GROUP EXTENSIONS OF GIBBS-MARKOV MAPS.
JON AARONSON' AND MANFRED DENKER?

ABSTRACT. Let ¢ be an aperiodic cocycles with values in a locally
compact abelian second countable group G defined on an exact
Gibbs-Markov map T : X — X. We show that the group extension
Ty(z,9) = (T(x),9+é(z)) (x € X;9 € G) is exact. Equivalent
conditions for exactness are found.

§1 INTRODUCTION

Let (X,B,m,T,a) be an exact probability preserving Markov map
as in [Aar97|, where (X, B, m) denotes a probability space, T: X - X
is a probability preserving transformation and « a generating Markov
partition (possibly countable). We can and do assume that X is a
topological Markov shift:

X={rv=x,,29,...€aVN: m(x,n T z,1) >0V n>1}
endowed with the Polish topology inherited from the product topology
on aN.

It follows that T' is locally invertible with respect to o in the sense
that for each n > 1, a € af™! the map T : a - T™a is nonsingular and
invertible. The inverse of this map is denoted v, : T"a — a and given
by ve(x1,%2,...) = a,x1, 2, ..., where a is identified with an element
of all--n} We let v/ denote the Radon-Nikodym derivative of m o v,
with respect to m.

The partition a enables the definition of a Holder class of metrics
{d.: 0<r<1} on X:

For n > 1, define a, : X - o' by z € a,(x) e af™t.
For z,y € X define ¢(z,y) :=min{n>1: a,(z) # a,(y)} (< o).
For r € (0,1) define d, : X x X - R by d,(z,y) := rt@y),
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2 Group extensions of Gibbs-Markov maps

It is easily seen that the identity : (X, d,) — (X,ds) is Holder con-
tinuous V r,s € (0,1).

Accordingly, we define the Holder constants of a function h: A - M
(A c X)) with values in a metric space (M, p) by

Dy s(h) s= sup 2UZL W)

I,’yEA /rt(l’,y)

Let Lip, (M) :=={h: X - M : sup,., Dya(h) < oo}. In case M =R
we simply write Lip, := Lip,(M) instead. A function h: X — M is
called uniformly Holder continuous on states if h € Lip, (M) for some
O<r<l.

Recall (see e.g. [AD96]) that (X, B, m,T,«) has

the Gibbs property if 3 C' > 1, 0 < r < 1 such that V n > 1, a ¢
ap~t, m(a) > 0:

Z‘}gg ~ 1| < Crt=y) for m x m-a.e. (z,y) € T"a x T"a.

It is called a Gibbs-Markov map if it has in addition the property
111615 m(Ta) > 0.

Recall that any topologically mixing probability preserving Markov
map with the Gibbs property is exact (see for example [ADU93|).

Now let G be a locally compact, abelian, second countable group, let
|| be a Lipschitz norm on G (i.e. 7v:G — St is |- |-Lipschitz for every
v € 6), and let ¢ : X - G be measurable. Consider the skew product
transformation Tj, : X xG — X x G defined by Ty(z,y) :== (Tz,y+ ¢(x))
with respect to the (invariant) product measure m x mg where mg
denotes Haar measure. We define ¢, = ¢+ @poT + ...+ poT™ ! and for
reX

Ga;Z{tEG: B kjn—>oo’ ynyanT_k"{:L'}: {dr(ynazn)ﬁo }

Dk (Yn) = Prn (20) > 1
We're interested in the exactness of T, and prove

Theorem

Let G be a LCA, second countable group, let (X,B,m,T) be an exact
probability preserving Gibbs-Markov map and let ¢ : X - G be uni-
formly Holder continuous on states.

The following are equivalent:

(1) 1.) ¢ is aperiodic in the sense that yo¢ = % has no non-trivial
solutions in v €G, z€ S and g: X - S' Hélder continuous.

(2) 2.) Ty is weakly mizing.

(3) 3.) Ty is exact.
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(4) 4.) For some A€ B, m(A) >0 and for all x € A, the smallest
closed subgroup generated by G, is G.
(5) 5.) For every x e X, G =G,.

