TAIL-INVARIANT MEASURES FOR SOME SUSPENSION SEMIFLOWS

J. AARONSON, O. SARIG, R. SOLOMYAK

Abstract

We consider suspension semiflows over abelian extensions of onesided mixing subshifts of finite type. Although these are not uniquely ergodic, we identify (in the "ergodic" case) all tail-invariant, locally finite measures which are quasi-invariant for the semiflow.

1. Introduction

1.1. The Tail Relations. We start with some background on equivalence relations, (see [F-M] for more detail). Let (X, \mathcal{B}) be a standard Borel space, and let $R \subset X \times X$ be an equivalence relation. Assume that $R \in \mathcal{B} \otimes \mathcal{B}$, and that each equivalence class $R(x):=\{y:(x, y) \in R\}$ is countable. Then for any $A \in \mathcal{B}$, the saturation $R(A)=\cup\{R(x): x \in A)\}$ is again a Borel set. A σ-finite measure μ on X is called non-singular for R if $\mu(R(A))=0$ whenever $\mu(A)=0$, and is, in addition, called ergodic if any saturated set $A=R(A)$ has either zero or full measure.

A Borel isomorphism ϕ defined on some $A \in \mathcal{B}$ with image $B \in \mathcal{B}$ is a holonomy if $(x, \phi(x)) \in R$ for any $x \in A$. A measure μ is invariant for R, if it is invariant under all the holonomies of R.

Let S be a finite set, and let Σ be a subshift of finite type over S :

$$
\Sigma:=\left\{x \in S^{\mathbb{N}}: \forall k \geq 1, A_{x_{k}, x_{k+1}}=1\right\}
$$

where $A=\left(t_{i j}\right)_{S \times S}$ with $t_{i j} \in\{0,1\}$. We endow Σ with the topology generated by cylinders $\left[a_{1}, \ldots, a_{n}\right]:=\left\{x \in \Sigma: x_{1}^{n}=a_{1}^{n}\right\}$, where $x_{i}^{j}:=\left(x_{i}, \ldots, x_{j}\right)$. Note that the collection of cylinders of length n is exactly α_{0}^{n-1} where $\alpha:=\{[a]: a \in S\}$. Define the left shift $T: \Sigma \rightarrow \Sigma$ by $(T x)_{i}=x_{i+1}$. Let $\mathcal{P}(\Sigma)$ denote the collection of Borel probability measures on Σ.

Henceforth we assume that (Σ, T) is topologically mixing. It is well-known that this is equivalent to the existence of N_{0} such that all the entries of $A^{N_{0}}$ are positive (see [Bo]).

Let $h: \Sigma \rightarrow \mathbb{R}_{+}, f: \Sigma \rightarrow \mathbb{Z}^{d}$ be Hölder continuous. Set

$$
\Sigma^{h}:=\{(x, s): x \in \Sigma, 0 \leq s<h(x)\}
$$

and define the semiflows $g_{t}: \Sigma^{h} \rightarrow \Sigma^{h}$ and $G_{t}: \Sigma^{h} \times \mathbb{Z}^{d} \rightarrow \Sigma^{h} \times \mathbb{Z}^{d}$ by

$$
\left.\begin{array}{ll}
g_{t}(x, s) & :=\left(T^{n} x, s+t-h_{n}(x)\right) \\
G_{t}(x, s, \nu) & :=\left(T^{n} x, s+t-h_{n}(x), \nu+f_{n}(x)\right)
\end{array}\right\} \text { where } s+t \in\left[h_{n}(x), h_{n+1}(x)\right)
$$

[^0]Define the tail equivalence relations $\mathfrak{T}(g)$ on Σ^{h}, and $\mathfrak{T}(G)$ on $\Sigma^{h} \times \mathbb{Z}^{d}$ as follows:

$$
\begin{aligned}
\mathfrak{T}(g) & :=\left\{\left((x, s),\left(x^{\prime}, s^{\prime}\right)\right) \mid g_{t}(x, s)=g_{t}\left(x^{\prime}, s^{\prime}\right) \text { for some } t>0\right\} \\
\mathfrak{T}(G) & :=\left\{\left((x, s, \nu),\left(x^{\prime}, s^{\prime}, \nu^{\prime}\right)\right) \mid G_{t}(x, s, \nu)=G_{t}\left(x^{\prime}, s^{\prime}, \nu^{\prime}\right) \text { for some } t>0\right\} .
\end{aligned}
$$

It is not difficult to verify that

$$
\left((x, s),\left(x^{\prime}, s^{\prime}\right)\right) \in \mathfrak{T}(g) \Leftrightarrow \exists n, m>0 \text { s.t. }\left\{\begin{array}{l}
T^{n}(x)=T^{m}\left(x^{\prime}\right) \\
s-h_{n}(x)=s^{\prime}-h_{m}\left(x^{\prime}\right)
\end{array}\right.
$$

and that

$$
\left((x, s, \nu),\left(x^{\prime}, s^{\prime}, \nu^{\prime}\right)\right) \in \mathfrak{T}(G) \Leftrightarrow \exists n, m>0 \text { s.t. }\left\{\begin{array}{l}
T^{n}(x)=T^{m}\left(x^{\prime}\right) \\
s-h_{n}(x)=s^{\prime}-h_{m}\left(x^{\prime}\right) \\
\nu+f_{n}(x)=\nu^{\prime}+f_{m}\left(x^{\prime}\right)
\end{array}\right.
$$

As shown in [B-M], the relation $\mathfrak{T}(g)$ is a symbolic model for the strong stable foliation of a topologically mixing basic set Ω_{k} of an Axiom A flow, in the sense that, given such a flow, there exists Σ, h as above, and a one-to one correspondence between invariant measures for the strong stable foliation of Ω_{k} and locally-finite invariant measures for $\mathfrak{T}(g)$. The reader is referred to [B-M] for the definition of the these geometric objects.

