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Abstract. Let φ be an aperiodic cocycles with values in a locally
compact abelian second countable group G defined on an exact
Gibbs-Markov map T ∶X →X. We show that the group extension
Tφ(x, g) = (T (x), g + φ(x)) (x ∈ X; g ∈ G) is exact. Equivalent
conditions for exactness are found.

§1 Introduction

Let (X,B,m,T,α) be an exact probability preserving Markov map
as in [Aar97], where (X,B,m) denotes a probability space, T ∶X →X
is a probability preserving transformation and α a generating Markov
partition (possibly countable). We can and do assume that X is a
topological Markov shift:

X = {x = x1, x2, ... ∈ αN ∶ m(xn ∩ T −1xn+1) > 0 ∀ n ≥ 1}
endowed with the Polish topology inherited from the product topology
on αN.

It follows that T is locally invertible with respect to α in the sense
that for each n ≥ 1, a ∈ αn−1

0 the map T n ∶ a → T na is nonsingular and
invertible. The inverse of this map is denoted va ∶ T na → a and given
by va(x1, x2, . . . ) = a, x1, x2, . . . , where a is identified with an element
of α{1,...,n}. We let v′a denote the Radon-Nikodym derivative of m ○ va
with respect to m.

The partition α enables the definition of a Hölder class of metrics
{dr ∶ 0 < r < 1} on X:
For n ≥ 1, define an ∶X → αn−1

0 by x ∈ an(x) ∈ αn−1
0 .

For x, y ∈X define t(x, y) ∶= min{n ≥ 1 ∶ an(x) ≠ an(y)} (≤ ∞).
For r ∈ (0,1) define dr ∶X ×X → R by dr(x, y) ∶= rt(x,y).
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2 Group extensions of Gibbs-Markov maps

It is easily seen that the identity ∶ (X,dr) → (X,ds) is Hölder con-
tinuous ∀ r, s ∈ (0,1).

Accordingly, we define the Hölder constants of a function h ∶ A→M
(A ⊂X) with values in a metric space (M,ρ) by

Dr,A(h) ∶= sup
x,y∈A

ρ(h(x), h(y))
rt(x,y)

.

Let Lipr(M) ∶= {h ∶ X → M ∶ supa∈αDr,a(h) < ∞}. In case M = R
we simply write Lipr ∶= Lipr(M) instead. A function h ∶ X → M is
called uniformly Hölder continuous on states if h ∈ Lipr(M) for some
0 < r < 1.

Recall (see e.g. [AD96]) that (X,B,m,T,α) has

the Gibbs property if ∃ C > 1, 0 < r < 1 such that ∀ n ≥ 1, a ∈
αn−1

0 , m(a) > 0:

∣v
′
a(x)
v′a(y)

− 1∣ ≤ Crt(x,y) for m ×m-a.e. (x, y) ∈ T na × T na.

It is called a Gibbs-Markov map if it has in addition the property

inf
a∈α

m(Ta) > 0.

Recall that any topologically mixing probability preserving Markov
map with the Gibbs property is exact (see for example [ADU93]).

Now let G be a locally compact, abelian, second countable group, let
∥ ⋅ ∥ be a Lipschitz norm on G (i.e. γ ∶ G→ S1 is ∥ ⋅ ∥-Lipschitz for every

γ ∈ Ĝ), and let φ ∶ X → G be measurable. Consider the skew product
transformation Tφ ∶X ×G→X ×G defined by Tφ(x, y) ∶= (Tx, y+φ(x))
with respect to the (invariant) product measure m × mG where mG

denotes Haar measure. We define φn = φ + φ ○ T + ... + φ ○ T n−1 and for
x ∈X

Gx = {t ∈ G ∶ ∃ kn →∞, yn, zn ∈ T −kn{x} ∶ {dr(yn, zn) → 0

φkn(yn) − φkn(zn) → t
} .

