UK )
whence (for such n)

mU(KED\A) = D7 m(T" T, \ A) < em(Cy)
keK'")
and
m(A\ Un(K$') = m(ANUL (K5 )+ m(AN UL (EYY))
< Z m(T*J, \ A) + em(C,,)

kek (Y

< 2em(Ch,)

and m(AAUn(sz)) < 3em(C,,). Henceforth, we let n4 . be the minimal N with
|E£‘n)| <elp, Vn>N.
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Conversely, suppose that A € Band U = U, (K) € C, satisfy m(AAU) < em(U),
then

1
k k
> m(T*J,) < 7 > m(T*J, \ A)
keK, m(TkJ,\A)>em(J,) keK, m(TkJ,\A)>/em(J,)
1
< —m(U\ A
< \/Em( \A)
< e
and
1
k k c
> m(T*.J,) < 7 > m(T*J, \ A°)
keKe, m(TkJ,\Ac)>em(Jy) keKe, m(TkJ,\Ac)>/em(J,)
1
< —m(A\U
< \/Em( \U)
<e

whence

IK\K), |KN\ES | < ety

and n > ny o

To see (the well known fact [Fr]) that (X,B,m,T) is an ergodic measure pre-
serving transformation, let A € B, m(A) > 0 satisfy TA = A. Evidently, KXL) #*
0 = K’ ={0,1,...,6, — 1} whence U, (KY")) = C..

It follows that m(A) > m(C,,)(1—3¢) Ve >0, n > ny  whence A =X mod m.

It was shown that Chacon’s transformation (X, B, m,T) is weakly mixing and
not strongly mixing in [Cha]. We claim next that it is mildly mizing. For a related
result, see [F-K].

To see this, we’ll first need some notation to record how sets in C,, appear in
Cr42. Definee; (0<j<7)by

0 j=0,2,3,6,
€; 1=
’ 1 j=1,4,5,7;

Kj = Kjn Dy
ko =0, Kjt+1 = Kj + 4, + €;

and
Ly —1

Xj=Xjni= [J T Jups (05 <38),
1=0

then given n > 1, K C {0,1,...,¢, — 1} and U = U,(K) € C,, we have that

U0 K) = ) T =UN K, 055 €)
ieK
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and
Tt (UNX;) =UN X4

Next suppose that A € B, € >0 and n > n4, then
m(T 5 Ty N A) < 9em(Jpse) Yie K§, 0<j<8

and
(T 5 T \ A) < 9em(Jsz) Vi€ K 05 <8

whence

m(T“M (A N Xo)A(A N XJ)) < 36e.

Now suppose that A € B m(A) > 0 satisfies liminf,, oo m(AAT"A) = 0. We
claim that A = T~ !A.

To see this, fix € > 0, then 3 n > na. and N € [{,, 0,41 — 1] such that
m(AATN A) < e, whence 3 B € C,, such that m(BATY B) < 3e. Write N = al,,+b
where a = 1,2 and 0 < b < /,,. We have that for 0 < j <6 — a,

TNXJ = Ta£"+ij = Tb_ej‘an_HL
where e;1 = e; and e;2 = e; + €;11. Thus, on the one hand
TVN(BNX;)=T"BNTVX; ~* BNTNX; =BNT" %X, (0<j<7)
(where C' =" D means m(CAD) < n) and on the other hand

TN(BNX;)=T"%*(BNXj1,) (0<j<6—a)

whence
BNXj1o T " eBNX;1,¥V0<j<6—a,

BRATET B V(< j<6—a,
whence (choosing j,j’ with e;, —e;jr o = 1)

B TB =— A=~ TA.

The cocycle.
This cocycle ¢ : X — 7Z will be defined successively as a sum of coboundaries.
Define g(”) : Chyo — Z by

1 =ze€ Sn_|_1,
g™ (2) = -3 1z € Spto,
0 else.

Note that

(1) Vn>1k>n+2TVX = Xije = g =0on X,
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(this is because 95\7) P jgé:) |7, =0); whereas V U € C,,

UnT-Cetunlgly)  =1o0n | Xea=UnNY,
k=0,1,3,7

whence 4
mUNT- DU gl =1)) 2 gm(U).

Now fix a sequence ng * oo such that

® N1 >Nkt 2
m(Jn,)
[ ] 232k+1 m(Snj) < Wnkk‘&‘l) and deﬁne

¢ = ig(”“-
k=1

Ergodicity of T.
We have by (f) that V £ > 1

_ (n;5)
P2t +1 = § :92£nk+1 on Yy,
P>k

whence

m(Yo o, +1 7 950 1) < D mllag?) 4y #0)
J>k+1

< (2, +1) Y m(Sn,)
Jj>k+1
m(Jnk)

<
— 45

and for U € Cy,,, U # 0,
m(UNT~ AN (P20, +1 =1])

>m(UnN T~ @40y N0 [gé?fi-u =1) - m([¢2€nk+1 # gé?:ZJrl])

4 m(Jn,,)
> Z _ N BkJ
- 19m(U).

- 45

To show that Ty : X x Z — X X Z is ergodic, it suffices by [Schl] to show that
if Ae B, m(A)>0and k > 1 is large enough, then
m(ANT~ ot AN [par,, 1 =1]) > 0.
To see this, note that for k£ > 1 large enough, 3 U € C,, with m(AAU) < 2”1—(5[])
whence

m(ANT~ et ANy, 11 = 1))
>m(UNT CtDU N (o, 11 =1]) — 2m(AAV)

m(U)

> > 0.
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Tightness of {m —dist. (S, ): k> 1}.
We first claim that

()

To see this, we consider the tower Cnio which consists of Cn-blocks, and the
spacers Sy41 U Sy42, on which latter Zszl g(") = 0. The cocycle sum over a
C'n-block is zero by construction.

An arbitrary cocycle sum of length ¢ in Cny2 begins in the middle of a Cy-
block, either passes over a spacer interval (in Sy1 U Sny2) or not, and continues
to the middle of the next C'y-block. In the second case, the cocycle sum will be as
over a Cn-block, and equal zero. In the first case, it will be as over a Cy-block less
one interval (the one before the starting place) and

K K
(Z gm)) = 3 g (ap).
k=1 IN k=1

The claim (¢) follows since 25:1 g"™) =0,1,-3.
To prove our tightness claim, we prove that m([|Ss, | > 4]) — 0 as K — oo.
Indeed, by (),

(o) <3 VK>1, N>ng+2.

In

K
m([|Se,, | = 4) < m([Se,, # (9", D)
k=1

=m([( Y 9", #0])

k=K+1
o0
<lem([ Y g™ #£0))
k=K+1
oo
<oy Z m(Sp,)
k=K+1
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