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Abstract. For any ergodic endomorphism of a nonatomic proba-
bility space and any Borel generating set of a LCP amenable group,
we construct a measurable function taking values in the generating
set so that the skew product generated is ergodic.

§1 Introduction

Let (X,B,m,T ) be an invertible ergodic measure preserving trans-
formation of a standard probability space.

Let G be a locally compact, Polish (LCP) group. Given φ ∶ X → G
measurable, define the G-skew product Tφ ∶X×G→X×G by Tφ(x, y) ∶=
(Tx,φ(x)y). This preserves the product measure m ×mG (where mG

denotes a left Haar measure on G) and it is natural to ask when Tφ is
ergodic, and also for which LCP groups G is there an ergodic G-skew
product, which latter question is the basis for the present paper.

Results of R. Zimmer (in [14]) and M. Herman (in [9]) show that
there is an G-skew product ergodic with respect to the product measure
m ×mG if and only if G is amenable.

Here are 3 equivalent defining conditions for amenability of a LCP
topological group G:
1) Every continuous action on a compact metric space has an invariant
probability;

2) ∃ compact sets Fn ⊂ G such that ∣Fn∆gFn∣
∣Fn∣ → 0 ∀ g ∈ G where ∣ ⋅ ∣

denotes a left Haar measure on G;
3) ∃ a G-invariant mean (i.e. a positive linear functional on L∞(G)).

The sets {Fn} appearing in 2) are called Følner sets (see [6]).

Zimmer’s Theorem [14]
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2 group extensions of endomorphisms

Let G be an LCP topological group. If ∃ φ ∶X → G-measurable, such
that the skew product Tφ is ergodic with respect to the product measure
m ×mG, then G is amenable.

The converse is a well-known result of M. Herman in orbital ergodic
theory:

Herman’s Theorem [9], [7], [8]
Let G be an LCP, amenable topological group. ∃ φ ∶X → G-measurable,

such that the skew product Tφ is ergodic with respect to the product mea-
sure m ×mG.

At the end of this introduction, we’ll sketch a proof of Zimmer’s re-
sult using random transformations (based on a conversation with J-P.
Conze); and a proof of Herman’s theorem for unimodular, amenable
groups (an ”orbit” proof along the lines of [8]).

The purpose of this note is to extend Herman’s theorem in two di-
rections. The first is replacing the base transformation by a possibly
non-invertible map. Since ergodicity is preserved by orbit equivalence,
once Herman’s theorem is established for a single invertible, ergodic,
probability preserving transformation, Dye’s theorem implies that it
holds for all. This ceases to be true for endomorphisms and so a con-
struction has to be provided for each one. Using the natural extension
of an endomorphism we get an invertible transformation and so the
problem becomes one of constructing a cocycle generated by a φ which
is measurable with respect to an increasing σ−algebra.

Our second refinement concerns the nature of φ itself. If one uses
Dye’s theorem to go from one to another then no special property of φ
will be preserved. Our construction will provide a φ which takes values

in a generator set (i.e. a Borel set S ⊂ G such that Group(S) = G) .
Even for G = Z and invertible transformations this result appears to be
new. We combine the two features in our main result:

Endomorphism Theorem
Let (X,B,m,T ) be an invertible, ergodic measure preserving trans-

formation of a standard probability space, let A ⊂ B, T −1A ⊂ A be
a non-atomic sub-σ-algebra and let G be a LCP amenable group with
Borel generator set S ⊂ G, then ∃ φ ∶X → S A-measurable, such that the
skew product Tφ is ergodic with respect to the product measure m×mG.

Proof of Zimmer’s theorem Let G be an LCP group and suppose
that φ ∶X → S is measurable, such that the skew product Tφ is ergodic
with respect to the product measure m ×mG.
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To show that G is amenable, it suffices to show whenever G acts by
homeomorphism on a compact metric space Y , there is a G-invariant
probability on Y .

Now suppose that G acts by homeomorphism on the compact metric
space Y and consider the skew product τ ∶ X × Y → X × Y defined
by τ(x, y) ∶= (Tx,φ(x)y). By theorem 1.5.10 of [3] (c.f. p. 254 of
[13]), ∃ P ∈ P(X × Y ) τ -invariant and ergodic such that P (A × Y ) =
m(A) (A ∈ B).