We’re interested in the exactness of Tφ and prove

Theorem
Let G be a LCA, second countable group, let (X,B,m,T ) be an exact

probability preserving Gibbs-Markov map and let φ ∶ X → G be uni-
formly Hölder continuous on states.

The following are equivalent:

(1) 1.) φ is aperiodic in the sense that γ○φ = zgT
g has no non-trivial

solutions in γ ∈ Ĝ, z ∈ S1 and g ∶X → S1 Hölder continuous.
(2) 2.) Tφ is weakly mixing.
(3) 3.) Tφ is exact.
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(4) 4.) For some A ∈ B, m(A) > 0 and for all x ∈ A, the smallest
closed subgroup generated by Gx is G.

(5) 5.) For every x ∈X, G = Gx.

Remarks:
1. In case α is a finite Markov partition and m a Gibbs measure as

in [Bow08], Guivarc’h ([Gui89]) has obtained exactness of the group
extension with respect to aperiodic, Hölder-continuous, Rd-valued co-
cycles.

2. Let T be as in the theorem and let φ ∶X → Zd be aperiodic, locally
Lipschitz and in the domain of attraction of a stable distribution of
order 0 < p < 2. For conservative Tφ, exactness follows from section 7
in [AD96].

3. The assumptions on the cocycle and the dynamics in these results
have been weakened in [AD]:
For an exact Markov map T with the Renyi property and a cocycle
φ ∶ X → Rd which is locally constant (on cylinders in αN0 for some
N ≥ 0), topological mixing of Tφ implies its exactness.

4. Let T be a locally invertible, exact endomorphisms with quasicom-
pact Frobenius-Perron operators whose perturbations have a spectral
representation à la Nagaev ([Nag57]). If φ ∶ X → Rd is aperiodic and
there is a subsequence nk such that φ+ ...+φ○T nk (k = 1,2, ...) increases
at most exponentially, then Tφ is exact.

The proof of the theorem is given in the subsequent sections. The
only non-trivial implications are 4.) Ô⇒ 3.) and 1.) Ô⇒ 5.). Our
proof follows general concepts, like [LRW94] and [Fog75] for the first
implication and [Sto66] for the second. In particular the last section
contains a ratio limit theorem of independent interest.

The Frobenius-Perron operators R̂n ∶ L1(m) → L1(m) of a nonsingu-
lar transformation (X,B,m,R) are defined by

∫
X
R̂nf ⋅ gdm = ∫

X
f ⋅ g ○Rndm

where f ∈ L1(m) and g ∈ L∞(m). For a Gibbs-Markov map T these
operators have the form

T̂ nf(x) = ∑
a∈αn−10

1Tna(x) ⋅ v′a(x) ⋅ f(va(x)) = ∑
Tn(z)=x

pn(x, z)f(z),

where pn(x, z) = v′an(z)(x)1{Tn(z)}(x), and for the group extension Tφ

T̂ nφ f(x, g) = T̂ n[f(⋅, g − φn(⋅))](x).



4 Group extensions of Gibbs-Markov maps

Fix some r ∈ (0,1). We define the Banach space L of all L∞-functions
f ∶X → R with

Dr,X(f) < ∞.
We may assume that r is chosen so large that Dφ = supa∈αDr,a(φ) < ∞.

It is shown in [AD96] that T̂ n ∶ L→ L (n ≥ 1) has a representation

T̂ nf(x) = ∫ fdm +O(ρn∥f∥L)

for some 0 < ρ < 1 independent of f ∈ L.

Proof of 4.) Ô⇒ 3.)