Remarks:

1. In case « is a finite Markov partition and m a Gibbs measure as
in [Bow08], Guivarc’h ([Gui89]) has obtained exactness of the group
extension with respect to aperiodic, Holder-continuous, R%-valued co-
cycles.

2. Let T be as in the theorem and let ¢ : X — Z? be aperiodic, locally
Lipschitz and in the domain of attraction of a stable distribution of
order 0 < p < 2. For conservative Ty, exactness follows from section 7
in [AD96].

3. The assumptions on the cocycle and the dynamics in these results
have been weakened in [AD]:

For an exact Markov map T with the Renyi property and a cocycle
¢ : X - R? which is locally constant (on cylinders in ) for some
N > 0), topological mixing of T}, implies its exactness.

4. Let T be alocally invertible, exact endomorphisms with quasicom-
pact Frobenius-Perron operators whose perturbations have a spectral
representation a la Nagaev ([Nagh7]). If ¢ : X — R? is aperiodic and
there is a subsequence ny such that ¢+...+¢oT™ (k=1,2,...) increases
at most exponentially, then T} is exact.

The proof of the theorem is given in the subsequent sections. The
only non-trivial implications are 4.) = 3.) and 1.) == 5.). Our
proof follows general concepts, like [LRW94]| and [Fog75] for the first
implication and [Sto66] for the second. In particular the last section
contains a ratio limit theorem of independent interest.

The Frobenius-Perron operators R : Ly(m) — Li(m) of a nonsingu-
lar transformation (X, B, m, R) are defined by

/E”f-gdmz/f-gOR”dm
X X

where f € Li(m) and g € Lo (m). For a Gibbs-Markov map 7' these
operators have the form

T"f(x) = leT"a(x)'U;(x)'f(va(x)): > Pal(z,2)f(2),

aeaf” T7(z)=x

where py, (2, 2) = v (%) 1{7n(2))(x), and for the group extension T

Ty f(2,9) = T"[f (g~ du()](2).



4 Group extensions of Gibbs-Markov maps

Fix some 7 € (0,1). We define the Banach space L of all Le-functions
f:X - R with

D,«’X(f) < 00,

We may assume that r is chosen so large that Dy = sup,., Dy.o(¢) < 0.
It is shown in [AD96] that 7" : L — L (n > 1) has a representation

T f(z) = ] fdm+O0(p" | f|1)

for some 0 < p <1 independent of f € L.

Proof of 4.) — 3.)

We begin with the following easy observation: For ¥ € L;(m) and
['e L1(G) we obtain

fX [G 757 (V@ ) (2, 9)| dg m(dx)
S./X_/G Z |T¢T>L[\II®F](zag_¢(z))|p1(;p’z)d9 m(dm)

e
= [ [Tz et g - 60)]] (e)m(dz)dg
= [ [1731% 0 T1(r,0 - o)) dg m(d)
) fx fe |73 [¥ @ T](x,9)|dg m(dz) = U, (¥ @T).
Therefore C(¥ ®T') is well defined by
U(VeT) | C(TeT)>0. (1)

We define the operators M, : L1(G) - L1(G) by M,I'(g) =T'(g +1).
Let W e Ly1(X) be fixed and let the measures {j,,, : n > 1} on G be
defined by

P = Z \Ij(z)pn($7 2)6¢n(z)'
Tn (z)=x
Note that
fine + T(g) = TH(W ©T)(2,9)

hence |ftne * Tllrie) < T¥[(2) |TILie) and t = |pne * Mil|1, )
is continuous with modulus of continuity bounded by T™|¥|(z)|T -
MJFHLl(G)-
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Remark: Following [LRW94|, p.287, a family of signed random mea-
sures {ftn:n>1,2€ X} on G is called completely mizing in Ly(m) if
for every I' € L;(G) with integral [ I'(g)dg = 0 we have

[n. * Tl = 0
in Ly(m). We'll show in Proposition 1 and Lemma 2 below that the

random signed measures {ji, . : n > 1} are completely mixing in L;(m).