In the same sense, $\mathfrak{T}(G)$ is a symbolic model for the strong stable foliation of a \mathbb{Z}^{d}-extension of an Axiom A flow, see $[\mathrm{B}-\mathrm{L}, \mathrm{Po}, \mathrm{C}$.
1.2. The Babillot-Ledrappier Measures. The relation $\mathfrak{T}(g)$ is uniquely ergodic B-M, but $\mathfrak{T}(G)$ is not: B-L provides a d-parameter family of pairwise disjoint $\mathfrak{T}(G)$-invariant measures, called here Babillot-Ledrappier ($B-L$) measures. These are given as follows. Fix $\alpha \in \mathbb{R}^{d}$. By $\left.\overline{\mathrm{Bo}}, \mathrm{Ru}\right]$ there exists a unique $\tau_{\alpha} \in \mathbb{R}$ and a unique Borel probability measure μ_{α} on Σ which is $\left(e^{-\tau_{\alpha} h+\langle\alpha, f\rangle}, T\right)$-conformal in the sense that $\mu_{\alpha} \circ T \sim \mu_{\alpha}$ and

$$
\frac{d \mu_{\alpha} \circ T}{d \mu_{\alpha}}=e^{-\tau_{\alpha} h+\langle\alpha, f\rangle} .
$$

The B-L measure indexed by $\alpha \in \mathbb{R}^{d}$ is the measure on $X=\Sigma^{h} \times \mathbb{Z}^{d}$ given by

$$
m_{\alpha}(A \times B \times\{\nu\}):=e^{-\langle\alpha, \nu\rangle} \mu_{\alpha}(A) \int_{B} e^{\tau_{\alpha} r} d r
$$

These are $\mathfrak{T}(G)$-invariant measures. They are infinite, but locally finite: compact subsets of $\Sigma^{h} \times \mathbb{Z}^{d}$ have finite measure.
1.3. Main Results. It is known that ($\mathbb{C}]$ and $\mathbb{P 0}$)

Proposition 1. m_{α} is $\mathfrak{T}(G)$-ergodic iff $T_{(-h, f)}: \Sigma \times \mathbb{R} \times \mathbb{Z}^{d} \rightarrow \Sigma \times \mathbb{R} \times \mathbb{Z}^{d}$ given by $T_{(-h, f)}(x, s, \nu)=(T x, s-h(x), \nu+f(x))$ is ergodic with respect to $\mu_{\alpha} \times m_{\mathbb{R} \times \mathbb{Z}^{d}}$, where $m_{\mathbb{R} \times \mathbb{Z}^{d}}$ denotes Haar measure.

The purpose of this note is
(1) To characterize this situation of ergodicity in terms of a cocycle condition for $(-h, f): \Sigma \rightarrow \mathbb{R} \times \mathbb{Z}^{d}$ by showing that if one of the B-L measures is ergodic, then $(-h, f): \Sigma \rightarrow \mathbb{R} \times \mathbb{Z}^{d}$ is non-arithmetic (as defined below) and that this implies that all the B-L measures are ergodic (see [C], and theorem 1 and corollary 1 below, which imply proposition 1 .
(2) To identify the locally finite $\mathfrak{T}(G)$-invariant measures by showing that in the case when the B-L measures are ergodic, that every locally finite, $\mathfrak{T}(G)$ invariant, ergodic measure which is G-quasi-invariant must be proportional to a B-L measure (Theorem 2 below). Theorem 2.2 in A-N-S-S can be viewed as a (more complete) discrete time version of this result.
As shown in $[\mathrm{B}-\mathrm{L}]$, horocycle foliations of \mathbb{Z}^{d}-covers of compact manifolds of constant negative curvature are ergodic with respect to the B-L measures. This is implied (via theorem 1 below) by ergodicity with respect to Lebesgue measure which was established earlier in [L-S] (see also [K] and [Po).

It follows from our results that a locally finite measure which is ergodic and invariant for the strong stable foliation of a basic set Ω_{k} of an Axiom A flow, and which is quasi-invariant under the flow must be proportional to a B-L measure. (In the case of a surface of constant negative curvature this can also be shown via a geometric argument, Ba .)

2. Ergodicity and non-ARITHMETICITY of \mathbb{G}-EXTENSIONS

Let \mathbb{G} be a locally compact, second countable, Abelian topological group; let (X, \mathcal{B}, m, T) be a probability preserving transformation and let $\phi: X \rightarrow \mathbb{G}$ be measurable. Consider the skew product $T_{\phi}: X \times \mathbb{G} \rightarrow X \times \mathbb{G}$ defined by $T_{\phi}(x, y):=$ $(T x, y+\phi(x))$ with respect to the (invariant) product measure $m \times m_{\mathbb{G}}$ where $m_{\mathbb{G}}$ denotes Haar measure.

Following [G], we say that ϕ is non-arithmetic if

$$
\gamma(\phi)=\bar{g} \cdot g \circ T
$$

has no nontrivial solution in $\gamma \in \widehat{\mathbb{G}}$ and $g: X \rightarrow \mathbb{S}^{1}$ measurable; and that ϕ is aperiodic if

$$
\gamma(\phi)=z \bar{g} \cdot g \circ T
$$

has no nontrivial solution in $\gamma \in \hat{\mathbb{G}}, z \in \mathbb{S}^{1}$ and $g: X \rightarrow \mathbb{S}^{1}$ measurable. It is not hard to show that if T_{ϕ} is ergodic, and T is weakly mixing, then ϕ is non-arithmetic, and in this case T_{ϕ} is weakly mixing iff ϕ is aperiodic (see e.g. [$\mathrm{K}-\mathrm{N}$]).

Since \mathbb{G} is a locally compact Abelian polish group topological group, there are norms $\|\cdot\|$ generating the topology of \mathbb{G} which are Lipschitz in the sense that each character $\gamma: \mathbb{G} \rightarrow \mathbb{S}^{1}$ is $\|\cdot\|$-Lipschitz. Indeed, if Y is a metric space, and $f: Y \rightarrow \mathbb{G}$ is such that $\gamma \circ f: Y \rightarrow \mathbb{S}^{1}$ is Lipschitz \forall characters γ, then \exists a Lipschitz norm $\|\cdot\|$ such that $f: Y \rightarrow \mathbb{G}$ is $\|\cdot\|$-Lipschitz.

Livsic's theorem (see $[\mathbf{L})$ states that if $(\Sigma, \mathcal{B}, m, T)$ is a mixing subshift of finite type equipped with a Gibbs measure, $\phi: X \rightarrow \mathbb{G}$ is Hölder continuous (w.r.t some Lipschitz norm), and $\gamma \in \hat{\mathbb{G}}$ and $g: X \rightarrow \mathbb{S}^{1}$ measurable with $\gamma(\phi)=\bar{g} \cdot g \circ T$ a.e., then $g: X \rightarrow \mathbb{S}^{1}$ is also Hölder continuous (w.r.t the same Lipschitz norm). Thus if a Hölder continuous $\phi: X \rightarrow \mathbb{G}$ is non-arithmetic with respect to some Gibbs measure, then it is non-arithmetic with respect to all Gibbs measures.