We begin with the following easy observation: For Ψ ∈ L1(m) and
Γ ∈ L1(G) we obtain

∫
X
∫

G
∣T̂ n+1
φ (Ψ⊗ Γ)(x, g)∣dg m(dx)

≤ ∫
X
∫

G
∑

T (z)=x

∣T̂ nφ [Ψ⊗ Γ](z, g − φ(z))∣p1(x, z)dg m(dx)

= ∫
G
∫
X
T̂ [∣T̂ nφ [Ψ⊗ Γ](⋅, g − φ(⋅))∣] (x)m(dx)dg

= ∫
X
∫

G
∣T̂ nφ [Ψ⊗ Γ](x, g − φ(x))∣dg m(dx)

= ∫
X
∫

G
∣T̂ nφ [Ψ⊗ Γ](x, g)∣dg m(dx) =∶ Un(Ψ⊗ Γ).

Therefore C(Ψ⊗ Γ) is well defined by

Un(Ψ⊗ Γ) ↓ C(Ψ⊗ Γ) ≥ 0. (1)

We define the operators Mt ∶ L1(G) → L1(G) by MtΓ(g) = Γ(g + t).
Let Ψ ∈ L1(X) be fixed and let the measures {µn,x ∶ n ≥ 1} on G be
defined by

µn,x = ∑
Tn(z)=x

Ψ(z)pn(x, z)δφn(z).

Note that

µn,x ⋆ Γ(g) = T̂ nφ (Ψ⊗ Γ)(x, g)

hence ∥µn,x ⋆ Γ∥L1(G) ≤ T̂ n∣Ψ∣(x) ∥Γ∥L1(G) and t ↦ ∥µn,x ⋆MtΓ∥L1(G)

is continuous with modulus of continuity bounded by T̂ n∣Ψ∣(x)∥Γ −
MδΓ∥L1(G).
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Remark: Following [LRW94], p.287, a family of signed random mea-
sures {µn,x ∶ n ≥ 1, x ∈ X} on G is called completely mixing in L1(m) if
for every Γ ∈ L1(G) with integral ∫G Γ(g)dg = 0 we have

∥µn,⋅ ⋆ Γ∥L1(G) → 0

in L1(m). We’ll show in Proposition 1 and Lemma 2 below that the
random signed measures {µn,x ∶ n ≥ 1} are completely mixing in L1(m).

Proposition 1: For every Γ ∈ L1(G) the random sequence

∥µn,⋅ ⋆ Γ∥L1(G)

converges in L1(m) to C(Ψ⊗ Γ). In addition,

C(Ψ⊗ Γ) ≤ ∥Ψ∥L1(m)∥Γ∥L1(G).

Proof. Since T̂ nφ (Ψ ⊗ Γ)(x, g) = T̂ n[Ψ(⋅)Γ(g − φn(⋅))](x) for Ψ ∈
L1(X) and Γ ∈ L1(G), it suffices to show the theorem for a subclass of
pairs (Ψ,Γ) which generates a dense subspace in L1(X)×L1(G). Here
we take the class of all functions Ψ ⊗ Γ where Ψ belongs to the space
L and Γ is an integrable and Lipschitz continuous function on G.

By definition

µn+1,x ⋆ Γ(g) = ∫
G

Γ(g − h)µn+1,x(dh)

= ∑
Tn+1(z)=x

Ψ(z)pn+1(x, z)Γ(g − φn+1(z))

= ∑
T (z)=x

p1(x, z)T̂ nφ [Ψ⊗ Γ](z, g − φ(z))

whence as before,

∥µn+1,x ⋆ Γ∥L1(G)

≤ ∫
G
∑

T (z)=x

p1(x, z) ∣T̂ nφ [Ψ⊗ Γ](z, g − φ(z))∣dg

= ∑
T (z)=x

p1(z, x)∫
G
∣T̂ nφ [Ψ⊗ Γ](z, g)∣dg

= T̂ [∥µn,⋅ ⋆ Γ∥L1(G)] (x).
By induction it is easily seen that for n fixed and k ≥ 1

∥µn+k,x ⋆ Γ∥L1(G) ≤ T̂ k [∥µn,⋅ ⋆ Γ∥L1(G)] (x).
Since the function

x→ ∥µn,x ⋆ Γ∥L1(G)
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is of class L it follows from the spectral representation of T̂ that for
k →∞
T̂ k [∥µn,⋅ ⋆ Γ∥L1(G)] → ∫

