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Abstract:
For certain group extensions of uniquely ergodic transformations,

we identify all locally finite, ergodic, invariant measures. These are
Maharam-type measures. We also establish the asymptotic behaviour
for these group extensions proving logarithmic ergodic theorems, and
bounded rational ergodicity. ©1999

§0 Introduction and General Framework

Let (X,B) be a standard measurable space, and let τ ∶ X → X be
an invertible measurable map. Let G be a locally compact, Abelian,
Polish (LCAP) topological group and let φ ∶X → G be measurable.

The skew product transformation τφ ∶X ×G→X ×G is defined by

τφ(x, y) ∶= (τx, y + φ(x)).
A measure m ∶ B⊗B(G) → [0,∞] is called locally finite if m(X×K) <

∞ ∀ K ⊂ G compact.
Our program is to identify all τφ-invariant locally finite measures and

study their asymptotic behaviour.
It is known ([Fu], [Pa]) that if τ is a uniquely ergodic homeomorphism

of a compact metric space (with invariant probability p), G is compact
(with Haar probability measure mG) and φ ∶X → G is continuous, then
ergodicity of τφ with respect to the product p×mG is equivalent to the
unique ergodicity of τφ.

For non-compact G, it is well known that if τ is uniquely ergodic
(with invariant probability p), and τφ is ergodic with respect to p×mG

, then there is no τφ-invariant probability on X×G (see e.g. [A1] chapter
8, or [Sc2]).

It is natural to ask (as in [Ve]) for τφ-invariant locally finite measures.
There is a natural class of τφ-invariant locally finite measures: the
Maharam measures which we proceed to describe.
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Let (X,B) and τ be as above and let h ∶ X → R+ be measurable.
We call a probability µ ∈ P(X,B) (h, τ)-conformal if µ ○ τ ∼ µ and
dµ○τ
dµ = h µ-a.e..
Now let φ ∶X → G be measurable, and let α ∶ G→ R be a continuous

homomorphism. Let µ = µα be a (eα○φ, τ)-conformal probability on
(X,B).
The associated Maharam measure is mα ∶ B⊗B(G) → [0,∞] defined by
dmα(x, y) ∶= e−α(y)dµ(x)dy (where dy denotes Haar measure on G).
The reason for this terminology is that Maharam measures were first
considered for G = R in [Mah].

A Maharam measure is easily seen to be τφ-invariant, the dilation
from the first coordinate being canceled by the translation in the sec-
ond.

For the transformations τφ considered in this paper, we show the
following properties:
Unique conformal probabilities:

For each continuous homomorphism α ∶ G → R, there is a unique
(eα○φ, τ)-conformal probability µ = µα on (X,B);
Maharam measures are ergodic:

For each continuous homomorphism α ∶ G → R, the Maharam mea-
sure mα is ergodic (for τφ);
Ergodic measures are Maharam:

The only ergodic τφ-invariant locally finite measures are proportional
to Maharam measures.

Remarks
1) For G compact, the only continuous homomorphism α ∶ G → R is

α ≡ 0, the only Maharam measures are of form m ×mG, and the above
properties for τφ are equivalent to its unique ergodicity.

2) As shown in [Sc2], there are abundances of (eα○φ, τ)-conformal
infinite measures, and of non-locally finite, τφ-invariant, σ-finite mea-
sures.

We attempt our program in two cases. In §1, we treat the so called
cylinder flow Rα,χ ∶ T×R→ T×R defined by Rα,χ(x, y) ∶= (x+α, y+χ(x))
where α ∈ T ∖ Q and where χ(x) = (β + 1) ⋅ 1

[0, β
β+1

)
− β (some β > 0),

the rest of the paper being devoted to certain group extensions of adic
transformations by symmetric cocycles (see below).

Let S be a finite, ordered set, let A ∶ S × S → {0,1} be an irre-
ducible, aperiodic matrix and let Σ = ΣA ⊂ SN be the corresponding
(topologically mixing) subshift of finite type (SFT).
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Let V be the adding machine on SN. The adic transformation on Σ
is the induced transformation of V on Σ defined (in §2) for all except
countably many points x ∈ Σ by τ(x) = V min{n≥1∶ V n(x)∈Σ}(x).