Recall that a non-singular subshift of finite type $(\Sigma, \mathcal{B}, m, T)$ has the Rényi property if there is a constant $C>0$ such that for every cylinder of positive measure $a=\left[a_{1}, \ldots, a_{n}\right]$

$$
\frac{v_{a}^{\prime}(x)}{v_{a}^{\prime}(y)} \leq C \quad \text { for } m \times m \text { a.e. }(x, y) \in a \times a
$$

where $v_{a}:=\left(\left.T^{n}\right|_{a}\right)^{-1}$ and $v_{a}^{\prime}:=\frac{d m o v_{a}}{d m}$. The following is a generalization of a theorem in [C].

Theorem 1. Suppose that $(\Sigma, \mathcal{B}, m, T)$ is a mixing subshift of finite type with the Rényi property and that ϕ is Hölder continuous and non-arithmetic; then T_{ϕ} is ergodic.
Lemma 1. Assume $u: \Sigma \rightarrow \mathbb{S}^{1}$ is Hölder continuous. At least one of the following statements is true:
(1) $u=\bar{g} \cdot g \circ T$ for some Hölder continuous $g: \Sigma \rightarrow \mathbb{S}^{1}$.
(2) Let $\epsilon \in(0,1)$ and $N \in \mathbb{N}$ be arbitrary constants. There exists $n \geq N$ such that for every $z \in \Sigma$ there are $x \in \Sigma$ and $k \leq n$ such that

$$
x_{1}^{N}=z_{1}^{N}, T^{k} x=T^{n} z \text { and }\left|u_{n}(z)-u_{k}(x)\right| \geq \epsilon
$$

Proof. Let μ be the Parry measure (i.e. measure of maximal entropy on Σ), then $d \mu=\psi d \nu$ where $\nu \in \mathcal{P}(\Sigma)$ is $(1, T)$-conformal and $\psi>0$ is Hölder continuous. Let $P: L^{1}(\nu) \rightarrow L^{1}(\nu)$ be the transfer operator, then

$$
P f(x)=\sum_{T y=x} e^{-h_{\mathrm{top}}(T)} f(y)
$$

and $P^{n} f \rightarrow \psi \int_{X} f d \nu$ uniformly $\forall f \in C(X)$. Define $P_{u}: C(\Sigma) \rightarrow C(\Sigma)$ by $P_{u}(f):=P(u f)$, then $P_{u}^{n} f=P^{n}\left(u_{n} f\right)$ where $u_{n}:=\prod_{i=0}^{n-1} u \circ T^{i}$. By G-H either $\exists \varphi: \Sigma \rightarrow \mathbb{S}^{1}$ Hölder continuous such that $P_{u}(\varphi)=\varphi$ (which implies (1) with $g:=$ $\varphi / \psi)$, or $\left\|\frac{1}{n} \sum_{k=0}^{n-1} P_{u}^{k} f\right\|_{\infty} \rightarrow 0 \forall f \in C(\Sigma)$. If (2) fails, then $\exists \epsilon \in(0,1), N \geq 1$ such that $\forall n \geq N, \exists z=z^{(n)}$ satisfying

$$
k \leq n, x \in T^{-k}\left\{T^{n} z\right\}, x_{1}^{N}=z_{1}^{N} \Rightarrow\left|u_{k}(x)-u_{n}(z)\right|<\epsilon
$$

There are only finitely many possibilities for the N-prefix of $z^{(n)}$. We may therefore assume without loss of generality that $\exists a=\left[a_{1}, \ldots, a_{N}\right]$ such that $z^{(n)} \in a$ for all n.

$$
\begin{aligned}
& \left\|\frac{1}{n} \sum_{k=0}^{n-1} P_{u}^{k} 1_{a}\right\|_{\infty} \geq\left|\frac{1}{n} \sum_{k=0}^{n-1} P_{u}^{k} 1_{a}\left(T^{n} z^{(n)}\right)\right| \\
& \quad=\left|\frac{1}{n} \sum_{k=0}^{n-1} e^{-k h_{\mathrm{top}}(T)} \sum_{y \in T^{-k}\left\{T^{n} z^{(n)}\right\}} u_{k}(y) 1_{a}(y)\right| \\
& \quad=\left|\frac{1}{n} \sum_{k=0}^{n-1} e^{-k h_{\mathrm{top}}(T)} \sum_{y \in T^{-k}\left\{T^{n} z^{(n)}\right\}} 1_{a}(y)\left(u_{n}\left(z^{(n)}\right)-\left[u_{n}\left(z^{(n)}\right)-u_{k}(y)\right]\right)\right| \\
& \quad \geq \frac{1}{n} \sum_{k=0}^{n-1} e^{-k h_{\mathrm{top}}(T)} \sum_{y \in T^{-k}\left\{T^{n} z^{(n)}\right\}} 1_{a}(y)\left(1-\left|u_{n}\left(z^{(n)}\right)-u_{k}(y)\right|\right) \\
& \quad \geq(1-\epsilon) \frac{1}{n} \sum_{k=0}^{n-1} e^{-k h_{\mathrm{top}}(T)} \sum_{y \in T^{-k}\left\{T^{n} z^{(n)}\right\}} 1_{a}(y) \\
& \quad=(1-\epsilon) \frac{1}{n} \sum_{k=0}^{n-1} P^{k} 1_{a}\left(T^{n} z^{(n)}\right) .
\end{aligned}
$$

Now $\frac{1}{n} \sum_{k=0}^{n-1} P^{k} 1_{a} \rightarrow \nu(a) \psi$ uniformly, whence

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} P^{k} 1_{a}\left(T^{n} z^{(n)}\right) \geq \nu(a) \inf \psi>0
$$

Let W_{n} denote the collection of admissible words of length n in Σ, that is $W_{n}:=$ $\left\{\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in S^{n}: A_{\epsilon_{j}, \epsilon_{j+1}}=1 \forall 1 \leq j \leq n-1\right\}$. We denote the concatenation of $a \in W_{n}$ and $b \in W_{m}$ with $A_{a_{n}, b_{1}}=1$, by $a \cdot b$, and the concatenation of $a \in W_{n}$ and $x \in \Sigma$ with $A_{a_{n}, x_{1}}=1$ by (a, x).

