TAIL-INVARIANT MEASURES FOR SOME SUSPENSION
SEMIFLOWS

J. AARONSON, O. SARIG, R. SOLOMYAK

ABSTRACT. We consider suspension semiflows over abelian extensions of one-
sided mixing subshifts of finite type. Although these are not uniquely ergodic,
we identify (in the “ergodic” case) all tail-invariant, locally finite measures
which are quasi-invariant for the semiflow.

1. INTRODUCTION

1.1. The Tail Relations. We start with some background on equivalence rela-
tions, (see [F-M] for more detail). Let (X,B) be a standard Borel space, and let
R C X x X be an equivalence relation. Assume that R € B ® B, and that each
equivalence class R(x) := {y : (x,y) € R} is countable. Then for any A € B, the
saturation R(A) = U{R(z) : x € A)} is again a Borel set. A o-finite measure
p on X is called non-singular for R if u(R(A)) = 0 whenever u(A) = 0, and is,
in addition, called ergodic if any saturated set A = R(A) has either zero or full
measure.

A Borel isomorphism ¢ defined on some A € B with image B € B is a holonomy
if (z,¢(z)) € R for any © € A. A measure u is invariant for R, if it is invariant
under all the holonomies of R.

Let S be a finite set, and let X be a subshift of finite type over S:

Yi={reSN:Vk>1,A, 0., =1}

where A = (t;;)sxs with t;; € {0,1}. We endow X with the topology generated by
cylinders [ay,...,a,] == {z € ¥ : 2} = a}}, where 2/ := (z;,...,x;). Note that the
collection of cylinders of length n is exactly af ' where o := {[a] : a € S}. Define
the left shift T : ¥ — ¥ by (T'z); = x;4+1. Let P(X) denote the collection of Borel
probability measures on 3.

Henceforth we assume that (3,7 is topologically mixing. It is well-known that
this is equivalent to the existence of Ny such that all the entries of ANo are positive
(see [Bd]).

Let h: ¥ — R,, f:3¥ — Z% be Holder continuous. Set

yhi={(z,s):x €%, 0<s < h(z)},
and define the semiflows g; : £ — £" and G, : ¥ x Z¢ — £h x Z¢ by

gi(x, ) = (Trz,s+t— hy(z))

Gi(z,s,v) = (T"z,s+t—hy(z),v+ fola)) } where s+t € [in(z), hnt1(2))-
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Define the tail equivalence relations T(g) on X", and T(G) on X" x Z4 as follows:

g) = {((@9),(«,5))|ge(w,5) = g(a’,s") for some t > 0}
UG) = {((z,sv),(@,s,V)|Gi(z,s,v) = Gz, s, 1) for some ¢ > 0}.

It is not difficult to verify that

T (z) =T™(a')

((x,5),(2',5") € T(g) & In,m > 0 s.t. { s —hy(x) = 8" — hy(2)

and that
T (x) =T™(2')
((w,5,v),(a',s',V)) € T(G) & In,m > 0 s.t. s—hp(x) =5 — hp(z')
v+ folz) =V + fn(2))

As shown in[B-M], the relation %(g) is a symbolic model for the strong stable
foliation of a topologically mixing basic set ; of an Axiom A flow, in the sense
that, given such a flow, there exists X, h as above, and a one-to one correspondence
between invariant measures for the strong stable foliation of Q2 and locally-finite
invariant measures for T(g). The reader is referred to [B-M] for the definition of
the these geometric objects.

In the same sense, T(G) is a symbolic model for the strong stable foliation of a
7Z4-extension of an Axiom A flow, see [B-I],[Pd], [C].

1.2. The Babillot—Ledrappier Measures. The relation T(g) is uniquely ergodic
[B-M], but ¥(G) is not: [B-L] provides a d-parameter family of pairwise disjoint
T (G)-invariant measures, called here Babillot-Ledrappier (B-L) measures. These
are given as follows. Fix a € R, By [Bo], [Ru] there exists a unique 7, € R and
a unique Borel probability measure ji, on ¥ which is (e~ 7" T)-conformal in
the sense that p, 0T ~ p, and

dppa o T — g~ Taht(a.f)
dpig, '

The B-L measure indexed by a € R? is the measure on X = X x Z¢ given by

ma(Ax B x () i= e o) [ e
B

These are T(G)-invariant measures. They are infinite, but locally finite: compact
subsets of £/ x Z% have finite measure.