We may write P (A×B) = ∫APx(B)dm(x) (A ∈ B, B ∈ B(Y )) where
x ↦ Px is measurable X → P(Y ). The invariance P ○ τ = P implies
that PTx = Px ○ φ(x)−1 m-a.e..

We claim that a.e. Px is invariant for the action of G. To see this, let
Q ∈ P(P(Y )) be the m-distributution of P⋅, and let µ ∈ P(Y ) be in the
weak-∗ closed support of Q. Suppose (in order to prove our claim by
contradiction) that µ is not G-invariant. In particular ∃ g ∈ G, f ∈ C(Y )
such that

0 < ∣µ(f) − µ(f ○ g)∣ =∶ ε.
Since µ is in the weak-∗ closed support of Q, ∃ A ∈ B with m(A) > 0
such that

∣Px(f) − µ(f)∣, ∣Px(f ○ g) − µ(f ○ g)∣ < ε
4 ∀ x ∈ A.

Let U ⊂ G be open such that

∥f ○ h − f ○ g∥∞ < ε
4 ∀ h ∈ U.

Note that
T nϕ (x, y) = (T nx,φn(x)y)

where φn(x) = φ(T n−1x)⋯φ(x). By ergodicity of Tφ, ∃ n ≥ 1 such that
m(A ∩ T −nA ∩ [φn ∈ U]) > 0. Choosing x ∈ A ∩ T −nA ∩ [φn ∈ U] we see
that on the one hand T nx ∈ A whence

∣PTnx(f) − µ(f)∣ < ε
4 ;

whereas on the other hand, φn ∈ U and

PTnx(f) = Px(f ○ φn(x)) = µ(f ○ g) ± ε
4 ,

whence
ε
4 > ∣PTnx(f) − µ(f)∣ ≥ ∣µ(f) − µ(f ○ g)∣ − ∣PTnx(f) − µ(f ○ g)∣ > 3ε

4 .

This is the advertised contradiction. �

Proof of Herman’s theorem in the unimodular case
Let (X,B,m,T ) be an invertible, ergodic measure preserving trans-

formation of a standard probability space and let G be a LCP, unimod-
ular, amenable group. We’ll show ∃ φ ∶ X → G measurable, such that
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the skew product Tφ ∶X ×G→X ×G defined by Tφ(x, y) ∶= (Tx,φ(x)y)
is ergodic with respect to the product measure m ×mG.

In case G is discrete, let Y = {0,1}G, µ ∶= ∏ 1
2(δ0 + δ1) and let, for

g ∈ G, Sg ∶ Y → Y be defined by (Sgy)h ∶= yg−1h, then S is free, ergodic
and µ-preserving.

In case G is non-discrete, consider (as in [10]) the action S of G by left
translation on the Poisson space (Y,F , µ) of G equipped with left Haar
measure. As shown in [10] (for G = Z), S is mixing (hence ergodic).

Let Z ∶= Y Z, m ∶= ∏µ and define: for g ∈ G, Sg ∶ Y → Y by

(Sgz)(n)h ∶= y(n)g−1h and τ ∶ Z → Z by (τz)(n) = z(n+ 1), then S and

τ are both m-preserving, and τ is ergodic. Moreover Sγ ○ τ = τ ○ Sγ.
Thus, the group H ∶= G × Z is amenable, and acts freely, ergodically

and
m-preservingly on Z by R(γ,κ) ∶= Sγ ○ τκ.

Now define the R-cocycle ψ ∶ H × Z → G by ψ((γ,n), z) ∶= γ and
consider the H-action Rψ on Z ×G defined by

(Rψ)(γ,κ)(z, g) ∶= (R(γ,κ)(z,ψ(z, (γ, κ)g) = (Sγ ○ τκz, γg).
The action Rψ is ergodic, since if f ∶ Z × G → R is measurable, Rψ-

invariant:

f(z, g) = f ○ (Rψ)(e,1)(z, g) = f(τz, g) ∀ g ∈ G

whence f(z, g) = F (g) and F (γg) = f ○ (Rψ)(γ,0)(z, g) = f(z, g) = F (g)
with the conclusion that f is constant.