For f ∶ Σ→ G, we consider the symmetric cocycle φf ∶ Σ→ G defined
by φf(x) ∶= ∑∞

0 (f(T ix) − f(T i(τx))) where T ∶ Σ → Σ is the shift, the
sum terminating as T i(x) = T i(τx) ∀ large i ≥ 1.

In §2 we show that the class of τφf -invariant, locally finite measures
for f aperiodic having finite memory is the collection of measures which
are proportional to mixtures of the canonical Maharam measures (the-
orems 2.1 and 2.2).

In §3 and §4, we consider the asymptotic properties of τφf with re-
spect to Maharam measures, where f ∶ Σ → Rd is an aperiodic Hölder
continuous function.

For α ∈ Rd, consider the Maharam measure mα ∶ B(Σ × Rd) → [0,∞]
defined by dmα(x, y) = e−α⋅ydµ(x)dy where µ = µα is the (eα⋅f , τ)-
conformal measure. In §4, we show that τφf is boundedly rationally
ergodic with return sequence a(n) ≍ n

(logn)
d
2

(see [A2], and/or §4) with

respect to m0. Bounded rational ergodicity is a strong form of rational
ergodicity, and so this entails a kind of absolutely normalized ergodic
theorem:

Sn(f)
a(n) ↝ ∫X fdm0 ∀ f ∈ L1(m0)

where fn ↝ f if ∀ m` ↑ ∞ ∃ nk =m`k ↑ ∞ such that ∀ pj = nkj ↑ ∞, we

have 1
N ∑

N
j=1 fpj → f a.e. as N →∞ (see [A1]).

For α ≠ 0, τφf is squashable with respect to mα (see [A1]) and there
is no such kind of ergodic theorem. Nevertheless, we show in §3 that
the logarithmic ergodic theorem holds:

log∑n−1
k=0 F ○ τ kφf
logn

Ð→ hpα(T )
htop(T ) mα-a.e. as n→∞ ∀F ∈ L1(mα)+

where pα is the equilibrium measure of α ⋅ f (see [Bo]).
There is some relation between the results of §2 and results in [P-S]

remarked at the end of §2. The program in §3 and §4 has been previ-
ously carried out in full in [A-W] for Σ = {0,1}N, f(x) = x1. Bounded
rational ergodicity of certain of the cylinder flows was established in
[A-K].

Horocycle flows on Abelian covers of compact, hyperbolic surfaces
can be considered as “smooth analogues” of the skew products consid-
ered here. Ergodic, Maharam measures for these horocycle flows were
introduced, and their asymptotics considered in [B-L].
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We conclude this introduction with a Basic Lemma, to be used in §1
and §2.

For a ∈ G, define Qa ∶ X × G → X × G by Qa(x, y) ∶= (x, y + a), then
τφ ○Qa = Qa ○ τφ. If m is an ergodic τφ-invariant locally finite measure,
then so is m ○Qa (a ∈ G) whence, as is well known, either m ○Qa ⊥m
or m ○Qa = cm for some c ∈ R+.

For m an ergodic τφ-invariant locally finite measure, set

H =Hm ∶= {a ∈ G ∶ m ○Qa ∼m}.

0.1 Basic Lemma
(i) H is closed;
(ii) If H = G, then m is proportional to a Maharam measure.

Proof
(i) By unicity of absolutely continuous invariant measures, ∃ a mul-

tiplicative homomorphism ∆ ∶H → R+ such that

∫
X×G

f ○Qadm = ∆(a)∫
X×G

fdm ∀ a ∈H, f ∈ L1(m).

For f ∶ X × G → R continuous with compact support, we have that
f ○Qan → f ○Qa uniformly as an → a in G. Suppose that an ∈H, an →
a ∉H. This forces ∆(an) → 0, since by the local finiteness assumption,
∀ ε > 0∃ f ∶X ×G→ R+ continuous with compact support such that

∫
X×G

fdm = 1, ∫
X×G

f ○Qadm < ε

whence

ε > ∫
X×G

f ○Qadm← ∫
X×G

f ○Qandm = ∆(an).
On the other hand ∃ f ∶ X × G → R continuous, everywhere positive,
and absolutely integrable. Clearly f ○Qa > 0 and ∫X×G f ○Qadm > 0,
contradicting ∆(an) → 0 and showing that a ∈H.