Proposition 1: For every I € L1(G) the random sequence

[n, * Tl Ly @)
converges in Ly(m) to C(V®T'). In addition,
CYel) < WL, mlTLi e

Proof. Since Tg(\lf ® I)(z,9) = T"[T()T(g - ¢u(-))](z) for ¥ €
Li(X) and T € L1(G), it suffices to show the theorem for a subclass of
pairs (¥, I") which generates a dense subspace in L;(X) x L;(G). Here
we take the class of all functions ¥ ® I' where ¥ belongs to the space
L and T' is an integrable and Lipschitz continuous function on G.

By definition

fni1e * T'(g) = fG I'(g = h)pns1,2(dh)
= Z \Ij(z)pnﬂ(I?Z)F(g_¢n+1(z))

T+l (2)=x
= > pi(@, )PP eT](2,9-¢(2))
T(z)=x

whence as before,
|ptns1,e * TllLo o)

< [ ¥ m@o) |3 er]zg-o(=)|dg

T(z)=x

- 3 piz) [[T30eT](9)|dg

T(z)=x
=T [, * Ty ()] (2)-
By induction it is easily seen that for n fixed and k> 1
[tk * Clliaiey < 7% [, * Tlye ] (2)-
Since the function

T —> H:un,x * FHL1(G)



6 Group extensions of Gibbs-Markov maps

is of class L it follows from the spectral representation of T that for
k — oo

T [ ptn, * Dl 2oy ] = /X||Mn,x*FHL1(G)m(d93) =U,(¥el') | C(¥el),

whence
hmsup H:U/n,x * FHL1(G) < C(\Il ® F) (2)

n—oo

By (1) and (2), given € > 0, we can choose ng so large that for n > ng
na * I -C(veD)|m(dr) <e¢
/{xzun,z*rul(e)—c*(wr»m [l * Plise) = € © 1) Jmi{de)
and
o * Tl @m(da) - C(E O T) 20.

It follows that

Sl i - v o )

na * I -C(Vel d
—/{I1|Mn,x*FLl(G)—C(\If®F)>O}[”M o ”Ll(G) ( )]m( :L‘)

= [ litn * Dlye) = C(¥ 1) ] m(de)
< 2e.

The additional claim follows from

C(YST) <1,y lna*T i) < TN T 216y = 9] 230y 1T 24 () -

Let (Y, A, u, R) and (Z,C,v,S) be nonsingular transformations of
probability spaces, where the second transformation is a factor of the
first one. The factor map 7 : Y — Z is called relatively exact if for
feLi(p)

E(flm7'C)=0 = R"f >0
in Ly(p). By [Gui89], see alternatively [AD], R is exact if the factor
map 7 : Y — Z is relatively exact and the factor S is exact. In the
present situation Ty is exact if the factor map (x,g) » = = I(z,g)
(X x G - X) is relatively exact. To establish relative exactness of II,
it suffices to show

fX fG T2[¥ @ T)(z, g)| me(dg)m(dz) - 0

for all ¥ € Ly(m) and I' € L;(G) satisfying [4T'dg = 0.
It is left to prove the following
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Lemma 2: If [ T'(g)dg =0, then
C(¥el)=0.

Proof. The proof of this statement follows from a series of claims.
For the first 4 claims we assume that I' € L1(G) is Lipschitz continuous
and has compact support. These claims are needed for the proof of the
statement of the lemma in claim 5.

Define the measures vy, » = Y pn(5)=p Pu(T,2)0, on X.