In case G is discrete, by [4], ∃ a probability space isomorphism π ∶
X → Z so that for a.e. x ∈X,

{π ○ T nx ∶ n ∈ Z} = {Rh ○ πx ∶ h ∈ H}.
In particular ∃ a T -cocycle ϕ ∶X×Z→ H so that π○T n(x) = Rϕ(n,x)(πx)
and {ϕ(n,x) ∶ n ∈ Z} = H a.e.. Let φ ∶X → G be defined by

φ(x) ∶= ψ(ϕ(1, x), πx).
We claim that Tφ ∶ X × G → X × G is ergodic. This follows from the
ergodicity of Rψ via

{T nφ (x, g) ∶ n ∈ Z} = {(π−1Rϕ(n,x)(πx), ψ(ϕ(n,x), πx)g) ∶ n ∈ Z}
= {π−1Rh(πx), ψ(h,πx)g) ∶ h ∈ H}.

In case G is non-discrete, by [11], ∃ a cross section Σ ∈ B(Z) for the
action of H so that the induced equivalence relation R ∶= {(x, γx) ∶ γ ∈
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H, x, γx ∈ Σ} is probability preserving and has countable equivalence
classes. Evidently the skew product equivalence relation

Rψ ∶= {((x, y), (γx,ψ(γ, x)y) ∶ γ ∈ H, x, γx ∈ Σ, y ∈ G}
is also ergodic, Σ×G being a cross section for the skew product action
of H.

It is shown in [4] that R is hyperfinite, whence ∃ a probability space
isomorphism π ∶X → Σ so that for a.e. x ∈X,

{π ○ T nx ∶ n ∈ Z} =Rx ∶= {γπx ∶ γ ∈ H, x, γx ∈ Σ}.
In particular ∃ a T -cocycle ϕ ∶X×Z→ H so that π○T n(x) = ϕ(n,x)(πx).
Let φ ∶X → G be defined by

φ(x) ∶= ψ(ϕ(1, x), πx).
As before, Tφ ∶X ×G→X ×G is ergodic. �

The reason that the above proof doesn’t work for non-unimodular
groups is that the equivalence relation that the G orbits induce on the
cross section is not of type II1 unless the group is unimodular. We owe
this remark to N. Avni.

§2 Proof of the endomorphism theorem

Let T be an invertible, ergodic probability preserving transformation
of the standard probability space (X,B,m), let A ⊂ B, T −1A ⊂ A be
non-atomic sub-σ-algebra and let G be a locally compact, second count-
able, amenable topological group with Borel generator set S. We’ll
construct φ ∶X → S A-measurable with Tφ ergodic.

We adapt here from §3 of [2] the essential value conditions or EVC’s,
which give countably many conditions for the ergodicity of the skew
product Tϕ ∶X ×G→X ×G defined by Tϕ(x, y) ∶= (Tx,ϕ(x)y).

These are best understood in terms of orbit cocycles, and the groupoid
of T (see [5]).

A partial probability preserving transformation of X is a pair (R,A)
where A ∈ B and R ∶ A → RA is invertible and m∣RA ○ R−1 = m∣A.
The set A is called the domain of (R,A). We’ll sometimes abuse this
notation by writing R = (R,A) and A = D(R). Similarly, the image of
(R,A) is the set I(R) = RA.

The equivalence relation generated by T is

R = {(x,T nx) ∶ x ∈X, n ∈ Z}.
For A ∈ B(X) and φ ∶ A→ Z, define T φ ∶ A→X by T φ(x) ∶= T φ(x)x.
The groupoid of T is

[T ] = {T φ ∶ T φ is a partial probability preserving transformation}.
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It’s not hard to see that

[T ] = {R ∶ R a partial probability preserving transformation, & (x,Rx) ∈R a.e.}.
For R = T φ ∈ [T ], write φ(R) ∶= φ. Let

[T ]+ = {R ∈ [T ] ∶ φ(R) ≥ 1 a.e.}.
The skew product action of [T ] is given by

Rϕ(x, y) ∶= (Rx,ϕR(x)) where ϕR(x) ∶= ϕ(φ(x), x) (R = T φ ∈ [T ]).

