# GROUP EXTENSIONS OF GIBBS-MARKOV MAPS. 

JON AARONSON ${ }^{1}$ AND MANFRED DENKER ${ }^{2}$


#### Abstract

Let $\phi$ be an aperiodic cocycles with values in a locally compact abelian second countable group $\mathbb{G}$ defined on an exact Gibbs-Markov map $T: X \rightarrow X$. We show that the group extension $T_{\phi}(x, g)=(T(x), g+\phi(x))(x \in X ; g \in \mathbb{G})$ is exact. Equivalent conditions for exactness are found.


## §1 Introduction

Let $(X, \mathcal{B}, m, T, \alpha)$ be an exact probability preserving Markov map as in [Aar97], where $(X, \mathcal{B}, m)$ denotes a probability space, $T: X \rightarrow X$ is a probability preserving transformation and $\alpha$ a generating Markov partition (possibly countable). We can and do assume that $X$ is a topological Markov shift:

$$
X=\left\{x=x_{1}, x_{2}, \ldots \in \alpha^{\mathbb{N}}: m\left(x_{n} \cap T^{-1} x_{n+1}\right)>0 \forall n \geq 1\right\}
$$

endowed with the Polish topology inherited from the product topology on $\alpha^{N}$.

It follows that $T$ is locally invertible with respect to $\alpha$ in the sense that for each $n \geq 1, a \in \alpha_{0}^{n-1}$ the map $T^{n}: a \rightarrow T^{n} a$ is nonsingular and invertible. The inverse of this map is denoted $v_{a}: T^{n} a \rightarrow a$ and given by $v_{a}\left(x_{1}, x_{2}, \ldots\right)=a, x_{1}, x_{2}, \ldots$, where $a$ is identified with an element of $\alpha^{\{1, \ldots, n\}}$. We let $v_{a}^{\prime}$ denote the Radon-Nikodym derivative of $m \circ v_{a}$ with respect to $m$.

The partition $\alpha$ enables the definition of a Hölder class of metrics $\left\{d_{r}: 0<r<1\right\}$ on $X$ :
For $n \geq 1$, define $a_{n}: X \rightarrow \alpha_{0}^{n-1}$ by $x \in a_{n}(x) \in \alpha_{0}^{n-1}$.
For $x, y \in X$ define $t(x, y):=\min \left\{n \geq 1: a_{n}(x) \neq a_{n}(y)\right\}(\leq \infty)$.
For $r \in(0,1)$ define $d_{r}: X \times X \rightarrow \mathbb{R}$ by $d_{r}(x, y):=r^{t(x, y)}$.
1991 Mathematics Subject Classification. 28D05, 60B15; (58F15, 58F19, 58F30).
${ }^{1}$ Research supported by Eurandom.
${ }_{2}$ Research supported by Eurandom and the Deutsche Forschungsgemeinschaft, Schwerpunkt Ergodentheorie, Analysis und effiziente Simulation dynamischer Systeme. ©1999.

It is easily seen that the identity : $\left(X, d_{r}\right) \rightarrow\left(X, d_{s}\right)$ is Hölder continuous $\forall r, s \in(0,1)$.

Accordingly, we define the Hölder constants of a function $h: A \rightarrow M$ $(A \subset X)$ with values in a metric space $(M, \rho)$ by

$$
D_{r, A}(h):=\sup _{x, y \in A} \frac{\rho(h(x), h(y))}{r^{t(x, y)}} .
$$

Let $\operatorname{Lip}_{r}(M):=\left\{h: X \rightarrow M: \sup _{a \in \alpha} D_{r, a}(h)<\infty\right\}$. In case $M=\mathbb{R}$ we simply write $\operatorname{Lip}_{r}:=\operatorname{Lip}_{r}(M)$ instead. A function $h: X \rightarrow M$ is called uniformly Hölder continuous on states if $h \in \operatorname{Lip}_{r}(M)$ for some $0<r<1$.

Recall (see e.g. [AD96]) that ( $X, \mathcal{B}, m, T, \alpha$ ) has
the Gibbs property if $\exists C>1,0<r<1$ such that $\forall n \geq 1, a \in$ $\alpha_{0}^{n-1}, m(a)>0$ :
$\left|\frac{v_{a}^{\prime}(x)}{v_{a}^{\prime}(y)}-1\right| \leq C r^{t(x, y)}$ for $m \times m$-a.e. $(x, y) \in T^{n} a \times T^{n} a$.
It is called a Gibbs-Markov map if it has in addition the property

$$
\inf _{a \in \alpha} m(T a)>0 .
$$

Recall that any topologically mixing probability preserving Markov map with the Gibbs property is exact (see for example [ADU93]).

Now let $\mathbb{G}$ be a locally compact, abelian, second countable group, let $\|\cdot\|$ be a Lipschitz norm on $\mathbb{G}$ (i.e. $\gamma: \mathbb{G} \rightarrow S^{1}$ is $\|\cdot\|$-Lipschitz for every $\gamma \in \widehat{\mathbb{G}})$, and let $\phi: X \rightarrow \mathbb{G}$ be measurable. Consider the skew product transformation $T_{\phi}: X \times \mathbb{G} \rightarrow X \times \mathbb{G}$ defined by $T_{\phi}(x, y):=(T x, y+\phi(x))$ with respect to the (invariant) product measure $m \times m_{\mathfrak{G}}$ where $m_{\mathfrak{G}}$ denotes Haar measure. We define $\phi_{n}=\phi+\phi \circ T+\ldots+\phi \circ T^{n-1}$ and for $x \in X$
$\mathbb{G}_{x}=\left\{t \in \mathbb{G}: \exists k_{n} \rightarrow \infty, y_{n}, z_{n} \in T^{-k_{n}}\{x\}:\left\{\begin{array}{l}d_{r}\left(y_{n}, z_{n}\right) \rightarrow 0 \\ \phi_{k_{n}}\left(y_{n}\right)-\phi_{k_{n}}\left(z_{n}\right) \rightarrow t\end{array}\right\}\right.$.
We're interested in the exactness of $T_{\phi}$ and prove

## Theorem

Let $\mathbb{G}$ be a $L C A$, second countable group, let $(X, \mathcal{B}, m, T)$ be an exact probability preserving Gibbs-Markov map and let $\phi: X \rightarrow \mathbb{G}$ be uniformly Hölder continuous on states.