(ii) There is a measurable (hence continuous) homomorphism α ∶
G→ R such that m ○Qa = e−α(a)m. Define the measure m ∶ B(X ×G) →
[0,∞] by dm(x, y) ∶= eα(y)dm(x, y). It follows that m ○Qa = m. For
A ∈ B(X), B ∈ B(G) and a ∈ G, we have

m(A × (B + a)) =m ○Qa(A ×B) =m(A ×B).
Since the Haar measure on G is unique up to a constant, ∀ A ∈
B(X), ∃ µ(A) ∈ R+ such that

m(A ×B) = µ(A)mG(B) (B ∈ B(G)).
It follows that µ is a finite measure on X, and that

dm(x, y) = e−α(y)dµ(x)dy.
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The τφ-invariance of m now implies that µ○τ ∼ µ with dµ○τ
dµ = eα○φ (it

being necessary to cancel the dilation due to translation of the second
coordinate by dilation of the first). �

§1 Cylinder flows

Let T ∶= R/Z ≅ [0,1) denote the additive circle (the multiplicative
circle being S1 ∶= e2πiT ⊂ C) and let Rα(x) ∶= x+α mod 1. The natural
distance function on T is given by the norm ∥x∥ ∶= minn∈Z ∣x + n∣.

For β > 0, let Gβ ⊂ R be the closed subgroup generated by 1 and β.
Note that Gβ = βZ if β ∈ Q and Gβ = R if β ∉ Q. Consider for β > 0, the
function χ ∶ T→ Gβ defined by

χ = χ(β) ∶= 1
[0,

β
β+1 )

− β1
[
β
β+1 ,1)

= (β + 1)1
[0,

β
β+1 )

− β

and the skew products (or cylinder flows) Rα,χ(β) ∶ T × Gβ → T × Gβ

defined by Rα,χ(β)(x, y) = (x + α, y + χ(β)(x)) for α ∉ Q, β > 0.
The goal here is to identify all the locally finite, σ-finite, Rα,χ(β)-

invariant measures. Write χ
(β)
n ∶= ∑n−1

k=0 χ
(β) ○Rk

α.
We recall some information about the continued fraction expansion

α = 1

a1 + 1
a2+

1
a3+...

of α ∈ [0,1) ∖Q. This can be found in [Kh].
The positive integers an are called the partial quotients of α.
Define pn, qn ∈ Z+, gcd (pn, qn) = 1 by

pn
qn

∶= 1

a1 + 1
a2+

1
⋅⋅⋅+1/an

then

q0 = 1, q1 = a1, qn+1 = an+1qn + qn−1;

p0 = 0, p1 = 1, pn+1 = an+1pn + pn−1;

p2n

q2n

< α < p2n+1

q2n+1

and
pn
qn

− pn+1

qn+1

= (−1)n+1

qnqn+1

.

The rationals pn
qn

are called the convergents of α, and the numbers qn
are called (principal) denominators of α.
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Recall the Denjoy-Koksma inequality, that ∥Fqn∥∞ ≤ ⋁TF for any
function F ∶ T→ R of bounded variation (⋁TF < ∞) such that ∫TF (t)dt =
0. In particular, ∣χ(β)

qn ∣ ≤ 2(β + 1).
1.1 Proposition
∀ α ∉ Q, β > 0 and η > 0, ∃ a unique (ηχ(β) ,Rα)-conformal probability

measure µ = µα,β,η ∈ P(T).

Proposition 1.1 follows from a more general “folklore theorem” (pointed
out to the authors by J-P. Conze and K. Schmidt):

Theorem Let α ∉ Q and suppose that h ∶ T → R has bounded variation
and ∫T h(x)dx = 0. There exists a unique (eh,Rα)-conformal µ ∈ P(T).
Moreover µ is non atomic.

Proof
We first prove existence.
Let Γ be the (countable) set of discontinuities of h and let Γ∞ ∶=

⋃n∈ZRn
αΓ. As shown in [Ke]:

∃ X a compact metric space, T ∶X →X a homeomorphism, π ∶X →
[0,1) continuous and finite to one, H ∶X → R continuous such that
(i) π ○ T = Rα ○ π, (ii) ∀ x ∉ Γ∞, ∣π−1{x}∣ = 1 and, H(π−1x) = h(x).