1.3. Main Results. It is known that ([C] and [Pol)

Proposition 1. m, is T(G)-ergodic iff T(_p ) : ¥ x R x 74 — ¥ x R x Z¢ given
by T—n,p)(z,s,v) = (T:E, s—h(z),v+ f(x)) is ergodic with respect to fio X My 74,
where myyza denotes Haar measure.

The purpose of this note is

(1) To characterize this situation of ergodicity in terms of a cocycle condition
for (—h, f) : ¥ — R x Z? by showing that if one of the B-L measures is
ergodic, then (—h, f) : ¥ — R x Z< is non-arithmetic (as defined below)
and that this implies that all the B-L measures are ergodic (see [C], and
theorem (1| and corollary [1| below, which imply proposition .
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(2) To identify the locally finite T(G)-invariant measures by showing that in
the case when the B-L measures are ergodic, that every locally finite, T(G)-
invariant, ergodic measure which is G-quasi-invariant must be proportional
to a B-L measure (Theorem [2| below). Theorem 2.2 in [A-N-S-S] can be
viewed as a (more complete) discrete time version of this result.

As shown in [B-L], horocycle foliations of Z?-covers of compact manifolds of con-
stant negative curvature are ergodic with respect to the B-L measures. This is
implied (via theorem [l| below) by ergodicity with respect to Lebesgue measure
which was established earlier in [L-S] (see also [K] and [Pd]).

It follows from our results that a locally finite measure which is ergodic and
invariant for the strong stable foliation of a basic set € of an Axiom A flow, and
which is quasi-invariant under the flow must be proportional to a B-L measure. (In
the case of a surface of constant negative curvature this can also be shown via a
geometric argument, [Bal.)

2. ERGODICITY AND NON-ARITHMETICITY OF G-EXTENSIONS

Let G be a locally compact, second countable, Abelian topological group; let
(X,B,m,T) be a probability preserving transformation and let ¢ : X — G be
measurable. Consider the skew product T, : X x G — X x G defined by Ty (z,y) :=
(Tz,y + ¢(x)) with respect to the (invariant) product measure m x mg where mg
denotes Haar measure.

Following [G], we say that ¢ is non-arithmetic if

Y(@)=g-goT

has no nontrivial solution in v € G and g : X — S! measurable; and that ¢ is
aperiodic if

V() =2g-goT

has no nontrivial solution in v € G, z€S'and g : X — S! measurable. It is not
hard to show that if T} is ergodic, and 7" is weakly mixing, then ¢ is non-arithmetic,
and in this case T} is weakly mixing iff ¢ is aperiodic (see e.g. [K=NJ).

Since G is a locally compact Abelian polish group topological group, there are
norms || - || generating the topology of G which are Lipschitz in the sense that each
character v : G — S! is ||-||-Lipschitz. Indeed, if Y is a metric space, and f : Y — G
is such that yo f : Y — S! is Lipschitz V characters v, then 3 a Lipschitz norm || - ||
such that f: Y — G is || - ||-Lipschitz.

Livsic’s theorem (see [L]) states that if (X, 8,m,T) is a mixing subshift of finite
type equipped with a Gibbs measure, ¢ : X — G is Holder continuous (w.r.t some
Lipschitz norm), and v € G and g : X — S! measurable with v(¢) =g-go T a.c.,
then g : X — S is also Hélder continuous (w.r.t the same Lipschitz norm). Thus
if a Holder continuous ¢ : X — G is non-arithmetic with respect to some Gibbs
measure, then it is non-arithmetic with respect to all Gibbs measures.

Recall that a non-singular subshift of finite type (X, B, m,T) has the Rényi prop-
erty if there is a constant C' > 0 such that for every cylinder of positive measure
a=lai,...,a]

o()
2 ()

<

<C formxmae. (z,y) €axa,

<
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where v, = (T”|a)_1 and v}, = d’g%. The following is a generalization of a
theorem in [C].
Theorem 1. Suppose that (3,8, m,T) is a mizing subshift of finite type with the

Rényi property and that ¢ is Hélder continuous and non-arithmetic; then Ty is
ergodic.