Definition
Let A ∈ B, U a subset of G, and c > 0. We say that the measurable

cocycle ϕ ∶X → G satisfies EVCT (U, c,A) if
∃ R ∈ [T ]+ such that

D(R), I(R) ⊂ A, ϕR ∈ U on D(R), m(D(R))) > cm(A).
The following can be extracted from [12] (see also §8.2 of [1] and §3 of
[2] ).

Ergodicity Proposition
The skew product Tϕ is ergodic with respect to the product measure

m ×mG iff ∃
● a neighbourhood base U for G;
● a dense collection A ⊂ B;

and a number 0 < c < 1 such that
ϕ satisfies EVCT (U, c, a) ∀ a ∈ A, U ∈ U .

Sketch proof of ”if”
Need to prove (see [12]) that ∀ neighbourhoods B ⊂ G and A ∈
B, m(A) > 0, ∃ n ∈ Z such that m(A ∩ T −nA ∩ [ϕTn ∈ B]) > 0.

Accordingly, assume that ϕ satisfies EVCT (U, c, a) ∀ a ∈ A, U ∈ U
and let B ⊂ G be nonempty and open, and let A ∈ B, m(A) > 0.
∃ U ∈ U such that U ⊂ B and ∃ a ∈ B such that m(A∆a) < c

2m(a).
By assumption, ∃ R ∈ [T ]+ such that D(R), I(R) ⊂ a, ϕR ∈ U on
D(R) and m(D(R))) > cm(a). We have that

m(D(R)∩A) =m(D(R))−m(D(R)∖A) ≥m(D(R))−m(a∖A) ≥ c
2m(a).

It follows that ∃ n ∈ Z such that m(A ∩ [φ(R) = n]) > 0, whence

m(A∩T −nA∩[ϕTn ∈ U]) ≥m(A∩T −nA∩[ϕTn ∈ U]) ≥m(A∩[φ(R) = n]) > 0.

�

Essential value conditions are impervious to small changes.

Stability Lemma (c.f. lemma 3.5 of [2])
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If ψ ∶ X → G is a cocycle satisfying EVCT (U, c,A) where A ∈ B, c >
0, U ⊂ G; then ∃ δ > 0 such that if ϕ ∶ X → G is measurable, and
m([ϕ ≠ ψ]) < δ then ϕ satisfies EVCT (U, c,A).

Proof By possibly restricting D(R), we ensure that ∃ N ∈ N such that
φ(R) ≤ N , but still m(D(R)) = cm(A) + η where η > 0. Let δ ∶= η

2N .
If ϕ ∶X → G is measurable, and m([ϕ ≠ ψ]) < δ then m([ϕR ≠ ψR]) <

δN = η and further restricting D(R) to D(R) ∖ [ϕR ≠ ψR] shows that
ϕ satisfies EVCT (U, c,A) since

m(D(R) ∖ [ϕR ≠ ψR]) ≥m(D(R)) −m([ϕR ≠ ψR]) > cm(A).

�

The construction of φ is sequential, and at each stage, we’ll have
an A-measurable coboundary satisfying finitely many EVC’s. The
coboundary at the next stage will be constructed using the inductive
lemma (below) sufficiently close to the present coboundary so as not
to affect any of the EVC’s already satisfied (by the stability lemma),
and will itself satisfy a new (arbitrary) EVC.

The closeness of approximation will also ensure a.s. convergence of
the coboundaries to a limit cocycle which will satisfy all the EVC’s.
The arbitariness of the EVC’s means that a countable list may be cho-
sen to ensure ergodicity (by the ergodicity proposition). Modification is
by means of a Rokhlin tower, which can be arranged to be factor mea-
surable thus ensuring preservation of A-measurability of the successive
coboundaries.

Inductive Lemma
Let S ∈ B(G) be a generator set and suppose that

h ≥ 1, B ∈ T −hA, m(⊎h−1
j=0 T

jB) < 1, and that φ ∶ X → S is an A-
measurable coboundary taking finitely many values and satisfying φ ≡ e
off ⊎h−1

j=0 T
jB and φh ≡ e on B.