The following are equivalent:
(1) 1.) $\phi$ is aperiodic in the sense that $\gamma \circ \phi=\frac{z g T}{g}$ has no non-trivial solutions in $\gamma \in \widehat{\mathbb{G}}, z \in S^{1}$ and $g: X \rightarrow S^{1}$ Hölder continuous.
(2) 2.) $T_{\phi}$ is weakly mixing.
(3) 3.) $T_{\phi}$ is exact.
(4) 4.) For some $A \in \mathcal{B}, m(A)>0$ and for all $x \in A$, the smallest closed subgroup generated by $\mathbb{G}_{x}$ is $\mathbb{G}$.
(5) 5.) For every $x \in X, \mathbb{G}=\mathbb{G}_{x}$.

## Remarks:

1. In case $\alpha$ is a finite Markov partition and $m$ a Gibbs measure as in [Bow08], Guivarc'h ([Gui89]) has obtained exactness of the group extension with respect to aperiodic, Hölder-continuous, $\mathbb{R}^{d}$-valued cocycles.
2. Let $T$ be as in the theorem and let $\phi: X \rightarrow \mathbb{Z}^{d}$ be aperiodic, locally Lipschitz and in the domain of attraction of a stable distribution of order $0<p<2$. For conservative $T_{\phi}$, exactness follows from section 7 in [AD96].
3. The assumptions on the cocycle and the dynamics in these results have been weakened in [AD]:
For an exact Markov map $T$ with the Renyi property and a cocycle $\phi: X \rightarrow \mathbb{R}^{d}$ which is locally constant (on cylinders in $\alpha_{0}^{N}$ for some $N \geq 0$ ), topological mixing of $T_{\phi}$ implies its exactness.
4. Let $T$ be a locally invertible, exact endomorphisms with quasicompact Frobenius-Perron operators whose perturbations have a spectral representation à la Nagaev ([Nag57]). If $\phi: X \rightarrow \mathbb{R}^{d}$ is aperiodic and there is a subsequence $n_{k}$ such that $\phi+\ldots+\phi \circ T^{n_{k}}(k=1,2, \ldots)$ increases at most exponentially, then $T_{\phi}$ is exact.

The proof of the theorem is given in the subsequent sections. The only non-trivial implications are 4.) $\Longrightarrow$ 3.) and 1.) $\Longrightarrow$ 5.). Our proof follows general concepts, like [LRW94] and [Fog75] for the first implication and [Sto66] for the second. In particular the last section contains a ratio limit theorem of independent interest.

The Frobenius-Perron operators $\widehat{R}^{n}: L_{1}(m) \rightarrow L_{1}(m)$ of a nonsingular transformation $(X, \mathcal{B}, m, R)$ are defined by

$$
\int_{X} \widehat{R}^{n} f \cdot g d m=\int_{X} f \cdot g \circ R^{n} d m
$$

where $f \in L_{1}(m)$ and $g \in L_{\infty}(m)$. For a Gibbs-Markov map $T$ these operators have the form

$$
\widehat{T}^{n} f(x)=\sum_{a \in \alpha_{0}^{n-1}} 1_{T^{n} a}(x) \cdot v_{a}^{\prime}(x) \cdot f\left(v_{a}(x)\right)=\sum_{T^{n}(z)=x} p_{n}(x, z) f(z),
$$

where $p_{n}(x, z)=v_{a_{n}(z)}^{\prime}(x) 1_{\left\{T^{n}(z)\right\}}(x)$, and for the group extension $T_{\phi}$

$$
\widehat{T}_{\phi}^{n} f(x, g)=\widehat{T}^{n}\left[f\left(\cdot, g-\phi_{n}(\cdot)\right)\right](x)
$$

Fix some $r \in(0,1)$. We define the Banach space $L$ of all $L_{\infty}$-functions $f: X \rightarrow \mathbb{R}$ with

$$
D_{r, X}(f)<\infty .
$$

We may assume that $r$ is chosen so large that $D_{\phi}=\sup _{a \in \alpha} D_{r, a}(\phi)<\infty$. It is shown in [AD96] that $\widehat{T}^{n}: L \rightarrow L(n \geq 1)$ has a representation

$$
\widehat{T}^{n} f(x)=\int f d m+O\left(\rho^{n}\|f\|_{L}\right)
$$

for some $0<\rho<1$ independent of $f \in L$.

## Proof of 4.) $\Longrightarrow$ 3.)

We begin with the following easy observation: For $\Psi \in L_{1}(m)$ and $\Gamma \in L_{1}(\mathbb{G})$ we obtain

$$
\begin{aligned}
& \int_{X} \int_{\mathbb{G}}\left|\hat{T}_{\phi}^{n+1}(\Psi \otimes \Gamma)(x, g)\right| d g m(d x) \\
& \leq \int_{X} \int_{\mathbb{G}} \sum_{T(z)=x}\left|\hat{T}_{\phi}^{n}[\Psi \otimes \Gamma](z, g-\phi(z))\right| p_{1}(x, z) d g m(d x) \\
& =\int_{\mathbb{G}} \int_{X} \hat{T}\left[\left|\hat{T}_{\phi}^{n}[\Psi \otimes \Gamma](\cdot, g-\phi(\cdot))\right|\right](x) m(d x) d g \\
& =\int_{X} \int_{\mathbb{G}}\left|\hat{T}_{\phi}^{n}[\Psi \otimes \Gamma](x, g-\phi(x))\right| d g m(d x) \\
& =\int_{X} \int_{\mathbb{G}}\left|\hat{T}_{\phi}^{n}[\Psi \otimes \Gamma](x, g)\right| d g m(d x)=: U_{n}(\Psi \otimes \Gamma) .
\end{aligned}
$$

Therefore $C(\Psi \otimes \Gamma)$ is well defined by

$$
\begin{equation*}
U_{n}(\Psi \otimes \Gamma) \downarrow C(\Psi \otimes \Gamma) \geq 0 \tag{1}
\end{equation*}
$$