It follows from the Denjoy-Koksma inequality that
(iii) ∣Hqn(x)∣ ≤ ⋁T h ∀ x ∈X∖π−1Γ∞ and hence (by continuity) ∀ x ∈X.

By theorem 4.1 in [Sc2], ∃ µ ∈ P(X) and c ∈ R such that µ ○ T ∼ µ
and dµ○T

dµ = eH+c. Since

1 = µ(T qnX) = ∫
X
eHqn+cqndµ ≍ ecqn

as n→∞, we must have c = 0.
We claim that µ is nonatomic. Otherwise ∃ x ∈ X with µ({x}) > 0

whence ∃ ν ∈ P(X), ν ≪ µ with ν = ∑n∈Z anδTnx where an > 0. By
dµ○T
dµ = eH , an = ceHn(x) for some c > 0 entailing ν(X) ≥ c∑n∈Z e

Hqn(x) =
∞ and contradicting ν ∈ P(X).

Now define ν ∈ P(T) by ν = µ ○ π−1. It follows that ν is nonatomic,
whence ν(Γ∞) = 0 and ν ○Rα ∼ ν and dν○Rα

dν = eh ν-a.e..
Existence and nonatomicity are now established and we turn to the

proof of unicity.
We prove that if ν○Rα ∼ ν and dν○Rα

dν = eh ν-a.e., then Rα is ν-ergodic.
This suffices since nonunicity implies existence of ρ with ρ○Rα ∼ ρ and
dρ○Rα
dρ = eh ρ-a.e., and Rα not ρ-ergodic.

As above, ν is non-atomic, and by minimality of Rα, ν(J) > 0 ∀
intervals J . Thus if π ∶ [0,1) → [0,1) is defined by π(x) ∶= ν((0, x))



INVARIANT MEASURES AND ASYMPTOTICS FOR SOME SKEW PRODUCTS7

then π is an orientation preserving homeomorphism of T, and ν ○π−1 =
Lebesgue measure. It follows that S = π ○ Rα ○ π−1 is absolutely con-
tinuous with S′ = eh○π and by theorem 2b in [dM-vS] S is ergodic with
respect to the Lebesgue measure. It follows that Rα is ergodic (ν).

�

Remark The (ηχ(β) ,Rα)-conformal µ = µα,β,η ∈ P(T) can also be
obtained using the methods of [Her] (as in [N1] and [N2]):

Define the continuous f = fη,β ∶ R→ R by

fη,β(x) = { η ⋅ x x ∈ [0, a(η, β)))
η−β(x − a(η, β)) + a(η, β) x ∈ [a(η, β),1)

where a(η, β) ∶= ηβ−1
ηβ+1−1

(this value of a is forced by the slopes, and

continuity of fη,β).
By the theory of rotation numbers, ∃ 0 < b < 1, and an orientation

preserving homeomorphism ξ ∶ T→ T with ξ(0) = 0, ξ(1) = 1 such that
ξ−1 ○ fα ○ ξ = Rα where fα ∶= fη,β + b.

It can be shown that if µ ∶=m ○ ξ, then dµ○Rα
dµ = ηχ.

Invariant measures for the cylinder flow Rα,χ(1). Recall that
q ∈ N is called a Legendre denominator for α if ∃ p ∈ N such that
∣α − p

q ∣ < 1
2q2 . This is because of Legendre’s theorem that a Legendre

denominator for α is a principal denominator for α.

1.2 Sublemma
Suppose that q is an odd Legendre denominator for α, then ∣χ(1)

q ∣ ≡ 1.

Proof in case ∣α − p
q ∣ < 1

2q2 .

Firstly {kpq mod 1 ∶ 0 ≤ k ≤ q − 1} =∶ {0 = a1 < a2 < ⋅ ⋅ ⋅ < aq < 1} with

ai ∶= kip
q ; and {kpq + 1

2 mod 1 ∶ 0 ≤ k ≤ q − 1} =∶ {0 = b1 < b2 < ⋅ ⋅ ⋅ < bq < 1}
satisfy a1 < b1 < a2 < b2 < ⋅ ⋅ ⋅ < aq < bq < 1 with bi − ai = ai+1 − bi = 1

2q .