Lemma 1. Assume u: Y — S! is Holder continuous. At least one of the following
statements is true:

(1) u=g-goT for some Hélder continuous g : ¥ — S*.
(2) Let e € (0,1) and N € N be arbitrary constants. There exists n > N such
that for every z € X3 there are x € ¥ and k < n such that

o = 2N Tre =T"2 and |u,(2) — up(z)| > e

Proof. Let p be the Parry measure (i.e. measure of maximal entropy on X), then
dp = tpdv where v € P(X) is (1, T)-conformal and ) > 0 is Holder continuous. Let
P: L'(v) = L'(v) be the transfer operator, then
Py = 3 e sy)
Ty=x
and P"f — 4 [ fdv uniformly V f € C(X). Define P, : C(X) — C(X) by
P.(f) := P(uf), then P"f = P"(u,f) where u, := H?;Ol wo Tt By [G-H] either
Jp: ¥ — St Hélder continuous such that P,(¢) = ¢ (which implies (1) with g :=
/1), or || r-l ijfH S0V fe ). If (2) fails, then I e € (0,1), N > 1
o

such that V n > N, 3 z = 2(™ satisfying

E<n, 2 € THT"2}, o =2V = |up(z) —un(2)| < e

There are only finitely many possibilities for the N-prefix of (™). We may
therefore assume without loss of generality that Ja = [ay, ..., ay] such that 2" € a
for all n.

1n71 .
-3 Py,

n—1
1 —khiop(T)
— | — to: 10.
nk§:0e E uk(y)1a(y)

yET—R{Tmz(")}

>

1 n—1
=3 PFLL(T72™)
n

k=0

oo

n—1
= % S eTkhee™ N 1, (y) (un(z(”)) — [un (™) - uk(y)]>
k=0 yET—k{Tnz(m}
n—1
> LY et ® S 1) (1 (=) — uey))
k=0 yET—k{Tmz(m)}
1n—1
>(1- 6)5 e~ Fheop(T) Z 1a(y)
k=0 yeT—*{Tnz(m}
n—1

1
=1-e=Y PF1,(T"2™).
n
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Now 2 32770 P*1, — v(a)y uniformly, whence

n—1
1 )
hnnlgéf - kz_o PF1,(T"2™) > v(a) inf 4 > 0. O
Let W, denote the collection of admissible words of length n in X, that is W,, :=
{(er,.. . en) €8™: Ay e,y =1V 1< j<n—1}. We denote the concatenation
of a € W, and b € W,,, with A,, 5, =1, by a-b, and the concatenation of a € W,,
and z € ¥ with A, », =1 by (a,z).

Lemma 2. Suppose that ¢ is Holder continuous, v € G is non-constant, € € (0, 1)
and N € N. If ¢ is non-arithmetic, then there exists £ > 1 arbitrarily large and
infinitely many n > N with the following property:

aecW, 3k € [N,n] by =al¥
ce W, = and s.t. b = ay,
a-c€ Wy 3b € Wy Va € ¢, |y o dnla,x) —yo dp(b,x)| > €

Proof. Fix vy € G non-constant, € € (0,1), and N > 1. Choose 0 < § < 155 and
¢ > 1 such that

Ne = sup{|fyo¢n(x) —yoou(y)|:n>1, z,ye X, x?*z = yf*z} < 0.

By lemma In>NsuchthatVzeX, 3k<n, v € T*{T"2}, 2V = 2] such
that

v 0 ¢n(z) =7 o dr(x)| = e+ 20.
Now fix a € W,,, ¢ € W with a-c € W,,4¢, choose some u € ¥ such that A, ,, =1,
and set z = (a,c,u). Let k < n, z(z) € T~*{T"z}, 2(2)) = 2z be such that
|y 0 dn(2) — 70 ¢p(z(2))] > e+ 6 and let b = z(2)¥. Since T*x(2) = T"z, x(z) =
(b,c,u). For any v € ¥ with A, ,, =1 we have that

|70¢n(a7cvu) _’Yod)nwﬂcv'[})' <9, |7°¢k(bacvu) _'YO(Z)k(bacaU” <0

whence |y o ¢y (a,c,v) — vy o ¢r(b,c,v)| > e. Since this is true for all v € ¥ with
Ac,v; = 1, the lemma is proved. |

Proof of theorem (1] (c.f. §2 “Proof of theorem 1” in [AD]) For a nonsingular
transformation (Y,C, u, @), define the Grand Tail Relation of Q:

B(Q):={(z,y) €Y xY: In k>0, Qz=Q"y}.