Lemma 2. Suppose that ϕ is Hölder continuous, $\gamma \in \widehat{\mathbb{G}}$ is non-constant, $\epsilon \in(0,1)$ and $N \in \mathbb{N}$. If ϕ is non-arithmetic, then there exists $\ell \geq 1$ arbitrarily large and infinitely many $n \geq N$ with the following property:

$$
\left.\begin{array}{c}
a \in W_{n} \\
c \in W_{\ell} \\
a \cdot c \in W_{n+\ell}
\end{array}\right\} \Rightarrow \begin{gathered}
\exists k \in[N, n] \\
a n d \\
\exists b \in W_{k}
\end{gathered} \quad \text { s.t. }\left\{\begin{array}{c}
b_{1}^{N}=a_{1}^{N} \\
b_{k}=a_{n} \\
\forall x \in c,\left|\gamma \circ \phi_{n}(a, x)-\gamma \circ \phi_{k}(b, x)\right| \geq \epsilon
\end{array}\right.
$$

Proof. Fix $\gamma \in \widehat{\mathbb{G}}$ non-constant, $\epsilon \in(0,1)$, and $N \geq 1$. Choose $0<\delta<\frac{1-\epsilon}{2}$ and $\ell \geq 1$ such that

$$
\eta_{\ell}:=\sup \left\{\left|\gamma \circ \phi_{n}(x)-\gamma \circ \phi_{n}(y)\right|: n \geq 1, x, y \in \Sigma, x_{1}^{n+\ell}=y_{1}^{n+\ell}\right\}<\delta
$$

By lemma 1. $\exists n \geq N$ such that $\forall z \in \Sigma, \exists k \leq n, x \in T^{-k}\left\{T^{n} z\right\}, x_{1}^{N}=z_{1}^{N}$ such that

$$
\left|\gamma \circ \phi_{n}(z)-\gamma \circ \phi_{k}(x)\right| \geq \epsilon+2 \delta .
$$

Now fix $a \in W_{n}, c \in W_{\ell}$ with $a \cdot c \in W_{n+\ell}$, choose some $u \in \Sigma$ such that $A_{c_{\ell}, u_{1}}=1$, and set $z=(a, c, u)$. Let $k \leq n, x(z) \in T^{-k}\left\{T^{n} z\right\}, x(z)_{1}^{N}=z_{1}^{N}$ be such that $\left|\gamma \circ \phi_{n}(z)-\gamma \circ \phi_{k}(x(z))\right| \geq \epsilon+\delta$ and let $b=x(z)_{1}^{k}$. Since $T^{k} x(z)=T^{n} z, x(z)=$ (b, c, u). For any $v \in \Sigma$ with $A_{c_{\ell}, v_{1}}=1$ we have that

$$
\left|\gamma \circ \phi_{n}(a, c, u)-\gamma \circ \phi_{n}(a, c, v)\right|<\delta,\left|\gamma \circ \phi_{k}(b, c, u)-\gamma \circ \phi_{k}(b, c, v)\right|<\delta
$$

whence $\left|\gamma \circ \phi_{n}(a, c, v)-\gamma \circ \phi_{k}(b, c, v)\right| \geq \epsilon$. Since this is true for all $v \in \Sigma$ with $A_{c_{\ell}, v_{1}}=1$, the lemma is proved.

Proof of theorem 1 (c.f. §2 "Proof of theorem 1" in AD) For a nonsingular transformation (Y, \mathcal{C}, μ, Q), define the Grand Tail Relation of Q :

$$
\mathfrak{G}(Q):=\left\{(x, y) \in Y \times Y: \exists n, k>0, Q^{n} x=Q^{k} y\right\}
$$

This is an equivalence relation, and if (Y, \mathcal{C}, μ) is standard, then $\mathfrak{G}(Q) \in \mathcal{C} \otimes \mathcal{C}$. If Q is locally invertible, then $\mathfrak{G}(Q)$ has countable equivalence classes and is nonsingular. It is easy to check that every Q-invariant subset of Y is $\mathfrak{G}(Q)$-saturated. It follows that if $\mathfrak{G}(Q)$ is ergodic, then Q is ergodic.

It is therefore enough to prove that $\mathfrak{G}\left(T_{\phi}\right)$ is ergodic. Define

$$
\widetilde{\phi}: \mathfrak{G}(T) \backslash\{(x, y) \in X \times X: x \text { and } y \text { are pre-periodic }\} \rightarrow \mathbb{G}
$$

by $\widetilde{\phi}(x, y)=\phi_{n}(x)-\phi_{k}(y)$ whenever $T^{n} x=T^{k} y$. This is independent of the choice of n, k whenever x, y are not pre-periodic.

The grand tail relation of T_{ϕ} is given by

$$
\begin{aligned}
& \mathfrak{G}\left(T_{\phi}\right)=\left\{((x, s),(y, t)) \in(X \times \mathbb{G})^{2}: \exists n, k>0 \text { such that } T^{n} x=T^{k} y\right. \\
&\left.\quad \text { and } s-t=\phi_{n}(y)-\phi_{k}(x)\right\} \\
&=\left\{((x, s),(y, t)) \in(X \times \mathbb{G})^{2}:(x, y) \in \mathfrak{G}(T), \widetilde{\phi}(x, y)=s-t\right\}
\end{aligned}
$$

We prove that $\mathfrak{G}\left(T_{\phi}\right)$ is ergodic by the method of Schmidt (explained in [S]), by considering the group of essential values which we now proceed to define. Set $\mathcal{B}_{+}:=\{B \in \mathcal{B}: m(B)>0\}$. For every $B \in \mathcal{B}_{+}$, let $\operatorname{Hol}(B)=\operatorname{Hol}(B, \mathfrak{G}(T))$ be the collection of non-singular $\mathfrak{G}(T)$-holonomies with domain B :
$\operatorname{Hol}(B):=\{\tau: B \rightarrow X: \tau$ is a non-singular Borel isomorphism $B \rightarrow \tau(B)$ such that $\forall x \in B,(x, \tau(x)) \in \mathfrak{G}(T)\}$.
Now define

$$
\begin{aligned}
E\left(\mathfrak{G}\left(T_{\phi}\right)\right):=\{t \in \mathbb{G}: & \forall U \text { open neighborhood of } t \text { and } \forall A \in \mathcal{B}_{+}, \\
\exists & B \in \mathcal{B}_{+} \text {and } \exists \tau \in \operatorname{Hol}(B) \text { such that } B, \tau(B) \subseteq A \\
& \left.\quad \text { and } m\left(B \cap \tau^{-1} B \cap\{x \in X: \widetilde{\phi}(x, \tau(x)) \in U\}\right)>0\right\} .
\end{aligned}
$$

It is shown in [S] that $E\left(\mathfrak{G}\left(T_{\phi}\right)\right)$ is a closed subgroup of \mathbb{G}. To prove ergodicity, we show that $E\left(\mathfrak{G}\left(T_{\phi}\right)\right)=\mathbb{G}($ see $[\mathbf{S}])$.