We define the operators $M_{t}: L_{1}(\mathbb{G}) \rightarrow L_{1}(\mathbb{G})$ by $M_{t} \Gamma(g)=\Gamma(g+t)$. Let $\Psi \in L_{1}(X)$ be fixed and let the measures $\left\{\mu_{n, x}: n \geq 1\right\}$ on $\mathbb{G}$ be defined by

$$
\mu_{n, x}=\sum_{T^{n}(z)=x} \Psi(z) p_{n}(x, z) \delta_{\phi_{n}(z)} .
$$

Note that

$$
\mu_{n, x} \star \Gamma(g)=\widehat{T}_{\phi}^{n}(\Psi \otimes \Gamma)(x, g)
$$

hence $\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})} \leq \widehat{T}^{n}|\Psi|(x)\|\Gamma\|_{L_{1}(\mathbb{G})}$ and $t \mapsto\left\|\mu_{n, x} \star M_{t} \Gamma\right\|_{L_{1}(\mathbb{G})}$ is continuous with modulus of continuity bounded by $\widehat{T^{n}}|\Psi|(x) \| \Gamma-$ $M_{\delta} \Gamma \|_{L_{1}(\mathbb{G})}$.

Remark: Following [LRW94], p.287, a family of signed random measures $\left\{\mu_{n, x}: n \geq 1, x \in X\right\}$ on $\mathbb{G}$ is called completely mixing in $L_{1}(m)$ if for every $\Gamma \in L_{1}(\mathbb{G})$ with integral $\int_{\mathbb{G}} \Gamma(g) d g=0$ we have

$$
\left\|\mu_{n, *} \star \Gamma\right\|_{L_{1}(\mathbb{G})} \rightarrow 0
$$

in $L_{1}(m)$. We'll show in Proposition 1 and Lemma 2 below that the random signed measures $\left\{\mu_{n, x}: n \geq 1\right\}$ are completely mixing in $L_{1}(m)$.

Proposition 1: For every $\Gamma \in L_{1}(\mathbb{G})$ the random sequence

$$
\left\|\mu_{n, .} \star \Gamma\right\|_{L_{1}(\mathbb{G})}
$$

converges in $L_{1}(m)$ to $C(\Psi \otimes \Gamma)$. In addition,

$$
C(\Psi \otimes \Gamma) \leq\|\Psi\|_{L_{1}(m)}\|\Gamma\|_{L_{1}(\mathbb{G})} .
$$

Proof. Since $\hat{T}_{\phi}^{n}(\Psi \otimes \Gamma)(x, g)=\hat{T}^{n}\left[\Psi(\cdot) \Gamma\left(g-\phi_{n}(\cdot)\right)\right](x)$ for $\Psi \in$ $L_{1}(X)$ and $\Gamma \in L_{1}(\mathbb{G})$, it suffices to show the theorem for a subclass of pairs $(\Psi, \Gamma)$ which generates a dense subspace in $L_{1}(X) \times L_{1}(\mathbb{G})$. Here we take the class of all functions $\Psi \otimes \Gamma$ where $\Psi$ belongs to the space $L$ and $\Gamma$ is an integrable and Lipschitz continuous function on $\mathbb{G}$.

By definition

$$
\begin{aligned}
& \mu_{n+1, x} \star \Gamma(g)=\int_{\mathbb{G}} \Gamma(g-h) \mu_{n+1, x}(d h) \\
& =\sum_{T^{n+1}(z)=x} \Psi(z) p_{n+1}(x, z) \Gamma\left(g-\phi_{n+1}(z)\right) \\
& =\sum_{T(z)=x} p_{1}(x, z) \hat{T}_{\phi}^{n}[\Psi \otimes \Gamma](z, g-\phi(z))
\end{aligned}
$$

whence as before,

$$
\begin{aligned}
& \left\|\mu_{n+1, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})} \\
& \leq \int_{\mathbb{G}_{T(z)=x}} p_{1}(x, z)\left|\hat{T}_{\phi}^{n}[\Psi \otimes \Gamma](z, g-\phi(z))\right| d g \\
& =\sum_{T(z)=x} p_{1}(z, x) \int_{\mathbb{G}}\left|\hat{T}_{\phi}^{n}[\Psi \otimes \Gamma](z, g)\right| d g \\
& =\hat{T}\left[\left\|\mu_{n, *} \star \Gamma\right\|_{L_{1}(\mathbb{G})}\right](x) .
\end{aligned}
$$

By induction it is easily seen that for $n$ fixed and $k \geq 1$

$$
\left\|\mu_{n+k, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})} \leq \hat{T}^{k}\left[\left\|\mu_{n, \cdot} \star \Gamma\right\|_{L_{1}(\mathbb{G})}\right](x) .
$$

Since the function

$$
x \rightarrow\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})}
$$

is of class $L$ it follows from the spectral representation of $\widehat{T}$ that for $k \rightarrow \infty$
$\hat{T}^{k}\left[\left\|\mu_{n, *} \star \Gamma\right\|_{L_{1}(\mathbb{G})}\right] \rightarrow \int_{X}\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})} m(d x)=U_{n}(\Psi \otimes \Gamma) \downarrow C(\Psi \otimes \Gamma)$,
whence

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})} \leq C(\Psi \otimes \Gamma) \tag{2}
\end{equation*}
$$

By (1) and (2), given $\epsilon>0$, we can choose $n_{0}$ so large that for $n \geq n_{0}$

$$
\int_{\left\{x:\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})}-C(\Psi \otimes \Gamma)>0\right\}}\left[\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})}-C(\Psi \otimes \Gamma)\right] m(d x) \leq \epsilon
$$

and

$$
\int_{X}\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})} m(d x)-C(\Psi \otimes \Gamma) \geq 0
$$

It follows that

$$
\begin{aligned}
& \int_{X}\left|\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})}-C(\Psi \otimes \Gamma)\right| m(d x) \\
& =2 \int_{\left\{x:\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{C})}-C(\Psi \otimes \Gamma)>0\right\}}\left[\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})}-C(\Psi \otimes \Gamma)\right] m(d x) \\
& -\int_{X}\left[\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})}-C(\Psi \otimes \Gamma)\right] m(d x) \\
& \leq 2 \epsilon .
\end{aligned}
$$

The additional claim follows from
$C(\Psi \otimes \Gamma) \leftarrow_{L_{1}(m)}\left\|\mu_{n, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})} \leq \widehat{T}^{n}|\Psi|(x)\|\Gamma\|_{L_{1}(\mathbb{G})} \rightarrow\|\Psi\|_{L_{1}(m)}\|\Gamma\|_{L_{1}(\mathbb{G})}$.