Now let ki, `i (0 ≤ i ≤ q − 1) be such that ai = kip
q mod 1 and

bi = `ip
q mod 1. Set ai ∶= kiα mod 1 and bi = `iα mod 1.

We claim that a1 < b1 < a2 < b2 < ⋅ ⋅ ⋅ < aq < bq < 1. The reason for this

is that ∣kα − kp
q ∣ < 1

2q (0 ≤ k ≤ q − 1) whence in case α > p
q ,

ai < ai < ai + 1
2q = bi < bi < bi + 1

2q = ai+1 < . . . ,

and in case α < p
q ,

ai+1 > ai+1 > ai+1 − 1
2q = bi > bi > bi − 1

2q = ai > . . . .
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Now χ
(1)
q is a step function with points of discontinuity 1 − a1 >

1 − b1 > 1 − a2 > 1 − b2 > ⋅ ⋅ ⋅ > 1 − aq > 1 − bq ≥ 0, and jumps of +2 at

1 − ai (1 ≤ i ≤ q) and −2 at 1 − ai (1 ≤ i ≤ q). The values of χ
(1)
q

are of form {v, v + 2} for some v ∈ Z. The only v ∈ Z permitted by the

condition ∫T χ
(1)
q (t)dt = 0 is v = −1. Thus ∣χ(1)

q ∣ ≡ 1. �
This subsection is based on the following lemma, which is obtained

from sublemma 1.2 and the well known fact that there are infinitely
many odd Legendre denominators for any α ∉ Q:

1.3 Lemma
∃ nk →∞ such that ∣χ(1)

qnk
∣ ≡ 1 ∀ k ≥ 1.

Remark
Sublemma 1.2 can be strengthened: ∣χ(1)

q ∣ ≡ 1 whenever q is an odd
principal denominator for α. This is shown in [N1].

For η > 0, α ∈ T ∖ Q define the Rα,χ(1)-invariant, Maharam measure
mα,η on B(T ×Z) by

mα,η(A × {n}) ∶= η−nµα,1,η(A).

1.4 Theorem
1) ∀ α ∉ Q and η > 0, (T×Z,B(T×Z),mα,η,Rα,χ(1)) is a conservative,

ergodic measure preserving transformation.
2) If m is a locally finite measure on T × Z such that (T × Z,B(T ×

Z),m,Rα,χ(1)) is ergodic and measure preserving, then ∃ η, c > 0 such
that m = cmα,η.

Proof
The ergodicity of (T × Z,B(T × Z),mα,η,Rα,χ(1)) was established in

[N1] (see [C-K] and also [A-K] for the Lebesgue case η = 1) and is
standard using [Sc1] and lemma 1.3:

∃ nk →∞ (odd Legendre denominators) such that ∣χ(1)
nk ∣ ≡ 1 and

µα,1,η(Rnk
α A△A) → 0 ∀ A ∈ B(T).

We prove (2). Let m be an Rα,χ(1)-ergodic locally finite measure on
T×Z. We claim that m = cmα,η for some c, η > 0. By the Basic Lemma
and proposition 1.1, it suffices to prove that H ∶= {n ∈ Z ∶ m ○Qn ∼
m} = Z.

Suppose that H ≠ Z, and write mk(A) ∶= m(A × {k}). Then m ∶=
m−1 +m1 ⊥ m0. ∃ U ⊂ T open, such that m0(U) = 1 and m(U) < 1

5 ,

whence ∃ I ⊂ T, an open interval such that m(I) < m0(I)
5 .
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Given 0 < p < 1 and an open interval L = (a − r, a + r), denote by Lp
the subinterval (a−pr, a+pr). Note that if x ∈ Lp and ∣y∣ < (1−p)∣L∣

2 then
x + y ∈ L.

∃ 0 < p < 1 such that m0(Ip) > m0(I)
2 . By lemma 1.3, ∃ k ≥ 1 such

that ∥qnkα∥ <
(1−p)∣I ∣

2 and ∣χ(1)
qnk

∣ ≡ 1.
It follows that

R
qnk
α,χ(1)

(Ip × {0}) ⊂ I × {−1,1}

whence

m0(I)
2 <m0(Ip) =m(Ip × {0})

=m(Rqnk
α,χ(1)

(Ip × {0})) ≤m(I × {−1,1})

=m(I) < m0(I)
5 .