Claim 1: Let k >0 be fized. For any subsequence {n;:1 €N} c N there
exists a further subsequence {m; : j > 1} such that for a.e. v € X and
for every B e B

lim

@ .
j=eo vy (B) Je

[B (Hunsp * Moy (g)vk,x(dy)‘ dg=C(U®T). (3)

In order to see this claim, let n; be any subsequence and choose m;
so that

|1t 0 * TlLieys [ pmyeie * Ty > C(P @T) (4)

for x € Q where 2 is a T-invariant set of full measure (cf. Proposition
1). On the one hand it follows from this that for every B fixed

1
Vi (B) [e fB“ o * Myl v (dy)|dg

1
5 s—[ N (dy) - C(T&T),
(5) e (B) B||M o * Ul vea(dy) > C(PeT)

because the integrand is uniformly bounded and pointwise convergent

by (4).
On the other hand, for z € (2,

C(\Ij ® F) = }Ll?o ”:umj+k,z * FHL1(G)

= lim > ol )T [V e Ty, g - dx(y))| dg

7 Ie k)=
< lim f fB Himyy * Mo ()L (9) Vi (dy) | + fB Himyy * M) L (9) v (dy) | dg
<C(¥el)

by (5), hence for z €

1
h ffm M, de‘d:()qf I).
S Do (B) Jo | g tmay ™ M) Via(dy)|dg=C(¥®T)

proving claim 1.
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Claim 2: Let k>0 be fized. For any subsequence {n;:1 €N} c N there
exists a further subsequence {m;: j > 1} such that for a.e. x € X and
for every dz'sjomt sets A,BeB

ka(A /:umjy Md)k(y)r(g)yka:(dy)

lim
j—oo JG

©) Sy Moo o) do = 20w o)

" VM(B)

Choose the subsequence and 2 as in (4), then for x € Q by (3)

JAre

fﬂmjy My, oy Tk (dy) + ——5

f fimy * Mo, )Tk (dy) |dg

e () ey
1
: Vp.o(A) fe /A fmg,y * Moy )L (9) e (dy) |d
" * Mm@)F(g)Vk,x(dy)‘dg
Vk,m(
(7)
-2C(¥el)

and, since An B =g (and w.lo.g. assume that v ,(A) <. (B)),

I/k@(A)
I/k,m(B)

Hmjy * M¢k(y)F(g)Vk,z(dy)‘ dg

G [‘#mj,y * Md)k(y)rljk,x(dy) +

1
: Vk,x(A) (fe
I/k,m(A)
) (1 ) Vk,x(B)) /G
(8) -20(¥el).
Claim 2 follows from (7) and (8).

./B Homjy * M%(y)ryk’,x(dy) ‘dg

Vk,m(

AuB

fB Fimyy * Mmmf(g)vk,x(dy)‘ dg)

Claim 3: Let A, B € af™! be images of inverse branches vy and vp
of Tk, where k is still fized. Let € = d.(A,B) and let T' be Lipschitz
continuous with compact support K ; then there exist constants Cy, C >
0 such that for everyn > 1

fG [tn.0ae) * Moy 0a@)T(9) = i) * Mgy waanT (9)] dg
9 <[C1IT] ) + DrCoDyme(B(K, CoDge))] e,
where Dr denotes the Lipschitz constant of T
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Let x € X, v =va(x) and w = vg(x). We may assume that d,.(A, B) <
r so that Au B is contained in some atom from «. By the Lipschitz
property of ¢ and by the expanding property of T', we have for any
inverse branch v, : AU B - a € (a)f™! of T" that

[6n(va(v)) = dn(va(w))] < DJ; dr(T"(va(0)), T (va(w)))
< C’(’)D(bdr(v, "LU) < 06D¢€,

where C/| denotes some constant. Since I' has compact support
IT(g) =T(g + dn(va(v)) = ¢n(va(w)))| € DrCoDyel px,cypye)(9)-

Similarly, there exists a constant C] (also depending on the Lipschitz
constant of ¥) so that (see [AD96])

P (0, 06(0)) ¥ (06(V) =P (W, Ve (W) ¥ (va(w))] < Clpn (v, V4 (v) ), (v, w).
Therefore

./G ‘M”,UA(x) * M¢>k(vA(w))F(g) ~ Hnpwp(z) * M¢>k(UA(€E))F(g)| dg

) fe > 00 (0,04(0)) U (04 (0))L(g = (V) = Pn(va(v)))

= 22 Pn(w, va(w)) ¥ (va(w))T (g = G1(v) = dn(va(w)))| dg

<.