Let $(Y, \mathcal{A}, \mu, R)$ and $(Z, \mathcal{C}, \nu, S)$ be nonsingular transformations of probability spaces, where the second transformation is a factor of the first one. The factor map $\pi: Y \rightarrow Z$ is called relatively exact if for $f \in L_{1}(\mu)$

$$
E\left(f \mid \pi^{-1} \mathcal{C}\right)=0 \Longrightarrow \widehat{R}^{n} f \rightarrow 0
$$

in $L_{1}(\mu)$. By [Gui89], see alternatively [AD], $R$ is exact if the factor map $\pi: Y \rightarrow Z$ is relatively exact and the factor $S$ is exact. In the present situation $T_{\phi}$ is exact if the factor map $(x, g) \mapsto x=: \Pi(x, g)$ $(X \times \mathbb{G} \rightarrow X)$ is relatively exact. To establish relative exactness of $\Pi$, it suffices to show

$$
\int_{X} \int_{\mathbb{G}}\left|\hat{T}_{\phi}^{n}[\Psi \otimes \Gamma](x, g)\right| m_{\mathbb{G}}(d g) m(d x) \rightarrow 0
$$

for all $\Psi \in L_{1}(m)$ and $\Gamma \in L_{1}(\mathbb{G})$ satisfying $\int_{\mathbb{G}} \Gamma d g=0$.
It is left to prove the following

Lemma 2: If $\int_{\mathscr{G}} \Gamma(g) d g=0$, then

$$
C(\Psi \otimes \Gamma)=0
$$

Proof. The proof of this statement follows from a series of claims. For the first 4 claims we assume that $\Gamma \in L_{1}(\mathbb{G})$ is Lipschitz continuous and has compact support. These claims are needed for the proof of the statement of the lemma in claim 5.

Define the measures $\nu_{n, x}=\sum_{T^{n}(z)=x} p_{n}(x, z) \delta_{z}$ on $X$.
Claim 1: Let $k \geq 0$ be fixed. For any subsequence $\left\{n_{l}: l \in \mathbb{N}\right\} \subset \mathbb{N}$ there exists a further subsequence $\left\{m_{j}: j \geq 1\right\}$ such that for a.e. $x \in X$ and for every $B \in \mathcal{B}$

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{1}{\nu_{k, x}(B)} \int_{\mathbb{G}}\left|\int_{B}\left(\mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma\right)(g) \nu_{k, x}(d y)\right| d g=C(\Psi \otimes \Gamma) \tag{3}
\end{equation*}
$$

In order to see this claim, let $n_{l}$ be any subsequence and choose $m_{j}$ so that

$$
\begin{equation*}
\left\|\mu_{m_{j}, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})},\left\|\mu_{m_{j}+k, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})} \rightarrow C(\Psi \otimes \Gamma) \tag{4}
\end{equation*}
$$

for $x \in \Omega$ where $\Omega$ is a $T$-invariant set of full measure (cf. Proposition $1)$. On the one hand it follows from this that for every $B$ fixed

$$
\begin{align*}
& \frac{1}{\nu_{k, x}(B)} \int_{\mathbb{G}}\left|\int_{B} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma \nu_{k, x}(d y)\right| d g \\
& \leq \frac{1}{\nu_{k, x}(B)} \int_{B}\left\|\mu_{m_{j}, y} \star \Gamma\right\|_{L_{1}(\mathbb{G})} \nu_{k, x}(d y) \rightarrow C(\Psi \otimes \Gamma), \tag{5}
\end{align*}
$$

because the integrand is uniformly bounded and pointwise convergent by (4).

On the other hand, for $x \in \Omega$,

$$
\begin{aligned}
& C(\Psi \otimes \Gamma)=\lim _{j \rightarrow \infty}\left\|\mu_{m_{j}+k, x} \star \Gamma\right\|_{L_{1}(\mathbb{G})} \\
& =\lim _{j \rightarrow \infty} \int_{\mathbb{G}}\left|\sum_{T^{k}(y)=x} p_{k}(x, y) \hat{T}_{\phi}^{m_{j}}[\Psi \otimes \Gamma]\left(y, g-\phi_{k}(y)\right)\right| d g \\
& \leq \lim _{j \rightarrow \infty} \int_{\mathbb{G}}\left|\int_{B} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma(g) \nu_{k, x}(d y)\right|+\left|\int_{B^{c}} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma(g) \nu_{k, x}(d y)\right| d g \\
& \leq C(\Psi \otimes \Gamma)
\end{aligned}
$$

by (5), hence for $x \in \Omega$

$$
\lim _{j \rightarrow \infty} \frac{1}{\nu_{k, x}(B)} \int_{\mathbb{G}}\left|\int_{B} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma \nu_{k, x}(d y)\right| d g=C(\Psi \otimes \Gamma),
$$

proving claim 1.