If A ∈ B, ∅ ≠ U ⊂ G is open and ε > 0, then

∃ ĥ ≥ 1, B̂ ∈ T −3ĥA, m(⊎ĥ−1
j=0 T

jB̂) < 1 and ∃ an A-measurable, cobound-

ary φ̂ ∶X → S taking finitely many values and satisfying EVCT (U, 1
3 ,A);

m(φ̂ ≠ φ) < ε; φ̂ ≡ e off ⊎ĥ−1
j=0 T

jB̂;

and φ̂ĥ ≡ e on B̂.

The proof of the inductive lemma is given in the next (and last)
section. We complete this section with the

Proof of the endomorphism theorem, given the inductive lemma
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Let C ⊂ B be a countable, dense sub-collection, let U be a countable
neighbourhood base for G and let {(An, Un)}n≥1 = C × U .

We construct a sequence of A-measurable coboundaries φ(r) (r ≥ 1)
defined on Tr ∶= ⊎hr−1

j=0 T jBr ∈ A, so that each φ(r) satisfies EVCT (Uq, 1
3 ,Aq)

for 1 ≤ q ≤ r.
Indeed, given such φ(r) on Tr satisfying EVCT (Uq, 1

3 ,Aq) for 1 ≤ q ≤ r,
we find by the stability lemma, 0 < δr < 1

2r such that if ϕ ∶ X → G is
measurable, and m([ϕ ≠ φ(r)]) < δr then ϕ satisfies EVCT (Uq, 1

3 ,Aq)
for 1 ≤ q ≤ r.

By the inductive lemma, ∃ hr+1 ≥ 1, Br+1 ∈ T −3hr+1A such that

m(
ĥr+1−1

⊎
j=0

T jBr+1) < 1,

and ∃ a A-measurable, coboundary φ(r+1) ∶X → S such that

φ(r+1) ≡ e off Tr+1 ∶= ⊎ĥr+1−1
j=0 T jBr+1, φ

(r+1)
hr+1 ≡ e on Br+1, m(φ(r+1) ≠

φ(r)) < ε and satisfying EVCT (Ur+1,
1
3 ,Ar+1).

Since ∑r≥1 δr < ∞, ∃ φ ∶ X → S such that for a.e. x ∈ X, φ(r)(x) =
φ(x) ∀ large r. It follows that φ isA-measurable, and satisfies EVCT (Uq, 1

3 ,Aq) ∀ q ≥
1. �

§3 Proof of the Inductive lemma

Let d be a metric on G. Fix σ ∈ U and δ > 0 such that B(σ, δ) ∶= {y ∈
G ∶ d(y, σ) < δ} ⊂ U . Let V ∶= {φj(x) ∶ x ∈ B, 0 ≤ j ≤ h} ⊂ Sh, W ∶=
{vσv−1 ∶ v ∈ V }.

For v ∈ V set

A(v) ∶= { ⊎h−1
j=0 {x ∈ A ∩ T jB ∶ φj(T −jx) = v} (v ≠ e),
⊎h−1
j=0 {x ∈ A ∩ T jB ∶ φj(T −jx) = e} ∪X ∖⊎h−1

j=0 T
jB (v = e).

Set

η ∶= min{m(A(v)) ∶ v ∈ V, m(A(v)) > 0}.
By amenability, ∃ F ⊂ G compact, such that

∣wF ∩ F ∣ > (1 − εη
4 )∣F ∣ ∀ w ∈W.

We now fix some parameters for the construction:
● ∃ δ1 > 0 such that if y, z ∈ F, v ∈ V satisfy d(y, vσv−1z) < δ1, then
d(v−1yz−1v, σ) < δ

4 ,
and

● ∃ K ≥ 1 such that ∀ x ∈ F −1F ∪FF −1, ∃ u1, u2, . . . , uK ∈ S ∪{e} such
that d(y, u1u2, . . . uK) < δ

4 .
Fix N1 ≥ 1 such that m(D) > 1 − (εη)4 where
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D ∶= ⋂
v∈V

Dv ∶= ⋂
v∈V

[∣ 1

N1

N1−1

∑
k=0

1A(v) ○ T k −m(A(v))∣ < εη].

Let F be a finite partition of F into Borel sets, each of diameter
small enough so that:

diam(wf) < δ1 ∀ f ∈ F , w ∈W ∪ {e},
and also

∣ ⋃
f∈F , wf⊂F

f ∣ > (1 − εη
2 )∣F ∣ ∀ w ∈W.