X
∥µn,x ⋆Γ∥L1(G)m(dx) = Un(Ψ⊗Γ) ↓ C(Ψ⊗Γ),

whence
lim sup
n→∞

∥µn,x ⋆ Γ∥L1(G) ≤ C(Ψ⊗ Γ). (2)

By (1) and (2), given ε > 0, we can choose n0 so large that for n ≥ n0

∫
{x∶∥µn,x⋆Γ∥L1(G)−C(Ψ⊗Γ)>0}

[∥µn,x ⋆ Γ∥L1(G) −C(Ψ⊗ Γ)]m(dx) ≤ ε

and

∫
X
∥µn,x ⋆ Γ∥L1(G)m(dx) −C(Ψ⊗ Γ) ≥ 0.

It follows that

∫
X
∣∥µn,x ⋆ Γ∥L1(G) −C(Ψ⊗ Γ)∣m(dx)

= 2∫
{x∶∥µn,x⋆Γ∥L1(G)−C(Ψ⊗Γ)>0}

[∥µn,x ⋆ Γ∥L1(G) −C(Ψ⊗ Γ)]m(dx)

− ∫
X
[∥µn,x ⋆ Γ∥L1(G) −C(Ψ⊗ Γ)]m(dx)

≤ 2ε.

The additional claim follows from

C(Ψ⊗Γ) ←L1(m) ∥µn,x⋆Γ∥L1(G) ≤ T̂ n∣Ψ∣(x)∥Γ∥L1(G) → ∥Ψ∥L1(m)∥Γ∥L1(G). �

Let (Y,A, µ,R) and (Z,C, ν, S) be nonsingular transformations of
probability spaces, where the second transformation is a factor of the
first one. The factor map π ∶ Y → Z is called relatively exact if for
f ∈ L1(µ)

E(f ∣π−1C) = 0 Ô⇒ R̂nf → 0

in L1(µ). By [Gui89], see alternatively [AD], R is exact if the factor
map π ∶ Y → Z is relatively exact and the factor S is exact. In the
present situation Tφ is exact if the factor map (x, g) ↦ x =∶ Π(x, g)
(X × G → X) is relatively exact. To establish relative exactness of Π,
it suffices to show

∫
X
∫

G
∣T̂ nφ [Ψ⊗ Γ](x, g)∣mG(dg)m(dx) → 0

for all Ψ ∈ L1(m) and Γ ∈ L1(G) satisfying ∫G Γdg = 0.
It is left to prove the following
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Lemma 2: If ∫G Γ(g)dg = 0, then

C(Ψ⊗ Γ) = 0.

Proof. The proof of this statement follows from a series of claims.
For the first 4 claims we assume that Γ ∈ L1(G) is Lipschitz continuous
and has compact support. These claims are needed for the proof of the
statement of the lemma in claim 5.

Define the measures νn,x = ∑Tn(z)=x pn(x, z)δz on X.
Claim 1: Let k ≥ 0 be fixed. For any subsequence {nl ∶ l ∈ N} ⊂ N there
exists a further subsequence {mj ∶ j ≥ 1} such that for a.e. x ∈ X and
for every B ∈ B

lim
j→∞

1

νk,x(B) ∫G
∣∫
B
(µmj ,y ⋆Mφk(y)Γ) (g)νk,x(dy)∣dg = C(Ψ⊗ Γ). (3)

In order to see this claim, let nl be any subsequence and choose mj

so that

∥µmj ,x ⋆ Γ∥L1(G), ∥µmj+k,x ⋆ Γ∥L1(G) → C(Ψ⊗ Γ) (4)
for x ∈ Ω where Ω is a T -invariant set of full measure (cf. Proposition
1). On the one hand it follows from this that for every B fixed

1

νk,x(B) ∫G
∣∫
B
µmj ,y ⋆Mφk(y)Γ νk,x(dy)∣dg

≤ 1

νk,x(B) ∫B ∥µmj ,y ⋆ Γ∥L1(G)νk,x(dy) → C(Ψ⊗ Γ),(5)

because the integrand is uniformly bounded and pointwise convergent
by (4).