Claim 2: Let $k \geq 0$ be fixed. For any subsequence $\left\{n_{l}: l \in \mathbb{N}\right\} \subset \mathbb{N}$ there exists a further subsequence $\left\{m_{j}: j \geq 1\right\}$ such that for a.e. $x \in X$ and for every disjoint sets $A, B \in \mathcal{B}$

$$
\begin{align*}
& \lim _{j \rightarrow \infty} \int_{\mathbb{G}} \left\lvert\, \frac{1}{\nu_{k, x}(A)} \int_{A} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma(g) \nu_{k, x}(d y)\right. \\
& \left.\quad+\frac{1}{\nu_{k, x}(B)} \int_{B} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma(g) \nu_{k, x}(d y) \right\rvert\, d g=2 C(\Psi \otimes \Gamma) \tag{6}
\end{align*}
$$

Choose the subsequence and $\Omega$ as in (4), then for $x \in \Omega$ by (3)

$$
\begin{align*}
& \int_{\mathbb{G}} \left\lvert\, \frac{1}{\nu_{k, x}(A)}\right.
\end{aligned} \begin{aligned}
A & \left.\mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma \nu_{k, x}(d y)+\frac{1}{\nu_{k, x}(B)} \int_{B} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma \nu_{k, x}(d y) \right\rvert\, d g \\
& \leq \frac{1}{\nu_{k, x}(A)} \int_{\mathbb{G}}\left|\int_{A} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma(g) \nu_{k, x}(d y)\right| d g \\
& +\frac{1}{\nu_{k, x}(B)} \int_{\mathbb{G}}\left|\int_{B} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma(g) \nu_{k, x}(d y)\right| d g \\
& \rightarrow 2 C(\Psi \otimes \Gamma) \tag{7}
\end{align*}
$$

and, since $A \cap B=\varnothing$ (and w.l.o.g. assume that $\nu_{k, x}(A) \leq \nu_{k, x}(B)$ ),

$$
\begin{align*}
& \frac{1}{\nu_{k, x}(A)} \int_{\mathbb{G}}\left|\int_{A} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma \nu_{k, x}(d y)+\frac{\nu_{k, x}(A)}{\nu_{k, x}(B)} \int_{B} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma \nu_{k, x}(d y)\right| d g \\
& \quad \geq \frac{1}{\nu_{k, x}(A)}\left(\int_{\mathbb{G}}\left|\int_{A \cup B} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma(g) \nu_{k, x}(d y)\right| d g\right. \\
& \\
& \left.\quad-\left(1-\frac{\nu_{k, x}(A)}{\nu_{k, x}(B)}\right) \int_{\mathbb{G}}\left|\int_{B} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma(g) \nu_{k, x}(d y)\right| d g\right)  \tag{8}\\
& \\
& \text { (8) } \quad \rightarrow 2 C(\Psi \otimes \Gamma) .
\end{align*}
$$

Claim 2 follows from (7) and (8).
Claim 3: Let $A, B \in \alpha_{0}^{k-1}$ be images of inverse branches $v_{A}$ and $v_{B}$ of $T^{k}$, where $k$ is still fixed. Let $\epsilon=d_{r}(A, B)$ and let $\Gamma$ be Lipschitz continuous with compact support $K$; then there exist constants $C_{0}, C_{1}>$ 0 such that for every $n \geq 1$

$$
\begin{align*}
& \int_{\mathbb{G}}\left|\mu_{n, v_{A}(x)} \star M_{\phi_{k}\left(v_{A}(x)\right)} \Gamma(g)-\mu_{n, v_{B}(x)} \star M_{\phi_{k}\left(v_{A}(x)\right)} \Gamma(g)\right| d g \\
& \leq\left[C_{1}\|\Gamma\|_{L_{1}(\mathbb{G})}+D_{\Gamma} C_{0} D_{\phi} m_{\mathbb{G}}\left(B\left(K, C_{0} D_{\phi} \epsilon\right)\right)\right] \epsilon \tag{9}
\end{align*}
$$

where $D_{\Gamma}$ denotes the Lipschitz constant of $\Gamma$.

Let $x \in X, v=v_{A}(x)$ and $w=v_{B}(x)$. We may assume that $d_{r}(A, B)<$ $r$ so that $A \cup B$ is contained in some atom from $\alpha$. By the Lipschitz property of $\phi$ and by the expanding property of $T$, we have for any inverse branch $v_{a}: A \cup B \rightarrow a \in(\alpha)_{0}^{n-1}$ of $T^{n}$ that

$$
\begin{aligned}
& \left|\phi_{n}\left(v_{a}(v)\right)-\phi_{n}\left(v_{a}(w)\right)\right| \leq D_{\phi} \sum_{l=0}^{n-1} d_{r}\left(T^{l}\left(v_{a}(v)\right), T^{l}\left(v_{a}(w)\right)\right) \\
& \leq C_{0}^{\prime} D_{\phi} d_{r}(v, w) \leq C_{0}^{\prime} D_{\phi} \epsilon
\end{aligned}
$$

where $C_{0}^{\prime}$ denotes some constant. Since $\Gamma$ has compact support

$$
\left\|\Gamma(g)-\Gamma\left(g+\phi_{n}\left(v_{a}(v)\right)-\phi_{n}\left(v_{a}(w)\right)\right)\right\| \leq D_{\Gamma} C_{0}^{\prime} D_{\phi} \epsilon 1_{B\left(K, C_{0}^{\prime} D_{\phi} \epsilon\right)}(g)
$$

Similarly, there exists a constant $C_{1}^{\prime}$ (also depending on the Lipschitz constant of $\Psi$ ) so that (see [AD96])
$\left|p_{n}\left(v, v_{a}(v)\right) \Psi\left(v_{a}(v)\right)-p_{n}\left(w, v_{a}(w)\right) \Psi\left(v_{a}(w)\right)\right| \leq C_{1}^{\prime} p_{n}\left(v, v_{a}(v)\right) d_{r}(v, w)$.
Therefore