Suppose that $E\left(\mathfrak{G}\left(T_{\phi}\right)\right)=H \subsetneq \mathbb{G}$, then $\exists \gamma \in \widehat{\mathbb{G}}, \gamma \neq 0$ with $\left.\gamma\right|_{H} \equiv 1$. Fix a precompact neighborhood of the identity $V \subseteq \mathbb{G}$, and let $N \in \mathbb{N}$ be so large that

$$
j \geq 1, n \geq N, x_{1}^{j+n}=y_{1}^{j+n} \Rightarrow \phi_{j}(x)-\phi_{j}(y) \in V
$$

Fix $\epsilon \in(0,1)$ and let $\ell \geq 1$ and $n \geq N$ be as in lemma 2 with ℓ so large that

$$
\eta_{\ell}:=\sup \left\{\left|\gamma \circ \phi_{j}(x)-\gamma \circ \phi_{j}(y)\right|: j \geq 1, x, y \in \Sigma, x_{1}^{j+\ell}=y_{1}^{j+\ell}\right\}<\frac{\epsilon}{5}
$$

It follows that $\forall a \in W_{n}, \forall c \in W_{\ell}$ s.t. $a \cdot c \in W_{n+\ell}, \exists k \leq n, b \in W_{k}$ with $b_{1}^{N}=a_{1}^{N}, b_{k}=a_{n}$ such that $\forall j \geq 1, \forall u \in W_{j}$ s.t. $A_{u_{j}, a_{1}}=1$,

$$
\left|\gamma \circ \phi_{j+n}(u, a, c, x)-\gamma \circ \phi_{j+k}(u, b, c, x)\right| \geq \frac{4 \epsilon}{5} \forall x \in T c_{\ell} .
$$

Let

$$
\begin{array}{r}
K:=\left\{\phi_{j+n}(u, a, c, x)-\phi_{j+k}(u, b, c, x): j \geq 1, u \in W_{j}, a \in W_{n}, A_{u_{j}, a_{1}}=1,\right. \\
c \in W_{\ell}, a \cdot c \in W_{n+\ell}, k \leq n, b \in W_{k}, b_{1}^{N}=a_{1}^{N}, b_{k}=a_{n}, \\
\left.x \in T c_{\ell},\left|\gamma \circ \phi_{n+j}(u, a, c, x)-\gamma \circ \phi_{j+k}(u, b, c, x)\right| \geq \frac{4 \epsilon}{5}\right\} .
\end{array}
$$

By the choice of N and $\gamma, \bar{K} \subset \bar{V} \backslash E\left(\mathfrak{G}\left(T_{\phi}\right)\right)$ and \bar{K} is compact. The methods of [S] show that $\exists A \in \mathcal{B}_{+}$such that

$$
(A \times A) \cap \mathfrak{G}(T) \cap[\widetilde{\phi} \in K]=\varnothing
$$

By the Rényi property, $\exists M>1$ such that
$M^{-1} m(u) m(v) \leq m\left(u \cap T^{-k} v\right) \leq M m(u) m(v) \forall u \in \alpha_{0}^{k-1}, v \in \alpha_{0}^{\ell-1},\left[v_{1}\right] \subset T\left[u_{k}\right]$.
Given $j \geq 1, u=\left[u_{1}, \ldots, u_{j}\right] \subset \Sigma$ and $a \in W_{n}, b \in W_{k}, c \in W_{\ell}$ as above, define $\tau:[u \cdot a \cdot c] \rightarrow[u \cdot b \cdot c]$ by

$$
\tau(u, a, c, y):=(u, b, c, y)
$$

It follows that $\tau:[u, a, c] \rightarrow[u, b, c]$ is invertible, nonsingular and $\frac{d m \circ \tau}{d m}=M^{ \pm 4} \frac{m(b)}{m(a)}$.
Let $\delta>0$ be so small that for all $k \leq n, a \in W_{n}, b \in W_{k}, c \in W_{\ell}, k \leq n$,

$$
\delta<\frac{m(b)}{M^{4} m(a)}\left(\frac{m([a, c])}{M}-\delta\right)
$$

$\exists j \geq 1$ and $u=\left[u_{1}, \ldots, u_{j}\right] \subset \Sigma$ such that $m(u \backslash A)<\delta m(u)$. Let $a \in W_{n}$ be such that $[u, a] \neq \varnothing$ and let $k \leq n, b \in W_{k}, c \in W_{\ell}$ be as above. Consider the corresponding $\tau:[u, a, c] \rightarrow[u, b, c]$. Evidently $T^{j+k} \circ \tau \equiv T^{j+n}$ so $(x, \tau(x)) \in$ $\mathfrak{G}(T) \forall x \in[u, a, c]$, and $\phi_{j+k} \circ \tau(x)-\phi_{j+n}(x) \in K \forall x \in[u, a, c]$.

To complete the proof we claim that $\exists B \in \mathcal{B}_{+} B \subset A \cap[u, a, c]$ such that $\tau B \subset A$. To see this we show that $m(\tau([u, a, c] \cap A)) \geq m(u \backslash A)$, because this implies $m(A \cap \tau([u, a, c] \cap A))>0$ since $\tau([u, a, c] \cap A) \subset u$. Now

$$
\begin{aligned}
m(\tau([u, a, c] \cap A)) & \geq \frac{m(b)}{M^{4} m(a)} m([u, a, c] \cap A) \\
& \geq \frac{m(b)}{M^{4} m(a)}(m([u, a, c])-m(u \backslash A)) \\
& >\frac{m(b)}{M^{4} m(a)}\left(\frac{m([a, c])}{M}-\delta\right) m(u) \\
& >\delta m(u)>m(u \backslash A)
\end{aligned}
$$