On the other hand, for x ∈ Ω,

C(Ψ⊗ Γ) = lim
j→∞

∥µmj+k,x ⋆ Γ∥L1(G)

= lim
j→∞

∫
G

RRRRRRRRRRRR
∑

Tk(y)=x

pk(x, y)T̂mjφ [Ψ⊗ Γ](y, g − φk(y))
RRRRRRRRRRRR
dg

≤ lim
j→∞

∫
G
∣∫
B
µmj ,y ⋆Mφk(y)Γ(g)νk,x(dy)∣ + ∣∫

Bc
µmj ,y ⋆Mφk(y)Γ(g)νk,x(dy)∣dg

≤ C(Ψ⊗ Γ)
by (5), hence for x ∈ Ω

lim
j→∞

1

νk,x(B) ∫G
∣∫
B
µmj ,y ⋆Mφk(y)Γνk,x(dy)∣dg = C(Ψ⊗ Γ),

proving claim 1.
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Claim 2: Let k ≥ 0 be fixed. For any subsequence {nl ∶ l ∈ N} ⊂ N there
exists a further subsequence {mj ∶ j ≥ 1} such that for a.e. x ∈ X and
for every disjoint sets A,B ∈ B

lim
j→∞

∫
G
∣ 1

νk,x(A) ∫A µmj ,y ⋆Mφk(y)Γ(g)νk,x(dy)

+ 1

νk,x(B) ∫B µmj ,y ⋆Mφk(y)Γ(g)νk,x(dy)∣dg = 2C(Ψ⊗ Γ)(6)

Choose the subsequence and Ω as in (4), then for x ∈ Ω by (3)

∫
G
∣ 1

νk,x(A) ∫A µmj ,y ⋆Mφk(y)Γνk,x(dy) +
1

νk,x(B) ∫B µmj ,y ⋆Mφk(y)Γνk,x(dy)∣dg

≤ 1

νk,x(A) ∫G
∣∫

A
µmj ,y ⋆Mφk(y)Γ(g)νk,x(dy)∣dg

+ 1

νk,x(B) ∫G
∣∫

B
µmj ,y ⋆Mφk(y)Γ(g)νk,x(dy)∣dg

→ 2C(Ψ⊗ Γ)
(7)

and, since A ∩B = ∅ (and w.l.o.g. assume that νk,x(A) ≤ νk,x(B)),

1

νk,x(A) ∫G
∣∫

A
µmj ,y ⋆Mφk(y)Γνk,x(dy) +

νk,x(A)
νk,x(B) ∫B µmj ,y ⋆Mφk(y)Γνk,x(dy)∣dg

≥ 1

νk,x(A) (∫
G
∣∫
A∪B

µmj ,y ⋆Mφk(y)Γ(g)νk,x(dy)∣dg

−(1 − νk,x(A)
νk,x(B))∫G

∣∫
B
µmj ,y ⋆Mφk(y)Γ(g)νk,x(dy)∣dg)

→ 2C(Ψ⊗ Γ).(8)

Claim 2 follows from (7) and (8).

Claim 3: Let A,B ∈ αk−1
0 be images of inverse branches vA and vB

of T k, where k is still fixed. Let ε = dr(A,B) and let Γ be Lipschitz
continuous with compact support K; then there exist constants C0,C1 >
0 such that for every n ≥ 1

∫
G
∣µn,vA(x) ⋆Mφk(vA(x))Γ(g) − µn,vB(x) ⋆Mφk(vA(x))Γ(g)∣dg

≤ [C1∥Γ∥L1(G) +DΓC0DφmG(B(K,C0Dφε))] ε,(9)

where DΓ denotes the Lipschitz constant of Γ.
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Let x ∈X, v = vA(x) and w = vB(x). We may assume that dr(A,B) <
r so that A ∪B is contained in some atom from α. By the Lipschitz
property of φ and by the expanding property of T , we have for any
inverse branch va ∶ A ∪B → a ∈ (α)n−1