$$
\begin{aligned}
& \int_{\mathbb{G}}\left|\mu_{n, v_{A}(x)} \star M_{\phi_{k}\left(v_{A}(x)\right)} \Gamma(g)-\mu_{n, v_{B}(x)} \star M_{\phi_{k}\left(v_{A}(x)\right)} \Gamma(g)\right| d g \\
& =\int_{\mathbb{G}} \mid \sum_{a} p_{n}\left(v, v_{a}(v)\right) \Psi\left(v_{a}(v)\right) \Gamma\left(g-\phi_{k}(v)-\phi_{n}\left(v_{a}(v)\right)\right) \\
& -\sum_{a} p_{n}\left(w, v_{a}(w)\right) \Psi\left(v_{a}(w)\right) \Gamma\left(g-\phi_{k}(v)-\phi_{n}\left(v_{a}(w)\right)\right) \mid d g \\
& \leq \int_{\mathbb{G}} \mid \sum_{a}\left[p_{n}\left(v, v_{a}(v)\right) \Psi\left(v_{a}(v)\right)-p_{n}\left(w, v_{a}(w)\right) \Psi\left(v_{a}(w)\right)\right] \\
& \quad \Gamma\left(g-\phi_{k}(v)-\phi_{n}\left(v_{a}(v)\right)\right) \mid d g \\
& +\int_{\mathbb{G}} \mid \sum_{a} p_{n}\left(w, v_{a}(w)\right) \Psi\left(v_{a}(w)\right) \\
& \quad\left[\Gamma\left(g-\phi_{k}(v)-\phi_{n}\left(v_{a}(v)\right)\right)-\Gamma\left(g-\phi_{k}(v)-\phi_{n}\left(v_{a}(w)\right)\right)\right] \mid d g \\
& \leq\left(C_{1}^{\prime}\|\Gamma\|_{L_{1}(\mathbb{G})}+D_{\Gamma} C_{0}^{\prime} D_{\phi}\|\Psi\|_{\infty} m_{\mathbb{G}}\left(B\left(K, C_{0}^{\prime} D_{\phi} \epsilon\right)\right)\right)\left\|\hat{T}^{n} 1\right\|_{\infty} \epsilon,
\end{aligned}
$$

where $\sum_{a}$ extends over all $a \in \alpha_{0}^{n-1}$ satisfying $T^{n} a \supset A \cup B$. The claim follows setting $C_{i}=1 \vee C_{i}^{\prime} \sup _{n \geq 1}\left\|\widehat{T}^{n}\right\|_{\infty}$ for $i=0,1$.

Claim 4: There exists a set $\Omega$ of measure 1 and a constant $C>0$ with the following property:
If $x \in \Omega, k \geq 1$ and $v, w \in T^{-k}(\{x\})$, then

$$
\begin{equation*}
\left|2 C(\Psi \otimes \Gamma)-C\left(\Psi \otimes\left(I+M_{\phi_{k}(v)-\phi_{k}(w)}\right) \Gamma\right)\right|<C d_{r}(v, w) \tag{1}
\end{equation*}
$$

By claims $1-3$ there exists a subsequence $\left\{m_{j}: j \geq 1\right\} \subset \mathbb{N}$ and a subset $\Omega$ so that (6) and (9) hold for any $x \in \Omega, k \geq 1$ and $v, w \in$ $T^{-k}(\{x\}), A=a_{k}(v), B=a_{k}(w)$. Therefore

$$
\begin{aligned}
& \int_{\mathbb{G}} \left\lvert\, \frac{1}{\nu_{k, x}(A)} \int_{A} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma(g) \nu_{k, x}(d y)\right. \\
& \left.\quad+\frac{1}{\nu_{k, x}(B)} \int_{B} \mu_{m_{j}, y} \star M_{\phi_{k}(y)} \Gamma(g) \nu_{k, x}(d y) \right\rvert\, d g \\
& =\int_{\mathbb{G}}\left|\mu_{m_{j}, v} \star M_{\phi_{k}(v)} \Gamma(g)+\mu_{m_{j}, w} \star M_{\phi_{k}(w)} \Gamma(g)\right| d g \\
& \leq \int_{\mathbb{G}}\left|\mu_{m_{j}, v} \star M_{\phi_{k}(v)} \Gamma(g)-\mu_{m_{j}, w} \star M_{\phi_{k}(v)} \Gamma(g)\right| d g \\
& \quad+\int_{\mathbb{G}}\left|\mu_{m_{j}, w} \star M_{\phi_{k}(w)} \Gamma(g)+\mu_{m_{j}, w} \star M_{\phi_{k}(v)} \Gamma(g)\right| d g \\
& \leq \int_{\mathbb{G}}\left|\mu_{m_{j}, w} \star\left(I+M_{\phi_{k}(v)-\phi_{k}(w)}\right) \Gamma(g)\right| d g+C d_{r}(v, w),
\end{aligned}
$$

where $C=C_{1}\|\Gamma\|_{L_{1}(\mathbb{G})}+D_{\Gamma} C_{0} D_{\phi}\|\Psi\|_{\infty} m_{\mathbb{G}}\left(B\left(K, C_{0} D_{\phi}\right)\right)$. The lower bound is shown similarly, proving claim 4.

Claim 5: Let $\Psi \in L$, then for all $\Gamma \in L_{1}(\mathbb{G})$,

$$
C\left(\Psi \otimes\left(\Gamma-M_{t} \Gamma\right)\right)=0 .
$$

First observe that by Proposition 1 the set of $t \in \mathbb{G}$ satisfying the claim is a group.

Hence it suffices to prove the claim for $t$ in a generating set $G_{0}$. Moreover, it suffices to prove the claim for $\Gamma$ Lipschitz continuous with compact support, since $\Gamma \mapsto C(\Psi \otimes \Gamma)$ is $L_{1}(\mathbb{G})$-norm continuous.

Fix such a $\Gamma$. By assumption, and by claim 4 there is a measurable set $A \in \mathcal{B}$ of positive measure and a constant $C>0$ satisfying:
For $x \in A$ there is a subset $G_{0} \subset \mathbb{G}$ generating a dense subgroup of $\mathbb{G}$ such that for all $v, w \in T^{-k}(x)$

$$
\begin{equation*}
\left|2 C(\Psi \otimes \Gamma)-C\left(\Psi \otimes\left(I+M_{\phi_{k}(v)-\phi_{k}(w)}\right) \Gamma\right)\right|<C d_{r}(v, w), \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
& \forall t \in G_{0} \exists k_{n} \geq 1, v_{n}, w_{n} \in T^{-k_{n}}(x) 1  \tag{1}\\
& \text { such that } \phi_{k_{n}}\left(v_{n}\right)-\phi_{k_{n}}\left(w_{n}\right) \rightarrow t \& d_{r}\left(v_{n}, w_{n}\right) \rightarrow 0 .
\end{align*}
$$

Since $t \rightarrow C\left(\Psi \otimes M_{t} \Gamma\right)$ is continuous, it follows from properties (10) and (11) that

$$
\begin{equation*}
2 C(\Psi \otimes \Gamma)=C\left(\Psi \otimes\left(I+M_{t}\right) \Gamma\right) \quad\left(t \in G_{0}\right) \tag{1}
\end{equation*}
$$

It follows that (12) holds for all Lipschitz continuous $\Gamma$ with compact support. Because of continuity, this equation holds for any $\Gamma \in L_{1}(\mathbb{G})$. Hence, replacing $\Gamma$ by $\left(I-M_{t}\right) \Gamma$ and repeating this argument for each $\left(I+M_{t}\right)^{k}\left(I-M_{t}\right) \Gamma, k \geq 0$, we obtain

$$
C\left(\Psi \otimes\left(I-M_{t}\right) \Gamma\right)=2^{-k} C\left(\Psi \otimes\left(I+M_{t}\right)^{k}\left(I-M_{t}\right) \Gamma\right)
$$

for every $k \geq 0$ and $t \in G_{0}$. From this we deduce $C(\Psi \otimes \Gamma)=0$ as in [Fog75].