This is an equivalence relation, and if (Y, C, ) is standard, then &(Q) € C®C. If Q
is locally invertible, then &(Q) has countable equivalence classes and is nonsingular.
It is easy to check that every @-invariant subset of Y is &(Q)-saturated. It follows
that if &(Q) is ergodic, then @ is ergodic.

It is therefore enough to prove that &(Ty) is ergodic. Define

¢:6(T)\ {(z,y) € X x X :  and y are pre-periodic } — G

by ¢(z,y) = én(x) — di(y) whenever T"z = T*y. This is independent of the choice
of n, k whenever x,y are not pre-periodic.
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The grand tail relation of Ty is given by

&(T,) = {((:z:,s), (y,t)) € (X x G)?: I n,k > 0 such that T"x = T"y,

and s —t = ¢n(y) — ¢k($)}

{9 0:0) € (X x 67+ (09) € OD), ) =51

We prove that &(Ty) is ergodic by the method of Schmidt (explained in [S]), by
considering the group of essential values which we now proceed to define. Set
By :={B € B:m(B) > 0}. For every B € B, let Hol(B) = Hol(B,&(T)) be the
collection of non-singular &(T')-holonomies with domain B:

Hol(B) := {7 : B — X : 7 is a non-singular Borel isomorphism B — 7(B)
such that Vz € B, (z,7(z)) € 6(T)}.
Now define

E(6(Ty)) == {t € G : YU open neighborhood of ¢ and VA € B,

dB € By and 37 € Hol(B) such that B,7(B) C A
andm(BNnrt 'Bn{zeX: oz, 7(x)) € U}) > 0}.

It is shown in [S] that E(&(T})) is a closed subgroup of G. To prove ergodicity, we
show that E(&(Ty)) = G (see [9]).

Suppose that E(&(Ty)) = H C G, then 3 v € G, v # 0 with vlg = 1. Fix a
precompact neighborhood of the identity V' C G, and let N € N be so large that

i>1n >N, o™ =yt = 6(x) — d(y) € V.
Fix e € (0,1) and let £ > 1 and n > N be as in lemmawith £ so large that
. ) ) c

1e == sup {Ivo pi(x) —vodi(y)|:j>1, zyeD, ]t = y{“} <z
It follows that Va € W,,Ve € Wy st. a-c € Wyyy, 3k < n, b € Wy with

bY =alV, by = a, such that V j > 1,Vu € Wi st Ayja =1,

4
|7 o ¢j+n(u,a,c, .T) -0 ¢j+k(uvbac7 l’)’ > ge VaeTe.

Let
K = {¢j+n(u,a,c,x) —¢iti(u,be,x): > 1LueW;, aeW,, A ar =1,
ceWpa-ce Wy, k<n, be Wy, b{vza{\], by, = an,
xz €Ty, |y0 dnyj(u,a,c,x) —yodrr(u,bc ) > 456}

By the choice of N and v, K C V \ E(&(T})) and K is compact. The methods of
[S] show that 3 A € B, such that

(AxA)NS(T)N[pe K] =2.
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By the Rényi property, 3 M > 1 such that
M m(u)ym(v) < m(unT " v) < Mm(u)m(v) Yu € af ', veah™, [vi] C Tlug).

Given j > 1, v = [u1,...,u;] C X and a € W,, b € Wy, c € W, as above, define
T:|u-a-¢ = Ju-b-c by

T(u7 a, c, y) = (U, b7 c, y)
— pramd)

It follows that 7 : [u, a, ¢] — [u, b, ] is invertible, nonsingular and d;”% mia)”

Let 6 > 0 be so small that for all £ <n,a € W,,,b € Wi,ce Wy, k <n,

<l (22

35 >1and u=[ug,...,u;] C X such that m(u\ A) < ém(u). Let a € W,
be such that [u,a] # @ and let k < n, b € Wy, ¢ € W, be as above. Consider
the corresponding 7 : [u,a,c] — [u,b, c]. Evidently T7+F o 7 = T7%" g0 (2,7(x)) €
&(T) VY z € [u,a,c], and ¢ o7(x) — Ppjyn(r) € KV x € [u,a,c].