0 of T n that

∣φn(va(v)) − φn(va(w))∣ ≤Dφ

n−1

∑
l=0

dr(T l(va(v)), T l(va(w)))

≤ C ′
0Dφdr(v,w) ≤ C ′

0Dφε,

where C ′
0 denotes some constant. Since Γ has compact support

∥Γ(g) − Γ(g + φn(va(v)) − φn(va(w)))∥ ≤DΓC
′
0Dφε1B(K,C′

0Dφε)
(g).

Similarly, there exists a constant C ′
1 (also depending on the Lipschitz

constant of Ψ) so that (see [AD96])

∣pn(v, va(v))Ψ(va(v))−pn(w, va(w))Ψ(va(w))∣ ≤ C ′
1pn(v, va(v))dr(v,w).

Therefore

∫
G
∣µn,vA(x) ⋆Mφk(vA(x))Γ(g) − µn,vB(x) ⋆Mφk(vA(x))Γ(g)∣dg

= ∫
G
∣∑
a

pn(v, va(v))Ψ(va(v))Γ(g − φk(v) − φn(va(v)))

− ∑
a

pn(w, va(w))Ψ(va(w))Γ(g − φk(v) − φn(va(w)))∣dg

≤ ∫
G
∣∑
a

[pn(v, va(v))Ψ(va(v)) − pn(w, va(w))Ψ(va(w))]

Γ(g − φk(v) − φn(va(v)))∣dg

+ ∫
G
∣∑
a

pn(w, va(w))Ψ(va(w))

[Γ(g − φk(v) − φn(va(v))) − Γ(g − φk(v) − φn(va(w)))]∣dg

≤ (C ′
1∥Γ∥L1(G) +DΓC

′
0Dφ∥Ψ∥∞mG(B(K,C ′

0Dφε))) ∥T̂ n1∥∞ε,
where ∑a extends over all a ∈ αn−1

0 satisfying T na ⊃ A ∪B. The claim

follows setting Ci = 1 ∨C ′
i supn≥1 ∥T̂ n∥∞ for i = 0,1.

Claim 4: There exists a set Ω of measure 1 and a constant C > 0 with
the following property:
If x ∈ Ω, k ≥ 1 and v,w ∈ T −k({x}), then

∣2C(Ψ⊗ Γ) −C(Ψ⊗ (I +Mφk(v)−φk(w))Γ)∣ < Cdr(v,w). (1)0
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By claims 1–3 there exists a subsequence {mj ∶ j ≥ 1} ⊂ N and a
subset Ω so that (6) and (9) hold for any x ∈ Ω, k ≥ 1 and v,w ∈
T −k({x}), A = ak(v), B = ak(w). Therefore

∫
G
∣ 1

νk,x(A) ∫A µmj ,y ⋆Mφk(y)Γ(g)νk,x(dy)

+ 1

νk,x(B) ∫B µmj ,y ⋆Mφk(y)Γ(g)νk,x(dy)∣dg

= ∫
G
∣µmj ,v ⋆Mφk(v)Γ(g) + µmj ,w ⋆Mφk(w)Γ(g)∣dg

≤ ∫
G
∣µmj ,v ⋆Mφk(v)Γ(g) − µmj ,w ⋆Mφk(v)Γ(g)∣dg

+ ∫
G
∣µmj ,w ⋆Mφk(w)Γ(g) + µmj ,w ⋆Mφk(v)Γ(g)∣dg

≤ ∫
G
∣µmj ,w ⋆ (I +Mφk(v)−φk(w))Γ(g)∣dg +Cdr(v,w),

where C = C1∥Γ∥L1(G) + DΓC0Dφ∥Ψ∥∞mG(B(K,C0Dφ)). The lower
bound is shown similarly, proving claim 4.