The lemma follows now from the well known fact (see [Lin71], [?]) that

$$
\overline{\bigcup_{t \in \mathbb{G}}\left(I-M_{t}\right) L_{1}(\mathbb{G})}=\left\{f \in L_{1}(\mathbb{G}): \int f(g) d g=0\right\} .
$$

## Proof of 1.) $\Longrightarrow 5$.

## Ratio limit theorem for symmetric cocycles

Suppose that $\phi: X \rightarrow \mathbb{G}$ is Hölder continuous, aperiodic and symmetric in the sense that there exists a probability preserving invertible transformation $S: X \rightarrow X$ such that $S T=T S$ and $\phi \circ S=-\phi$, then there exists $u_{n}>0$ such that

$$
\frac{\widehat{T}_{\phi}^{n}(h \otimes f)(x, y)}{u_{n}} \rightarrow \int_{X \times \mathbb{G}} h \otimes f d m \times m_{\mathbb{G}}
$$

for all $h \in L, f \in C_{c}(\mathbb{G}), x \in X, y \in \mathbb{G}$.

## Proof.

First let $($ as $\operatorname{in}[A D 96]) P_{\gamma}: L \rightarrow L \quad(\gamma \in \widehat{\mathbb{G}})$ be defined by

$$
P_{\gamma} h:=\widehat{T}(\gamma \circ \phi \cdot h) .
$$

As shown in [AD96], $\gamma \mapsto P_{\gamma}$ is continuous $(\widehat{\mathbb{G}} \rightarrow \operatorname{Hom}(L, L))$, and $\exists \epsilon>0,0 \leq \theta<1$ and continuous functions

$$
\lambda: B_{\widehat{\mathbb{C}}}(0, \epsilon) \rightarrow B_{\mathbb{C}}(0,1), \text { and } g: B_{\widehat{\mathbb{C}}}(0, \epsilon) \rightarrow L
$$

such that

$$
\begin{aligned}
& \lambda(0)=1, g(0) \equiv 1, \int_{X} g(\gamma) d m \equiv 1, \\
& |\lambda(\gamma)| \leq 1 \text { with equality iff } \gamma=0, \\
& P_{\gamma} h=\lambda h \Longrightarrow|\lambda| \leq|\lambda(\gamma)| \quad\left(\gamma \in B_{\widehat{\mathbb{G}}}(0, \epsilon)\right), \\
& P_{\gamma} h=\lambda(\gamma) h \Longleftrightarrow h \in \mathbb{R} \cdot g(\gamma) \quad\left(\gamma \in B_{\widehat{\mathbb{G}}}(0, \epsilon)\right), \\
& P_{\gamma}^{n} h=\lambda(\gamma)^{n} \int h d m g(\gamma)+O\left(\theta^{n}\right) \quad\left(\gamma \in B_{\widehat{\mathbb{G}}}(0, \epsilon)\right)
\end{aligned}
$$

and (as is easily shown)

$$
g(-\gamma)=\overline{g(\gamma)}, \lambda(-\gamma)=\overline{\lambda(\gamma)}
$$

Since $T S=S T$ and $\Phi \circ S=-\Phi, P_{\gamma} h(x)=\left[P_{\gamma} h \circ S^{-1}\right](S x)$. It follows that $P_{-\gamma}[g(\gamma) \circ S](x)=\lambda(\gamma) g(\gamma) \circ S(x)$ whence

$$
g(-\gamma)=g(\gamma) \circ S, \text { and } \lambda(\gamma) \in \mathbb{R} .
$$

Next, for $0<\eta \leq \epsilon$ set $u_{n}(\eta):=\int_{B(0, \eta)} \lambda(\gamma)^{n} d \gamma$. For $\eta$ small enough (so that $\lambda>0$ on $B(0, \eta)), u_{n}(\eta)>0$. Choose one such $\eta_{0}>0$ and define $u_{n}:=u_{n}\left(\eta_{0}\right)$. Note that $\rho^{n}=o\left(u_{n}\right) \forall \rho<1$ since $\exists \eta<\eta_{0}$ such that $\min _{|\gamma|<\eta}|\lambda(\gamma)|=r>\rho$ whence

$$
\frac{u_{n}}{\rho^{n}} \geq \frac{u_{n}(\eta)}{\rho^{n}} \geq \frac{r^{n}}{\rho^{n}} \cdot m(B(0, \eta)) \rightarrow \infty .
$$

Also, for $0<\eta<\eta^{\prime}$,

$$
u_{n}(\eta)=u_{n}\left(\eta^{\prime}\right) \pm O\left(\rho(\eta)^{n}\right)
$$

where $\rho(\eta):=\sup _{\eta \leq|\gamma| \leq \epsilon}|\lambda(\gamma)|<1$. Thus

$$
u_{n}(\eta) \sim u_{n} \quad \text { as } n \rightarrow \infty \quad \forall 0<\eta \leq \epsilon
$$

Now fix $h \in L$ and $f \in L^{1}(\mathbb{G})$ with $\hat{f} \in C_{c}(\widehat{\mathbb{G}})$, then $\forall x \in X, y \in \mathbb{G}$,

$$
\begin{aligned}
\widehat{T}_{\phi}^{n}(h \otimes f)(x, y) & =\int_{\widehat{\mathbb{G}}} \hat{f}(\gamma) \overline{\gamma(y)} P_{\gamma}^{n} h(x) d \gamma \\
& =\int_{X} h d m \int_{B\left(0, \eta_{0}\right)} \lambda(\gamma)^{n} \mathfrak{R}(\overline{\gamma(y)} \hat{f}(\gamma) g(\gamma)(x)) d \gamma+O\left(\theta^{n}\right)
\end{aligned}
$$