The contradiction shows the impossibility of H ≠ R, and thus proves
2). �

Invariant measures for the cylinder flow Rα,χ(β). For η, β >
0, α ∈ T ∖Q define the locally finite measure mα,β,η on B(T × R) by

dmα,β,η(x, y) ∶= η−ydµα,β,η(x)dy.
Evidently mα,β,η ○Rα,χ(β) =mα,β,η.

Fix α ∈ T ∖Q. For t ∈ R, consider the set

L(t) = Lα(t) ∶= {a ∈ [0,1) ∶ ∃ nk →∞, qnkt mod 1→ a}
(where {qn ∶ n ≥ 1} are the denominators of α).

Theorem 4.1 in [Ku-Ni] implies that L(t) = [0,1) for Lebesgue-a.e.
t ∈ R. Moreover, it is shown in [Kr-Li] that for α ∉ Q with bounded
partial quotients and t ∈ R, L(t) is finite iff t ∈ Q + αQ.

1.5 Lemma
If a ∈ L( β

β+1) is positive and qnk
β
β+1 mod 1→ a, then ∀ x ∈ T, all limit

points of {χ(β)
qnk

(x)}k≥1 are contained in {(β+1)(N−a) ∶ N = −1,0,1,2}.

Proof
Let ε > 0, N ∈ Z and suppose that ∣qn β

β+1 − N − a∣ < ε, then qnβ =
(β + 1)(N + a ± ε), whence

χ
(β)
qn = (β + 1)(1

[0,
β
β+1 )

)qn − qnβ = (β + 1)(L − a ± ε)

where L ∶= (1
[0,

β
β+1 )

)qn −N ∈ Z.
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Recalling that ∣χ(β)
qn ∣ ≤ 2(β + 1) we see that −2 + a − ε ≤ L ≤ 2 + a + ε.

It follows that for a ∈ (0,1) and sufficiently small ε > 0: L = −1,0,1,2.
�

1.6 Theorem
Suppose that α ∉ Q, β > 0 are such that L( β

β+1) is infinite, then

1) For each η > 0, (T ×R,B(T ×R),mα,β,η,Rα,χ(β)) is a conservative,
ergodic measure preserving transformation.

2) If m is a locally finite measure on T × R such that (T × R,B(T ×
R),m,Rα,χ(β)) is ergodic and measure preserving, then ∃ η, c > 0 such
that m = cmα,β,η.

Proof
The ergodicity of (T×R,B(T×R),mα,β,η,Rα,χ(β)) was established in

[N2] and in [St] for η = 1 (Lebesgue measure).
We prove (2). Let m be an Rα,χ(β)-ergodic locally finite measure on

T×R. We claim that m = cmα,β,η for some c, η > 0. By the Basic Lemma
and proposition 1.1, it suffices to prove that H ∶= {a ∈ R ∶ m ○ Qa ∼
m} = R.

Suppose otherwise, then H ≠ R and ∃ q ≥ 0 such that H = qZ. It
follows that ∃ a ∈ L( β

β+1) with (β+1)(N −a) ∉H ∀ N = −1,0,1,2. (Else

L( β
β+1) ⊆ [0,1]∩⋃N=−1,0,1,2(N + 1

β+1H), whence since H = qZ, L( β
β+1) is

finite in contradiction to our assumptions).
Fix such an a and set E ∶= {(β + 1)(N − a) ∶ N = −1,0,1,2} then

E ⊂ R∖H. Set m ∶= ∑j∈Em○Qj, then m ⊥m and ∃ K ⊂ T×R compact
such that m(K) > 0, m(K) = 0. ∃ U ⊂ T × R open and precompact,

such that K ⊂ U and m(U) < m(K)

5n where n is the Besicovitch covering
constant for R2 (n ≤ 16, see [W-Z]).

For each z = (x, y) ∈K ∃ an open rectangle R(z) with diameter less
than 1

2 min{∣j − j′∣ ∶ j, j′ ∈ E, j ≠ j′} such that z ∈ R(z) ⊂ U . ∃ a finite
set Γ ⊂ K such that K ⊂ V ∶= ⋃z∈ΓR(z) and ∑z∈Γ 1R(z) ≤ n. Evidently

m(V ) < m(K)

5n .
We claim that (at least) one of the rectangles R = R(z) (z ∈ Γ) has

the property that m(R) < m(R)

5 , else

m(V ) ≥ 1
n ∑
z∈Γ

m(R(z)) ≥ 1
5n ∑

z∈Γ

m(R(z)) ≥ 1
5nm(K).