Claim 5: Let Ψ ∈ L, then for all Γ ∈ L1(G),

C(Ψ⊗ (Γ −MtΓ)) = 0.

First observe that by Proposition 1 the set of t ∈ G satisfying the
claim is a group.

Hence it suffices to prove the claim for t in a generating set G0.
Moreover, it suffices to prove the claim for Γ Lipschitz continuous with
compact support, since Γ↦ C(Ψ⊗ Γ) is L1(G)-norm continuous.

Fix such a Γ. By assumption, and by claim 4 there is a measurable
set A ∈ B of positive measure and a constant C > 0 satisfying:
For x ∈ A there is a subset G0 ⊂ G generating a dense subgroup of G
such that for all v,w ∈ T −k(x)

∣2C(Ψ⊗ Γ) −C(Ψ⊗ (I +Mφk(v)−φk(w))Γ)∣ < Cdr(v,w), (1)0

and

∀t ∈ G0 ∃kn ≥ 1, vn,wn ∈ T −kn(x)1(1)

such that φkn(vn) − φkn(wn) → t & dr(vn,wn) → 0.
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Since t → C(Ψ⊗MtΓ) is continuous, it follows from properties (10)
and (11) that

2C(Ψ⊗ Γ) = C(Ψ⊗ (I +Mt)Γ) (t ∈ G0). (1)2

It follows that (12) holds for all Lipschitz continuous Γ with compact
support. Because of continuity, this equation holds for any Γ ∈ L1(G).
Hence, replacing Γ by (I −Mt)Γ and repeating this argument for each
(I +Mt)k(I −Mt)Γ, k ≥ 0, we obtain

C(Ψ⊗ (I −Mt)Γ) = 2−kC(Ψ⊗ (I +Mt)k(I −Mt)Γ)

for every k ≥ 0 and t ∈ G0. From this we deduce C(Ψ ⊗ Γ) = 0 as in
[Fog75].

The lemma follows now from the well known fact (see [Lin71], [?])
that

⋃
t∈G

(I −Mt)L1(G) = {f ∈ L1(G) ∶ ∫ f(g)dg = 0}. �

Proof of 1.) Ô⇒ 5.)

Ratio limit theorem for symmetric cocycles
Suppose that φ ∶ X → G is Hölder continuous, aperiodic and sym-

metric in the sense that there exists a probability preserving invertible
transformation S ∶ X → X such that ST = TS and φ ○ S = −φ, then
there exists un > 0 such that

T̂ nφ (h⊗ f)(x, y)
un

→ ∫
X×G

h⊗ fdm ×mG

for all h ∈ L, f ∈ Cc(G), x ∈X, y ∈ G.

Proof.
First let (as in[AD96]) Pγ ∶ L→ L (γ ∈ Ĝ) be defined by

Pγh ∶= T̂ (γ ○ φ ⋅ h).

As shown in [AD96], γ ↦ Pγ is continuous (Ĝ → Hom (L,L)), and
∃ ε > 0, 0 ≤ θ < 1 and continuous functions

λ ∶ BĜ(0, ε) → BC(0,1), and g ∶ BĜ(0, ε) → L,
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such that

λ(0) = 1, g(0) ≡ 1, ∫
X
g(γ)dm ≡ 1,

∣λ(γ)∣ ≤ 1 with equality iff γ = 0,

Pγh = λh Ô⇒ ∣λ∣ ≤ ∣λ(γ)∣ (γ ∈ BĜ(0, ε)),
Pγh = λ(γ)h ⇐⇒ h ∈ R ⋅ g(γ) (γ ∈ BĜ(0, ε)),

P n
γ h = λ(γ)n∫ hdm g(γ) +O(θn) (γ ∈ BĜ(0, ε))

and (as is easily shown)

g(−γ) = g(γ), λ(−γ) = λ(γ).
Since TS = ST and Φ ○ S = −Φ, Pγh(x) = [Pγh ○ S−1](Sx). It follows
that P−γ[g(γ) ○ S](x) = λ(γ)g(γ) ○ S(x) whence

g(−γ) = g(γ) ○ S, and λ(γ) ∈ R.