By considering iidrv’s on F (distributed according to ∣F∩⋅∣
∣F ∣ ), construct

(y1, y2, . . . ) ∈ FN and N2 > N1 such that

1
n

n

∑
k=1

1wf(yk) = (1±εη) ∣f ∣∣F ∣ ∀ f ∈ F , n ≥ N2, w ∈W∪{e} whenever wf ⊂ F.

Fix L > N2K
εη , M > 2∣F ∣2

εη , set ĥ ∶= LM and choose B̂ ∈ T −3ĥA, 1 − ε
h <

m(⊎ĥ−1
j=0 T

jB̂) < 1. It follows that

m(B̂ ∩ [ 1

ĥ

ĥ−1

∑
i=0

1D ○ T i < 1 − (εη)2]) < (εη)2m(B̂).(☀)

Define φ ∶X → S by φ = e on E ∶=
M

⊎
`=0

K

⊎
i=−h

h−1

⊎
k=0

T k(T `L+iB̂ ∩B)

and φ = φ off E.

Evidently φ is A-measurable, φ ≡ e off ⋃ĥ−1
i=0 T

iB̂, φh ≡ e on B, φĥ ≡ e
on B̂ and

m([φ ≠ φ]) ≤ K+2h
L .

Next, we define ψ ∶ [φ = e] → S. Set y0 = yM = e and define x` ∶=
y`+1y−1

` . By construction, ∃ u = u(x`) ∈ SK such that x` = uK . . . u1.
Set

ψ(x) = { ui(x`) x ∈ T `L+iB̂, 0 ≤ ` <M, 0 ≤ i <K;

e else.

Note that ψ is A-measurable and

m([ψ ≠ e]) ≤ K+2h
L < ε.

Lastly, define φ̂ ∶= φψ ∶X → S. Evidently [φ̂ ≠ φ] = [ψ ≠ e], whence

m([φ̂ ≠ φ]) ≤m([ψ ≠ e]) +m([φ ≠ φ]) < 2ε.

Also φ̂ĥ = e on B̂.
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We now show that φ̂ satisfies EVCT (U, 1
3 ,A). Namely, for v ∈ V with

m(A(v)) > 0, ∃ R ∈ [T ]+, such that D(R), I(R) ⊂ A(v), m(D(R)) >
m(A(v))

3 and φ̂R ∈ U .

To this end, fix v and purify the (B̂, ĥ)-tower with respect to A(v)

and D. Let β be the partition of B̂ into the bases of the pure columns.
By (☀),

1

ĥ

ĥ−1

∑
i=0

1D ○ T i ≥ 1 − (εη)2

on each b ∈ β except for a subcollection of total mass not more than
(εη)2m(B̂). We’ll call such bases b ∈ β good.

Next, in a good column (b, T b, . . . , T ĥ−1b) (i.e. where b is good), for
each 0 ≤ j <M except for a subcollection of at most εηM ,

#{0 ≤ i < L ∶= L ∶ T jL+ib ⊂D} > (1 − εη)L,

whence

#{K ≤ i < L ∶ T jL+ib ⊂D} > (1 − εη)L −K > (1 − 2εη)L.

Call such bj ∶= (T jL+Kb, . . . , T (j+1)L−1b) a good block.

The definition of ψ ensures that ψK ≡ uK(xj) . . . u1(xj) = xj on T jLB̂
where xj−1xj−2 . . . x0 = yj. If j′ > j,K ≤ i, i′ < L,

T jL+iB̂ ⊂ A(v), T j′L+i′B̂ ⊂ A(v)

and r ∶= (j′L + i′) − (jL + i), then

φ̂r = v−1ψrv = v−1xj′−1xj′−2 . . . xjv = v−1yj′y
−1
j v on T jL+iB̂.

In order to have φ̂r ∈ U on T jL+iB̂, we’ll need that d(v−1yj′y−1
j v, σ) < δ.

As arranged above, this will follow from

d(yj′ , vσv−1yj) < δ1.

The rest of the proof shows that there are enough pairs of good
blocks which are matchable in this way, and in them there are enough
A(v)-levels in order to obtain the required R.