D [Pa(v,0a(0)) ¥ (va(0)) = pa(w, va(w)) ¥ (va(w))]

a

I'(g = dr(v) = ¢n(va(v)))|dg

.

D Pu(w, va(w)) ¥ (va(w))

[F(9 = ¢(v) = Pn(va(v))) = T'(g = ¢k(v) = Pn(va(w)))]|dg

< (CiIT ] 1ae) + DrCiDs | ¥ | ewme(B(K, CyDge)) ) |11 e

where Y, extends over all a € af~! satisfying T"a > Au B. The claim
follows setting C; = 1v C!sup,5; |1™] for i=0,1.

Claim 4: There ezists a set ) of measure 1 and a constant C' >0 with
the following property:
IfxeQ, k>1 and v,w e T*({z}), then

2C(T@T) = C(¥ & (I + Mg, (s)-4,(w))T)| < Cdy(v, w). (1)0



10 Group extensions of Gibbs-Markov maps

By claims 1-3 there exists a subsequence {m; : j > 1} ¢ N and a
subset € so that (6) and (9) hold for any z € Q, & > 1 and v,w €
T-*({x}), A=axr(v), B =ag(w). Therefore

k

1
(B St * Mo T (9)vea(dy)| d
" Vi (B) /B’u s * Mooy U(9) v (dy)| dg

1
Vk,gc(A)

fA Hmgy * Mci)k(y)r(g)yk,z(dy)

= [l Mo T(9) + s = Mo (0)] d
< fG |y 0% Moy ()T(9) = by 0 * Mgy T'(9)| dg

+ fG [ty % Moy T (9) + Hing o * Moy (0T (9)] dg
< fG [t % (1 + Mg, (o). ())T(9)] dg + Cdly (v, w),

where C' = ClHFHLl(G) + DFCOD¢H\I/”OOTTL(;(B(K, CoD¢)) The lower

bound is shown similarly, proving claim 4.

Claim 5: Let Ve L, then for allT € L1(G),

C(¥® (I - MT)) =0.

First observe that by Proposition 1 the set of ¢ € G satisfying the
claim is a group.

Hence it suffices to prove the claim for ¢ in a generating set Gj.
Moreover, it suffices to prove the claim for I' Lipschitz continuous with
compact support, since [' > C'(¥ ®I') is Ly (G)-norm continuous.

Fix such a I'. By assumption, and by claim 4 there is a measurable
set A € B of positive measure and a constant C' > 0 satisfying:

For x € A there is a subset Gy c G generating a dense subgroup of G
such that for all v, w € T*(x)

20(V@T) - C(V & (I + Myy(0)-6,(w))D)| < Cd (v, w), (1)0
and

(1) Vte Gy Tk, > 1,0, w, € T (2)1
such that ¢y, (v,) — ¢k, (wy) = t & d,.(v,, w,) = 0.
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Since t - C(¥ ® M,I") is continuous, it follows from properties (10)
and (11) that

20(P o) =C(T e (I+M)T) (teGy). (1)2

It follows that (12) holds for all Lipschitz continuous I with compact
support. Because of continuity, this equation holds for any I" € L;(G).
Hence, replacing T by (I — M;)T" and repeating this argument for each
(I+ M)*(I-M)T, k>0, we obtain

C(VU & (I-M)T) =2 C(U e (I+M)1I-M))

for every k > 0 and t € Gy. From this we deduce C(¥ ®I') = 0 as in
[FogT75].

The lemma follows now from the well known fact (see [Lin71], [?])
that

U= M)Li(G) = {f € Lu(B): [ f(g)dg=0}. O

teG

Proof of 1.) = 5.)