It follows from the restriction on the diameter of R that {QjR ∶ j ∈
E} is a disjoint collection, whence, if S ∶= ⋃j∈EQjR, then

m(S) =m(R) < m(R)

5 .
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Write R = I × J where I ⊂ (0,1) and J ⊂ R are open intervals. Given
0 < p < 1 and an open interval L = (a − r, a + r), denote by Lp the

subinterval (a − pr, a + pr). Note that if x ∈ Lp and ∣y∣ < (1−p)∣L∣
2 then

x + y ∈ L.

∃ 0 < p < 1 such that m(Ip × Jp) > m(R)

2 . By lemma 1.5, ∃ k ≥ 1 and
A ⊂ Ip such that

∥qnkα∥ <
(1−p)∣I ∣

2 , m(A × Jp) > m(R)

3

and
min
j∈E

∣χ(β)
qnk

(x) − j∣ < (1−p)∣J ∣
2 ∀ x ∈ A.

It follows that
R
qnk
α,χ(β)

(A × Jp) ⊂ S
whence

m(R)

3 <m(A × Jp) =m(Rqnk
α,χ(β)

(A × Jp)) ≥m(S) < m(R)

5 .

The contradiction shows the impossibility of H ≠ R. �

§2 Locally finite invariant measures for tail relations of
skew products

Set S ∶= {0, . . . s − 1} where s ≥ 2, let A ∶= (Aij)S×S be a matrix of
zeroes and ones such that ∀j∃i s.t. Aij = 1 and ∀i∃j s.t. Aij = 1. Set

Σ = ΣA ∶= {x = (x1, x2, . . .) ∈ SN ∶ ∀i Axixi+1 = 1}.
We topologize Σ by considering the base of cylinder sets, sets of the
form

[ε1, . . . , εn] = {x ∈ Σ ∶ xk = εk ∀ 1 ≤ k ≤ n}
where ε1, . . . , εn ∈ S.

Let T ∶ Σ → Σ be the left shift, T (x1, x2, . . .) = (x2, x3, . . .). The
topological dynamical system (Σ, T ) is called a subshift of finite type.
Henceforth we assume that it is topologically mixing. This is equivalent
to the existence of some M ∈ N such that all the entries of the matrix
AM are positive (see, e.g., [Bo]).

An admissible word (of length n) is an element (ε1, . . . , εn) ∈ Sn (or
word) satisfying Aεj ,εj+1 = 1 ∀ 1 ≤ j ≤ n − 1. Note that a cylinder
[ε1, . . . , εn] is nonempty iff its corresponding word (ε1, . . . , εn) is admis-
sible. We denote the collection of admissible words of length n, or paths
of length n − 1 (the number of steps), by Wn, and set W ∶= ⋃nWn.

Consider T ’s tail relation

T = T(T ) ∶= {(x, y) ∈ Σ2 ∶ ∃ n ≥ 0, T nx = T ny}.
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Consider the reverse lexicographic order on T(T )-equivalence classes:

x ≺ y iff ∃n0 s.t. xn0 < yn0 and xn = yn for any n > n0.

It is easy to see that for any fixed x ≺ y there are finitely many
z such that x ≺ z ≺ y, so the type of ordering in each equivalence
class is either Z, or Z+, or Z−. Let Σ∞ , Σ−∞ be the set of maximal
and minimal elements of (Σ,≺), respectively. To characterize these
elements, introduce functions Pmax, Pmin ∶ S → S

Pmax(a) = max{i ∈ S ∶ Ai,a = 1},
Pmin(a) = min{i ∶∈ S ∶ Ai,a = 1}.

Note that
x ∈ Σ∞Ô⇒ xn−1 = Pmax(xn) for all n.

It follows that there are at most s maximal points, (similarly, at most
s minimal points) and all of them are periodic.