and this shows that $(A \times A) \cap \mathfrak{G}\left(T_{\phi}\right) \cap[\widetilde{\phi} \in K] \neq \varnothing$ which is a contradiction.
The following amplifies proposition 1:
Corollary 1. Let m_{α} be a B-L measure on $\Sigma^{h} \times \mathbb{Z}^{d}$. The following are equivalent:
(1) $\left(\Sigma^{h} \times \mathbb{Z}^{d}, m_{\alpha}, \mathfrak{T}(G)\right)$ is ergodic;
(2) the cocycle $(-h, f): \Sigma \rightarrow \mathbb{R} \times \mathbb{Z}^{d}$ is non-arithmetic;
(3) $T_{(-h, f)}$ is ergodic on $\Sigma \times \mathbb{R} \times \mathbb{Z}^{d}$ with respect to $\mu_{\alpha} \times m_{\mathbb{R} \times \mathbb{Z}^{d}}$ where $m_{\mathbb{R} \times \mathbb{Z}^{d}}$ denotes Haar measure and μ_{α} is as in $\$ 1.2$.
Proof. Set $X=\Sigma^{h} \times \mathbb{Z}^{d}$. As shown in Po,

$$
\begin{equation*}
\mathfrak{G}\left(T_{(-h, f)}\right) \cap(X \times X)=\mathfrak{T}(G) \tag{1}
\end{equation*}
$$

$(1) \Rightarrow(2)$. Suppose (1) and that $s \in \mathbb{R}, \gamma \in \mathbb{R}^{d}$ and $g: \Sigma \rightarrow \mathbb{S}^{1}$ satisfy $e^{-i s h+i\langle\gamma, f\rangle}=$ $\frac{g}{g \circ T}$, and define $F: X \rightarrow \mathbb{C}$ by $F(x, y, z):=g(x) e^{-i s y+i\langle\gamma, z\rangle}$, then

$$
\begin{aligned}
F \circ T_{(-h, f)}(x, y, z) & =F(T x, y-h(x), z+f(x)) \\
& =g(T x) e^{-i s y+i s h(x)+i\langle\gamma, z\rangle+i\langle\gamma, f(x)\rangle} \\
& =\frac{g(T x)}{g(x)} e^{-i s h(x)+i\langle\gamma, f(x)\rangle} F(x, y, z)=F(x, y, z)
\end{aligned}
$$

It follows that F is constant, since $F \circ T_{(-h, f)}=F$ and so every set of the form $[F \leq t]$ is $\mathfrak{G}\left(T_{(-h, f)}\right)$-saturated whence also $\mathfrak{T}(G)$-saturated.

Now consider $F_{0}: X \rightarrow \mathbb{C}$ the restriction of F to X. It follows that for $(x, y, z) \in$ $X, t \geq 0$ (choosing $n \geq 0$ such that $\left.h_{n}(x) \leq t<h_{n+1}(x)\right)$:

$$
\begin{aligned}
F_{0} \circ G_{t}(x, y, z) & =F_{0}\left(T^{n} x, y+t-h_{n}(x), z+f_{n}(x)\right)=F \circ T_{(-h, f)}^{n}(x, y+t, z) \\
& =F(x, y+t, z)=e^{-i s t} F_{0}(x, y, z)
\end{aligned}
$$

and F_{0} is $\mathfrak{T}(G)$-invariant, whence constant. It follows that $s=0, \gamma=0$ and $g \equiv 1$, so $(-h, f): \Sigma \rightarrow \mathbb{R} \times \mathbb{Z}^{d}$ is non-arithmetic. $(2) \Rightarrow(3)$ by theorem 1 (3) \Rightarrow (1) follows from (1).

Thus:
Corollary 2. If $\mathfrak{T}(G)$ is ergodic with respect to some B-L measure, then the cocycle $(-h, f): \Sigma \rightarrow \mathbb{R} \times \mathbb{Z}^{d}$ is non-arithmetic and $\mathfrak{T}(G)$ is ergodic with respect to all $B-L$ measures.

3. Identification of ergodic, Locally finite $\mathfrak{T}(G)$-Invariant measures

Theorem 2. Let $X:=\Sigma^{h} \times \mathbb{Z}^{d}$ and let $G_{t}(t \geq 0)$ be the suspension semiflow. Assume that $(-h, f): \Sigma \rightarrow \mathbb{R} \times \mathbb{Z}^{d}$ is non-arithmetic and Hölder continuous. Suppose that m is a locally finite, $\mathfrak{T}(G)$-invariant, ergodic measure on X and that $m \circ G_{t}^{-1} \sim m \forall t>0$, then m is proportional to a $B-L$ measure.

Proof. By assumption, $f: \Sigma \rightarrow \mathbb{Z}^{d}$ is Hölder continuous, and every such function is of the form $f(x)=f\left(x_{1}, \ldots, x_{m}\right)$ for some m. Recoding Σ if necessary, we assume without loss of generality that $f(x)=f\left(x_{1}, x_{2}\right)$.

For $t>0$, define the measure $m \circ G_{t}$ by $m \circ G_{t}(A):=\sum_{a \in \alpha} m\left(G_{t}(A \cap a)\right)$ where α is a countable partition of X such that $\left.G_{t}\right|_{a}$ is 1-1 $\forall a \in \alpha$. Evidently $m \circ G_{t} \sim m$. Let $\mathfrak{M}\left(\Sigma \times \mathbb{Z}^{d}\right)$ denote the collection of all (possibly infinite) Borel measures on $\Sigma \times \mathbb{Z}^{d}$.

Claim 1: $\exists \tau \in \mathbb{R}$ such that $\frac{d m \circ G_{t}}{d m}=e^{\tau t}$, and $\exists \mu \in \mathfrak{M}\left(\Sigma \times \mathbb{Z}^{d}\right)$ locally finite, such that $\frac{d \mu \circ T_{f}}{d \mu}=e^{\tau h}$ and

$$
\begin{equation*}
m(A \times B)=\mu(A) \int_{B} e^{\tau r} d r \quad\left(A \in \mathcal{B}\left(\Sigma \times \mathbb{Z}^{d}\right), B \in \mathcal{B}(\mathbb{R}), A \times B \subset X\right) \tag{2}
\end{equation*}
$$