Ratio limit theorem for symmetric cocycles
Suppose that ¢ : X — G is Holder continuous, aperiodic and sym-

metric in the sense that there exists a probability preserving invertible
transformation S : X — X such that ST =TS and ¢ oS = —¢, then
there exists u,, > 0 such that

Tr(h® f)(z,
s(he fx.y) he fdm xme
Un XxG

forallhe L, feC.(G), reX, yeG.

Proof. _
First let (as in[AD96]) P,:L - L (7 €G) be defined by

Pyh:=T(yo¢-h).

As shown in [AD96], v = P, is continuous (G - Hom (L, L)), and
Je>0, 0<0 <1 and continuous functions

A:Bg(0,¢) > Bc(0,1), and ¢: Bg(0,¢) - L,
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such that
A0) =1, g(0) =1, /}(g(’y)dm =1,
IA(7)| £ 1 with equality iff v =0,
Pyh=Xh = [A[<[]A(7)] (7€ Bg(0,¢)),
Poh=Xy)h < heR-g(v) (veBg(0,¢)),

Prh=A)" [ hdm g(7)+0(0") (7€ Bg(0,0))
and (as is easily shown)

9(=7) = 9(7): A(=7) = A(7).
Since T'S = ST and ® o S = -0, P h(x) = [Pyho S71](Sz). It follows
that P_,[g(7) o S](x) = A(7)g(7) o S(z) whence

g(=7) =g(v) oS, and A(7) €R.

Next, for 0 < n < € set u,(n) := fB(O,n) A(y)dy. For n small enough

(so that A > 0 on B(0,7)), u,(n) > 0. Choose one such 7y > 0 and
define w,, := u,(n). Note that p" = o(u,) V p < 1 since 3 1 < 1y such
that minj,c, |A\(7)| =7 > p whence

flﬁzu”—(n)zr—-m(B(o,n))»oo.
pn

pr
Also, for 0 <n <7/,

un(n) = un (') £ O(p(n)")
where p(n) = sup, < [A(7)] < 1. Thus
un(n) ~u, as n—>o00 Y0<n<e.

Now fix h e L and f € L'(G) with f e C.(G), then V z € X, y€G,
Ty(he e = [ FOPGPA)d:
= fondm [ NGYREW (o) @))dy + 00"

(by reality of A(7), for some 0 < 6 < 1). Since %(f(’y)fy(y)g(y)(x)) N
fG fdmg as v - 0, it follows that

To(he f)(z,y) ~ uanhdmfode.
By the method of Breiman ([Bre68|, Theorem 10.7),
Tg(h@)f)(a:,y) ~ un/ hdm/Gfde VheL feC(G). O
b
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Corollary
Under the same assumptions, ¥ x,ye€ X, t€G, €>0, Ing such that
Vn>ng3zeT™{x} such that d(y, z) <€ and ||t — ¢, (2)| < €.

Proof.
Let a = [a1,...,an] = B(y,e), h =1, € L and let f ¢ C(G), f >
0, [f>0]c B(0,¢), then

Tr(he f)(z,t

d)( A )—> h® fdm xmg
Un XxG

and 3 ng such that V n > ng,

0<Tp(he f)(z,t) = > pa(z,2) f(t = dn(2))

Trz=zx, d(y,z)<e

and in particular 3 z e T-"{x} such that d(y, z) < € and |t — ¢, (2)] <
€. U

Exactness lemma
Suppose that ¢ : X — G is Holder continuous, aperiodic, then ¥ x €
X, t €G, € >0, Ing such that ¥ n > ng 3 y,z € T"{x} such that

d(y,z) <€ and [t +dn(y) - on(2)] <e.

Proof.

Consider the mixing Gibbs-Markov map (X x X, B(X x X)), T'xT, mx
m, axa) equipped with the cocycle ¢ : X x X — G defined by ¢(x, z') :=
o) - o).

The cocycle ¢ : X x X — G is also Holder continuous, aperiodic,
but also symmetric: ¢ o S = —¢ where S(z,z') := (2/,z) (evidently
S(T'xT)=(TxT)S). Thus the conclusion of the corollary holds and
this is the lemma. O
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