To complete the proof we claim that 3 B € By B C AN [u,a,c] such that
7B C A. To see this we show that m(7([u,a,c] N A)) > m(u \ A), because this
implies m (A N 7([u,a,c] N A)) > 0 since 7([u,a,c] N A) C u. Now

m(r(fu,a,d N A) > MTS()a)m([u,a,c]ﬂA)
m(b)
> W(m([u,a,c])—m(u\fl))
m®) (mllad)
> ity (8
> om(u) >m(u\ A)

and this shows that (A x A)N&(Ty) N [¢ € K] # @ which is a contradiction. [
The following amplifies proposition 1:

Corollary 1. Let mq, be a B-L measure on ¥ x Z%. The following are equivalent:
(1) (2" x 24, m,, T(Q)) is ergodic;
(2) the cocycle (—h, f) : ¥ — R x Z? is non-arithmetic;
(3) T(—n,p) is ergodic on ¥ x R x Z% with respect to o X mpyza where mgyza
denotes Haar measure and i, is as in §1.2]

Proof. Set X = " x Z4. As shown in [Pd],
(T p) N (X x X) = T(G) 1)
(1) = (2). Suppose (1) and that s € R, v € R?and g : ¥ — S satisfy e ="/ =
goiT, and define F : X — C by F(x,y, 2) := g(x)e ¥+ 72 then
FOT(—h,f)(xayaZ) = F(Tmayfh(x)’z‘i’f(x))
g(Tx)e~sytish(@)Fily.2)+ily, [ (@)

_ %eﬂsh(m)ﬂ'(%ﬂmﬁp(gj’y’z) = F(x,y,2).

It follows that F' is constant, since F'oT(_j, yy = F and so every set of the form
[F <t]is &(T(_p,))-saturated whence also T(G)-saturated.
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Now consider Fy : X — C the restriction of F to X. It follows that for (x,y, z) €
X, t > 0 (choosing n > 0 such that h,(z) <t < hpy1(x)):

FooGi(x,y,2) = Fo(T"z,y+t—hn(z), 2+ fu(z)) = Fo Ty y(z,y+1,2)
= F(z,y+t,2)=e " Fy(z,y,2)
and Fy is T(G)-invariant, whence constant. It follows that s =0, y=0and g =1,

so (=h,f) : & — R x Z% is non-arithmetic. (2) = (3) by theorem |1} (3) = (1)
follows from . ]

Thus:

Corollary 2. If T(G) is ergodic with respect to some B-L measure, then the cocycle
(=h, f) : ¥ — R x Z% is non-arithmetic and T(G) is ergodic with respect to all B-L
measures.

3. IDENTIFICATION OF ERGODIC, LOCALLY FINITE T(G)-INVARIANT MEASURES

Theorem 2. Let X := %" x Z4 and let G, (t > 0) be the suspension semi-
flow. Assume that (—h, f) : ¥ — R x Z¢ is non-arithmetic and Hélder continuous.
Suppose that m is a locally finite, T(G)-invariant, ergodic measure on X and that
mo G;l ~mV t>0, then m is proportional to a B-L measure.

Proof. By assumption, f : ¥ — Z% is Holder continuous, and every such function is
of the form f(x) = f(x1,..., %) for some m. Recoding ¥ if necessary, we assume
without loss of generality that f(z) = f(z1,x2).

For t > 0, define the measure moGy by moGy(A) := ) ., m(G¢(ANa)) where a
is a countable partition of X such that G|, is 1-1 V a € «. Evidently mo Gy ~ m.
Let (X x Z%) denote the collection of all (possibly infinite) Borel measures on
¥ x Z%.

Claim 1: 3 7 € R such that % =e™, and 3 p € M(X x Z9) locally finite, such

dpoT;
that %ﬂf =e™ and

m(A x B) = M(A)/ crdr (A€ B(Ex 7%, BeBR), AxBCX). (2)
B
Moreover (X x Z%, B(X x Z4), Ty, ) is ergodic.

Proof. Fix ty > 0. We prove first that d";fto is T(G)-invariant and hence constant.