Moreover $\left(\Sigma \times \mathbb{Z}^{d}, \mathcal{B}\left(\Sigma \times \mathbb{Z}^{d}\right), T_{f}, \mu\right)$ is ergodic.
Proof. Fix $t_{0}>0$. We prove first that $\frac{d m \circ G_{t_{0}}}{d m}$ is $\mathfrak{T}(G)$-invariant and hence constant. Suppose that $A \subset X$ is Borel, and that $K: A \rightarrow K A$ is a $\mathfrak{T}(G)$-holonomy. Without loss of generality, $\left.G_{t_{0}}\right|_{A},\left.G_{t_{0}}\right|_{K A}$ are 1-1. It follows that

$$
K_{1}:=G_{t_{0}} \circ K \circ G_{t_{0}}^{-1}: G_{t_{0}} A \rightarrow G_{t_{0}} K A
$$

is a well-defined $\mathfrak{T}(G)$-holonomy. By the $\mathfrak{T}(G)$-invariance of m,

$$
m\left(G_{t_{0}} K A\right)=m\left(K_{1} G_{t_{0}} A\right)=m\left(G_{t_{0}} A\right)
$$

This shows that $\frac{d m \circ G_{t_{0}}}{d m}$ is indeed $\mathfrak{T}(G)$-invariant and hence constant. Disintegrating the measure m over $\Sigma \times \mathbb{Z}^{d}$, we see that $\exists \lambda \in \mathfrak{M}\left(\Sigma \times \mathbb{Z}^{d}\right)$ locally finite, and $m_{x} \in \mathfrak{M}\left(\mathbb{R}_{+}\right)$such that $x \mapsto m_{x}$ is measurable, and such that

$$
m(A \times B)=\int_{A} m_{x}(B) d \lambda(x)
$$

It follows that $m_{x}(J+t)=e^{\tau t} m_{x}$ for open $J \subset(0, h(x))$ and $t \in \mathbb{R}$ small, whence $d m_{x}(y)=c(x) e^{\tau y} d y$ and 2 follows with $d \mu(x):=c(x) d \lambda(x)$. The equation $\frac{d \mu \circ T_{f}}{d \mu}=e^{\tau h}$ now follows from $\frac{d m \circ G_{t}}{d m}=e^{\tau t}$, and the ergodicity of $\left(\Sigma, T_{f}, \mu\right)$ is standard.

Claim 2: \exists a homomorphism $\alpha: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ and $c>0$ such that $\mu(A \times\{n\})=$ $c e^{-\alpha(n)} \nu(A)$ where $\nu \in \mathcal{P}(\Sigma)$ is $\left(e^{\alpha \circ f+\tau h}, T\right)$-conformal.

Proof. We first claim it suffices to show that $H:=\left\{n \in \mathbb{Z}^{d}: \mu \circ Q_{n} \sim \mu\right\}=\mathbb{Z}^{d}$ where $Q_{n}(x, k):=(x, k+n)$. To see this, note that

$$
\frac{d \mu \circ Q_{n} \circ T_{f}}{d \mu \circ Q_{n}}=\frac{d \mu \circ T_{f}}{d \mu} \circ Q_{n}=e^{\tau h} \quad \forall n \in \mathbb{Z}^{d}
$$

The ergodicity of $\left(\Sigma, T_{f}, \mu\right)$ ensures that $\forall n \in \mathbb{Z}^{d}$, either $\mu \circ Q_{n} \perp \mu$ or $\mu \circ Q_{n}=c_{n} \mu$ for some $c_{n}>0$. The condition $H=\mathbb{Z}^{d}$ ensures that $\mu \circ Q_{n}=e^{-\alpha(n)} \mu$ where $\alpha: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ is a homomorphism. Thus, $\mu(A \times\{n\})=c e^{-\alpha(n)} \nu(A)$ where $c>0$ and $\nu \in \mathcal{P}(\Sigma)$. The $\left(e^{\alpha \circ f+\tau h}, T\right)$-conformality of ν follows from the $\left(e^{\tau h}, T_{f}\right)$ conformality of μ.

We now prove that $H=\mathbb{Z}^{d}$. Suppose otherwise that $H \neq \mathbb{Z}^{d}$, then $\exists \gamma \in \widehat{\mathbb{Z}^{d}}$ non-constant, such that $\left.\gamma\right|_{H} \equiv 1$. Using non-arithmeticity and lemma 2 , we fix $n \geq 1$ so that $\forall a \in W_{n}$ and $c \in S$ s.t. $a \cdot c \in W_{n+1}, \exists k=k(a) \leq n$ and $b=b(a, c) \in W_{k}$ such that $a_{1}=b_{1}, a_{n}=b_{k}$ and $\gamma \circ f_{n}(a, c) \neq \gamma \circ f_{k}(b, c) 1_{1}^{1}$ By choice of γ, this means that $f_{n}(a, c)-f_{k}(b, c) \notin H$.

Set $J:=\left\{f_{n}(a, c)-f_{k}(b(a, c), c): a \in W_{n}, c \in S, a \cdot c \in W_{n+1}\right\}$, then $J \subset \mathbb{Z}^{d} \backslash H$ and J is finite. Set $\bar{\mu}:=\sum_{j \in J} \mu \circ Q_{j}$, then $\bar{\mu} \perp \mu$ and $\exists K \subset \Sigma$ compact and $g \in \mathbb{Z}^{d}$ such that $\mu(K \times\{g\})>0, \bar{\mu}(K \times\{g\})=0$.

Set $I:=\sup \left\{\left|h_{j}(x)-h_{j}(y)\right|: j \geq 1, x_{1}^{j}=y_{1}^{j}\right\}, L:=2 \max _{k \leq n} \sup \left|h_{k}\right|$ and $M:=\left|W_{n+1}\right| e^{\tau(I+L)}$. Approximating K by larger open sets, we see that $\exists U \subset \Sigma$ open, such that $K \subset U$ and $\bar{\mu}(U \times\{g\})<\frac{\mu(K \times\{g\})}{2 M}$. It follows that \exists a cylinder set $d=\left[d_{1}, \ldots, d_{N}\right]$ such that $\mu(d \times\{g\})>0$ and $\bar{\mu}(d \times\{g\})<\frac{\mu(d \times\{g\})}{2 M}$.