We claim that in a good block bj, we have

#{K ≤ i < L ∶ T jL+ib ⊂ A(v)} = (1 ± 7ε)m(A(v))L.

To see this, set Ω ∶= {K ≤ i < L ∶ T jL+ib ⊂ D}. By the above #Ω >
1 − 2εη)L. We cover Ω by disjoint [ik, ik +N1) (k = 1,2, . . . ) so that
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each ik ∈ Ω. It follows that

#{K ≤ i < L ∶ T jL+ib ⊂ A(v)} = #{i ∈ Ω ∶ T jL+ib ⊂ A(v)} ±N1 ± (L −#Ω)
=∑

k

#{i ∈ [ik, ik +N1) ∶ T ib ⊂ A(v)} ± 3εηL

=∑
k

(1 ± ε)m(A(v))#[ik, ik +N1) ± 3εηL

= (1 ± ε)m(A(v))(L ± 3εηL) ± 3εηL

= (1 ± 7ε)m(A(v))L.
Now set w ∶= vσv−1. The construction of F ensured that ∣⋃f∈Fw

f ∣ >
(1 − εη)∣F ∣ where Fw ∶= {f ∈ F ∶ wf ⊂ F}.

Using M > 2N2, we have

#{0 ≤ j < M
2 ∶ yj ∈ f} = M ∣f ∣

2∣F ∣ (1 ± εη) ∀ f ∈ F
and

#{M2 ≤ j <M ∶ yj ∈ wf} = M ∣f ∣
2∣F ∣ (1 ± εη) ∀ f ∈ Fw.

It follows from the above that

#{0 ≤ j < M
2 ∶ bj is good}, #{M2 ≤ j <M ∶ bj is good} > M

2 (1 − 2εη).
In order to construct R, we claim that

∣{f ∈ F ∶ #{0 ≤ j < M
2 ∶ bj is good, and yj ∈ f} > 3M ∣f ∣

8∣F ∣ }∣ ≥ (1−12εη)∣F ∣
and (similarly)

∣{f ∈ Fw ∶ #{M2 ≤ j <M ∶ bj is good, and yj ∈ wf} > 3M ∣f ∣
8∣F ∣ }∣ ≥ (1−12εη)∣F ∣

(where, for J ⊂ H, ∣J ∣ ∶= ∑f∈J ∣f ∣).
To see the first, let

F− ∶= {f ∈ F ∶ #{0 ≤ j < M
2 ∶ bj is good, and yj ∈ f} ≤ 3M ∣f ∣

8∣F ∣ }, F− ∶= ⋃
f∈F−

f,

then
M
2 (1 − 2εη) < #{0 ≤ j < M

2 ∶ bj is good}
= ∑
f∈F

#{0 ≤ j < M
2 ∶ bj is good, and yj ∈ f}

= ∑
f∈F−

+ ∑
f∈F∖F−

≤ ∣F−∣ 3M
8∣F ∣ + ∑

f∈F∖F−
#{0 ≤ j < M

2 ∶ yj ∈ f}

≤ ∣F−∣ 3M
8∣F ∣ + ∣F ∖ F−∣M2 1

∣F ∣(1 + εη)
whence

∣F−∣ < 12εη∣F ∣.
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It follows that

∣{f ∈ F ∶ #{0 ≤ j < M
2 ∶ bj is good, and yj ∈ f} > 3M

8∣F ∣}∣ ≥ (1 − 12εη)∣F ∣

and

∣{f ∈ Fw ∶ #{M2 ≤ j <M ∶ bj is good, and yj ∈ wf} > 3M
8∣F ∣}∣ ≥ (1−12εη)∣F ∣.

Thus, we can match a proportion of (1 − 12εη) × 3
4 of the good blocks

bj (j < M
2 ) with good blocks bj′ (j′ > M

2 ) so that yj′ and wyj are in
the same element of wF , whence d(yj′ ,wyj) < δ1. Inside each pair
of matched good blocks, we match a proportion of (1 − 7ε) of the A(v)

levels. Using these, we define R ∈ [R]+, D(R), I(R) ⊂ A(v) with φ̂R ∈ U
and

m(D(R)) > (1 − 13εη) × 3
8(1 − 7ε)m(A(v)) ?> 1

3m(A(v)).
�
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