(by reality of $\lambda(\gamma)$, for some $0<\theta<1$ ). Since $\mathfrak{R}(\hat{f}(\gamma) \overline{\gamma(y)} g(\gamma)(x)) \rightarrow$ $\int_{\mathbb{G}} f d m_{\mathbb{G}}$ as $\gamma \rightarrow 0$, it follows that

$$
\widehat{T}_{\phi}^{n}(h \otimes f)(x, y) \sim u_{n} \int_{X} h d m \int_{\mathbb{G}} f d m_{\mathbb{G}}
$$

By the method of Breiman ([Bre68], Theorem 10.7),

$$
\widehat{T}_{\phi}^{n}(h \otimes f)(x, y) \sim u_{n} \int_{X} h d m \int_{\mathbb{G}} f d m_{\mathbb{G}} \quad \forall h \in L, f \in C_{c}(\mathbb{G}) .
$$

## Corollary

Under the same assumptions, $\forall x, y \in X, t \in \mathbb{G}, \epsilon>0, \exists n_{0}$ such that $\forall n \geq n_{0} \exists z \in T^{-n}\{x\}$ such that $d(y, z)<\epsilon$ and $\left\|t-\phi_{n}(z)\right\|<\epsilon$.

## Proof.

Let $a=\left[a_{1}, \ldots, a_{N}\right]=B(y, \epsilon), h=1_{a} \in L$ and let $f \in C(\mathbb{G}), f \geq$ $0,[f>0] \subset B(0, \epsilon)$, then

$$
\frac{\widehat{T}_{\phi}^{n}(h \otimes f)(x, t)}{u_{n}} \rightarrow \int_{X \times \mathbb{G}} h \otimes f d m \times m_{\mathbb{G}}
$$

and $\exists n_{0}$ such that $\forall n \geq n_{0}$,

$$
0<\widehat{T}_{\phi}^{n}(h \otimes f)(x, t)=\sum_{T^{n} z=x, d(y, z)<\epsilon} p_{n}(x, z) f\left(t-\phi_{n}(z)\right)
$$

and in particular $\exists z \in T^{-n}\{x\}$ such that $d(y, z)<\epsilon$ and $\left\|t-\phi_{n}(z)\right\|<$ $\epsilon$.

## Exactness lemma

Suppose that $\phi: X \rightarrow \mathbb{G}$ is Hölder continuous, aperiodic, then $\forall x \in$ $X, t \in \mathbb{G}, \epsilon>0, \exists n_{0}$ such that $\forall n \geq n_{0} \exists y, z \in T^{-n}\{x\}$ such that $d(y, z)<\epsilon$ and $\left\|t+\phi_{n}(y)-\phi_{n}(z)\right\|<\epsilon$.

## Proof.

Consider the mixing Gibbs-Markov map $(X \times X, \mathcal{B}(X \times X), T \times T, m \times$ $m, \alpha \times \alpha)$ equipped with the cocycle $\tilde{\phi}: X \times X \rightarrow \mathbb{G}$ defined by $\tilde{\phi}\left(x, x^{\prime}\right):=$ $\phi(x)-\phi\left(x^{\prime}\right)$.

The cocycle $\tilde{\phi}: X \times X \rightarrow \mathbb{G}$ is also Hölder continuous, aperiodic, but also symmetric: $\tilde{\phi} \circ S=-\tilde{\phi}$ where $S\left(x, x^{\prime}\right):=\left(x^{\prime}, x\right)$ (evidently $S(T \times T)=(T \times T) S)$. Thus the conclusion of the corollary holds and this is the lemma.

## References

[Aar97] Jon Aaronson. An introduction to infinite ergodic theory, volume 50 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997.
[AD] Jon. Aaronson and Manfred Denker. On exact group extensions. Preprint. [AD96] Jon. Aaronson and Manfred Denker. Local limit theorems for generated by Gibbs-Markov maps. Preprint, 1996.
[ADU93] Jon Aaronson, Manfred Denker, and Mariusz Urbański. Ergodic theory for Markov fibred systems and parabolic rational maps. Trans. Amer. Math. Soc., 337(2):495-548, 1993.
[Bow08] Rufus Bowen. Equilibrium states and the ergodic theory of Anosov diffeomorphisms, volume 470 of Lecture Notes in Mathematics. SpringerVerlag, Berlin, revised edition, 2008. With a preface by David Ruelle, Edited by Jean-René Chazottes.
[Bre68] Leo Breiman. Probability. Addison-Wesley Publishing Company, Reading, Mass.-London-Don Mills, Ont., 1968.
[Fog75] Shaul R. Foguel. On iterates of convolutions. Proc. Amer. Math. Soc., 47:368-370, 1975.
[Gui89] Y. Guivarc'h. Propriétés ergodiques, en mesure infinie, de certains systèmes dynamiques fibrés. Ergodic Theory Dynam. Systems, 9(3):433453, 1989.
[Lin71] Michael Lin. Mixing for Markov operators. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 19:231-242, 1971.
[LRW94] Michael Lin, Ben-Zion Rubshtein, and Rainer Wittmann. Limit theorems for random walks with dynamical random transitions. Probab. Theory Related Fields, 100(3):285-300, 1994.
[Nag57] S. V. Nagaev. Some limit theorems for stationary Markov chains. Teor. Veroyatnost. i Primenen., 2:389-416, 1957.
[Sto66] Charles Stone. Ratio limit theorems for random walks on groups. Trans. Amer. Math. Soc., 125:86-100, 1966.
(Aaronson) School of Math. Sciences, Tel Aviv University, 69978 Tel Aviv, Israel.

E-mail address: aaro@tau.ac.il
(Denker) Institut für Mathematische Stochastik, Universität Göttingen, Lotzestr. 13, 37083 Göttingen, Germany

E-mail address: denker@math.uni-goettingen.de