Since $d \times\{g\}=\bigcup_{a \in W_{n}, c \in S}[d, a, c] \times\{g\}, \exists a \in W_{n}, c \in S$ with $a \cdot c \in W_{n+1}$ such that $\mu([d, a, c] \times\{g\}) \geq \frac{\mu(d \times\{g\})}{\left|W_{n+1}\right|}$. Next, $\exists b=\left(b_{1}, \ldots, b_{k}\right) \in W_{k}$ such that $a_{1}=b_{1}, a_{n}=b_{k}$ and $f_{n}(a, c)-f_{k}(b, c) \in J$. Define $\kappa:[d, a, c] \times\{g\} \rightarrow d \times \mathbb{Z}^{d}$ by $\kappa((d, a, x), g):=\left((d, b, x), g+f_{k}(b, c)-f_{n}(a, c)\right)$. Since $\frac{d \mu \circ T_{f}}{d \mu}=e^{\tau h}$, we have that

$$
\frac{d \mu \circ \kappa}{d \mu}(x, v)=e^{\tau\left(h_{N+k}(d, b, x)-h_{N+n}(d, a, x)\right)} \in\left[e^{-\tau(I+L)}, e^{\tau(I+L)}\right],
$$

where the last estimate follows from

$$
\begin{aligned}
\left|h_{N+k}(d, b, x)-h_{N+n}(d, a, x)\right| \leq \mid h_{N}(d, b, x)- & h_{N}(d, a, x) \mid \\
& +\left|h_{k}(b, x)\right|+\left|h_{n}(a, x)\right| \leq I+L .
\end{aligned}
$$

[^1]Thus

$$
\begin{aligned}
(\mu \circ \kappa)([d, a, c] \times\{g\}) & =\int_{[d, a, c] \times\{g\}} \frac{d \mu \circ \kappa}{d \mu} d \mu \\
& \geq e^{-\tau(I+L)} \mu([d, a, c] \times\{g\}) \\
& \geq e^{-\tau(I+L)} \frac{\mu(d \times\{g\})}{\left|W_{n+1}\right|} \\
& =\frac{\mu(d \times\{g\})}{M}
\end{aligned}
$$

On the other hand, $\kappa([d, a, c] \times\{g\})) \subset Q_{f_{k}(b, a)-f_{n}(a, c)}(d \times\{g\})$ whence

$$
\begin{aligned}
\frac{\mu(d \times\{g\})}{M} \leq \mu(\kappa([d, a, c] \times\{g\})) \leq \mu\left(Q_{f_{k}(b, c)-f_{n}(a, c)}(d \times\{g\})\right) & \leq \\
\bar{\mu}(d \times\{g\}) & <\frac{\mu(d \times\{g\})}{2 M}
\end{aligned}
$$

and $1<\frac{1}{2}$. This contradiction establishes claim 2.
Since the $\left(e^{\alpha \circ f+\tau h}, T\right)$-conformal probability is unique, it follows from claim 2 that m is proportional to the corresponding B-L measure.

References

[AD] J. Aaronson, M. Denker: On exact group extensions. Sankhyā, series A 62, part 3 (2000), 339-349.
[A-N-S-S] J. Aaronson, H. Nakada, O. Sarig, R. Solomyak: Invariant measures and asymptotics for some skew products. To appear in Israel J. Math.
[B-L] M. Babillot, F. Ledrappier: Geodesic paths and horocycle flow on abelian covers. Lie groups and ergodic theory (Mumbai, 1996) 1-32, Tata Inst. Fund. Res. Stud. Math. 14, Tata Inst. Fund. Res., Bombay (1998).
[Ba] M. Babillot: Personal communication.
[Bo] R. Bowen: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Mathematics 470, Springer-Verlag, Berlin-New York (1975).
[B-M] R. Bowen, B. Marcus: Unique ergodicity for horocycle foliations. Israel J. Math. 26 no. 1 (1977), 43-67.
[C] Y. Coudene: Ph. D. Thesis (2000).
[F-M] J. Feldman, C. C. Moore: Ergodic equivalence relations, cohomology, and von Neumann algebras I. Trans. Am. Math. Soc., Volume 234, 2, (1977), 289-324.
[F] H. Furstenberg: The unique ergodicity of the horocycle flow. Recent advances in topological dynamics (Proc. Conf., Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund), 95-115, Lecture Notes in Math., Vol. 318, Springer Berlin (1973).
[G] Y. Guivarc'h: Propriétés ergodiques, en mesure infinie, de certains systèmes dynamiques fibrés, Ergod. Th. and Dynam. Sys. 9 (1989), 433-453.
[G-H] Y. Guivarc'h, J. Hardy: Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov. Ann. Inst. H. Poincaré 24 (1988), 73-98.
[K] V. Kaimanovich: Ergodicity of the horocycle flow. Dynamical systems from crystal to chaos, eds. J-M Gambaudo, P. Hubert, P. Tisseur, S. Vaienti, Proceedings of the conference in honour of G. Rauzy, Luminy-Marseille, France (1998), World Scientific, Singapore, 274-286 (2000).
[K-N] H.B. Keynes and D. Newton: The structure of ergodic measures for compact group extensions. Israel J. Maths. 18 (1974), 363-389.
[L] A. Livsic: Cohomology properties of dynamical systems. Math. USSR Izv. 6 (1972), 1278-1301.
[L-S] T. Lyons, D. Sullivan: Function theory, random paths and covering spaces. J. Differential Geom. 19 , no. 2 (1984), 299-323.
[Po1] M. Pollicott: Margulis distributions for Anosov flows. Commun. Math. Phys. 113, no. 1 (1987), 137-154.
[Po] M. Pollicott: \mathbb{Z}^{d}-covers of horosphere foliations. Discrete Contin. Dyn. Syst. 6 No.1, 147-154 (2000).
[Ru] D. Ruelle: Thermodynamic formalism (the mathematical structures of classical equilibrium statistical mechanics). Addison-Wesley (Reading, Mass.), Encyclopedia of Mathematics and its applications 5 (1978).
[Ru-Su] D. Ruelle, D. Sullivan: Currents, flows and diffeomorphisms. Topology 14, no. 4 (1975), 319-327.
[S] K. Schmidt: Cocycles of Ergodic Transformation Groups., Lect. Notes in Math. Vol. 1, Mac Millan Co. of India (1977).

Jon Aaronson: School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel

E-mail address: aaro@post.tau.ac.il
Omri Sarig: Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
E-mail address: sarig@maths.warwick.ac.uk
Rita Solomyak: Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195-4350, USA

E-mail address: rsolom@math.washington.edu

[^0]: 2nd Preliminary version, December 2000, © October 2000.

[^1]: ${ }^{1}$ We are using here the assumption $f(x)=f\left(x_{0}, x_{1}\right)$ to note that lemma 2 can be used with $\ell=1$ and that f_{n} (resp. f_{k}) is constant on $(a, c) \in W_{n+1}$ (resp. $\left.(b, c) \in W_{k+1}\right)$ so that the notation $f_{n}(a, c), f_{k}(b, c)$ makes sense.