Next, for 0 < η ≤ ε set un(η) ∶= ∫B(0,η) λ(γ)ndγ. For η small enough

(so that λ > 0 on B(0, η)), un(η) > 0. Choose one such η0 > 0 and
define un ∶= un(η0). Note that ρn = o(un) ∀ ρ < 1 since ∃ η < η0 such
that min∣γ∣<η ∣λ(γ)∣ = r > ρ whence

un
ρn

≥ un(η)
ρn

≥ r
n

ρn
⋅m(B(0, η)) → ∞.

Also, for 0 < η < η′,
un(η) = un(η′) ±O(ρ(η)n)

where ρ(η) ∶= supη≤∣γ∣≤ε ∣λ(γ)∣ < 1. Thus

un(η) ∼ un as n→∞ ∀ 0 < η ≤ ε.
Now fix h ∈ L and f ∈ L1(G) with f̂ ∈ Cc(Ĝ), then ∀ x ∈X, y ∈ G,

T̂ nφ (h⊗ f)(x, y) = ∫
Ĝ
f̂(γ)γ(y)P n

γ h(x)dγ

= ∫
X
hdm∫

B(0,η0)
λ(γ)nR(γ(y)f̂(γ)g(γ)(x))dγ +O(θn)

(by reality of λ(γ), for some 0 < θ < 1). Since R(f̂(γ)γ(y)g(γ)(x)) →
∫G fdmG as γ → 0, it follows that

T̂ nφ (h⊗ f)(x, y) ∼ un∫
X
hdm∫

G
fdmG.

By the method of Breiman ([Bre68], Theorem 10.7),

T̂ nφ (h⊗ f)(x, y) ∼ un∫
X
hdm∫

G
fdmG ∀ h ∈ L, f ∈ Cc(G). �
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Corollary
Under the same assumptions, ∀ x, y ∈X, t ∈ G, ε > 0, ∃n0 such that

∀ n ≥ n0 ∃ z ∈ T −n{x} such that d(y, z) < ε and ∥t − φn(z)∥ < ε.
Proof.

Let a = [a1, . . . , aN] = B(y, ε), h = 1a ∈ L and let f ∈ C(G), f ≥
0, [f > 0] ⊂ B(0, ε), then

T̂ nφ (h⊗ f)(x, t)
un

→ ∫
X×G

h⊗ fdm ×mG

and ∃ n0 such that ∀ n ≥ n0,

0 < T̂ nφ (h⊗ f)(x, t) = ∑
Tnz=x, d(y,z)<ε

pn(x, z)f(t − φn(z))

and in particular ∃ z ∈ T −n{x} such that d(y, z) < ε and ∥t − φn(z)∥ <
ε. �

Exactness lemma
Suppose that φ ∶ X → G is Hölder continuous, aperiodic, then ∀ x ∈

X, t ∈ G, ε > 0, ∃n0 such that ∀ n ≥ n0 ∃ y, z ∈ T −n{x} such that
d(y, z) < ε and ∥t + φn(y) − φn(z)∥ < ε.
Proof.

Consider the mixing Gibbs-Markov map (X×X,B(X×X), T ×T,m×
m,α×α) equipped with the cocycle φ̃ ∶X×X → G defined by φ̃(x,x′) ∶=
φ(x) − φ(x′).

The cocycle φ̃ ∶ X × X → G is also Hölder continuous, aperiodic,
but also symmetric: φ̃ ○ S = −φ̃ where S(x,x′) ∶= (x′, x) (evidently
S(T × T ) = (T × T )S). Thus the conclusion of the corollary holds and
this is the lemma. �
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