Suppose that A C X is Borel, and that K : A — K A is a T(G)-holonomy. Without
loss of generality, Gi,|a, Gt,|ixa are 1-1. It follows that

Ki =Gy oKoGy': GyA— GKA
is a well-defined ¥(G)-holonomy. By the ¥(G)-invariance of m,
m(GtOKA) = m(KthOA) = m(GtoA)

This shows that % is indeed T(G)-invariant and hence constant. Disintegrat-
ing the measure m over ¥ x Z%, we see that 3 A € M(X x Z4) locally finite, and
mg € M(Ry) such that « — m, is measurable, and such that

m(A x B) = /AmE(B)d)\(x).
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It follows that m,(J +t) = e™'my for open J C (0, h(z)) and ¢ € R small, whence
dmg(y) = c(x)e™dy and follows with du(z) := c(z)d\(z). The equation

d“d%Tf = ¢™" now follows from d”;iincf = ¢, and the ergodicity of (X,T},p) is
standard. g

Claim 2: 3 a homomorphism « : Z? — R and ¢ > 0 such that u(A x {n}) =
ce=*My(A) where v € P(X) is (e*°F+7" T)-conformal.

Proof. We first claim it suffices to show that H := {n € Z¢: poQ, ~ u} =724
where Q,(x,k) := (z,k 4+ n). To see this, note that

dpoQnoTy _duoTy
dpoQn  dp

The ergodicity of (3, Ty, 1) ensures that Vn € Z%, either poQ,, L por poQ, = cyu
for some ¢, > 0. The condition H = Z? ensures that po Q, = e ™y where
a: Z4 — R is a homomorphism. Thus, (A x {n}) = ce=*™v(A) where ¢ > 0
and v € P(X). The (e*/*7" T)-conformality of v follows from the (e™",T})-
conformality of p. -

We now prove that H = Z¢. Suppose otherwise that H # Z%, then 3 v € Zd
non-constant, such that |y = 1. Using non-arithmeticity and lemma [2] we fix
n>1sothat Vae W, andc € Sst. a-¢c € Wyyr, 3k = k(a) < n and
b = b(a,c) € Wy, such that a1 = by, a, = by and v o f,(a,c) # v o fr(b, C)E| By
choice of v, this means that f,(a,c) — fr(b,c) ¢ H.

Set J := {fn(a,c)— fr(bla,c),c) : a € W,,c€ S,a-c € W,11}, then J C Z4\ H
and J is finite. Set 71 := Zjejﬂ oQj, then t L ppand 3 K C X compact and
g € Z4 such that u(K x {g}) >0, (K x {g}) = 0.

Set I := sup{|h;(z) — h;(y)| : j > 1, 2} = ¢/}, L := 2maxs<, sup |hy| and
M = [Wp41]e""+5) | Approximating K by larger open sets, we see that 3U C X
open , such that K C U and (U x {g}) < ”(I(Q#M{g}). It follows that 3 a cylinder

set d = [dy,...,dy] such that pu(d x {g}) > 0 and u(d x {g}) < %.
Since d X {9} = Unew, cesldsa,c] x {g}, Fa € Wy, c € S witha-c € Wy

such that p([d,a,c] x {g}) > “‘(gv%igj). Next, 3 b = (by,...,br) € Wy such that
a; = by, a, = by and f,(a,c) — fu(b,c) € J. Define k : [d,a,c] x {g} — d x Z* by

k((d,a,z),9) == ((d,b,z),g + fe(b,c) — faula,c)). Since d%ff = ¢7", we have that

Q, =e™ vn ezl

dupok
dp

where the last estimate follows from

(:L',U) _ e‘r(hN+k(d,b,m)th+n(d7a,z)) c [67T(1+L)7€T(I+L)]’

|hn+k(d, b, ) — hyyn(d,a,2)| < |hy(d,b,2) — hy(d,a,x)]|
+ |hi(b, )| + |hn(a,2)| < T+ L.

1We are using here the assumption f(z) = f(xo,z1) to note that lemma [2| can be used with
¢ =1 and that f, (resp. fy) is constant on (a,c) € Wpy1 (resp. (b,c) € Wgy1) so that the
notation fr(a,c), fi(b,c) makes sense.
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Thus
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/ dupok
dp
[dac]x{g} K

(o r)([d,a,c] x {g})

> e T p(d,a,d x {g})
> 677(1+L)N(d x {g})
‘Wn+1|
_ nldx{g})
M
On the other hand, x([d,a,c] x {g})) C Q. (b,a)fn(a.c)(d X {g}) whence
p(d x {g
MAXAID) < (.0,  {9))) < 0@ 000 (@ x {0)) <
- u(d x {g})
il < {g)) < 1
and 1 < % This contradiction establishes claim 2. (]

Since the (e®°/*™" T)-conformal probability is unique, it follows from claim 2

that m is proportional to the corresponding B-L measure. (I
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