The adic transformation τ ∶ Σ∖Σ∞ → Σ∖Σ−∞ assigns to each x the
smallest y strictly greater than x. Specifically, given x ∈ Σ∖Σ∞, ∃ ` ≥ 1
such that

xj = Pmax(xj+1) ∀ 1 ≤ j ≤ ` − 1 and x` < Pmax(x`+1),
and we set τ(x) ∶= (y1, y2, . . . ) where the yk’s are defined reverse-
inductively:

yk =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xk k ≥ ` + 1,

min{i ∈ S ∶ i > x`, Ai,x`+1 = 1} k = `,
Pmin(yk+1) 1 ≤ k ≤ ` − 1.

It is convenient to restrict τ to Σ0 ∶= Σ ∖⋃j≥0 τ jΣ−∞ ∖⋃j≤0 τ jΣ∞.

Remarks
1) It is possible to visualize Σ as the space of infinite paths in the

directed graph Γ with vertex set S ×N and edges connecting (b, n) to
(c, n + 1) iff Ab,c = 1.

2) If Ω = SN is the full shift, and V is the adding machine, then τ is
the induced transformation VΣ0 in the sense that τ(x) = V F (x)(x) (x ∈
Σ0) where F (x) ∶= min{n ≥ 1 ∶ V n(x) ∈ Σ0}.

3) Adic transformations were introduced in [V1] (see also [V2] and
[V3]) in the more general setting of non-stationary Markov chains.

Let G be a locally compact, Abelian, Polish topological group. For
f ∶ Σ→ G, consider the skew product transformation Tf ∶ Σ×G→ Σ×G
defined by Tf(x, y) ∶= (Tx, y + f(x)).
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Now Tf ’s tail relation is

T(Tf) ∶= {((x, y), (x′, y′)) ∈ (Σ ×G)2 ∶ ∃ n ≥ 0, T nf (x, y) = T nf (x′, y′)}
= {((x, y), (x′, y′)) ∈ (Σ ×G)2 ∶ (x,x′) ∈ T(T ), y′ − y = ψf(x,x′)}

where the symmetric (or tail) cocycle ψf ∶ T→ G is defined by

ψf(x,x′) ∶=
∞

∑
k=0

(f(T kx) − f(T kx′)).

Consider τφf ∶ Σ0 ×G→ Σ0 ×G defined by

τφf (x, y) ∶= (τx, y + φf(x)),
where φf(x) = ψf(x, τx). It is easy to see that the orbits of τφf are
exactly the equivalence classes of T(Tf) ∩ (Σ0 ×G)2.

In this section we identify the τφf -invariant locally finite measures
for certain f ∶ Σ→ G which we now proceed to describe. For f ∶ Σ→ S1

and k ≥ 1, let

vk(f) ∶= sup{∣f(x) − f(y)∣ ∶ x, y ∈ Σ, xj = yj ∀ 1 ≤ j ≤ k}.
The collection of S1-valued Hölder continuous functions on Σ is HS1 ∶=
{f ∶ Σ → S1 ∶ ∃ 0 ≤ θ < 1, vn(f) = O(θn) as n →∞} and the collection
of S1-valued functions on Σ with summable variations is

FS1 ∶= {f ∶ Σ→ S1 ∶
∞

∑
k=1

vk(f) < ∞}.

The collection of G-valued Hölder continuous functions on Σ is HG ∶=
{f ∶ Σ→ G ∶ ∀γ ∈ Ĝ, γ ○f ∈ HS1}, and the collection of G-valued function

on Σ with summable variations is FG ∶= {f ∶ Σ→ G ∶ ∀γ ∈ Ĝ, γ○f ∈ FS1}.
Finally, a function f ∶ Σ → G is said to have finite memory if ∃ N ≥ 1
such that f(x) = f(x1, . . . , xN).

These notions coincide with the usual notions of Hölder continuity,
summable variations, and finite memory of R-valued functions in the
case G = R. Clearly, every f ∶ Σ→ R which is Hölder (respectively with
summable variations, finite memory) in the usual sense is also Hölder
(respectively with summable variations, finite memory) according to
the definition above. To see the other direction, note that if f ∈ FR then
f is continuous, because γ ○ f is continuous for every γ ∈ R̂. Therefore
∥f∥∞ < ∞. Now consider the character γ(x) = e2πix/10∥f∥∞ to see that
vn(f) ≍ vn(γ ○f). It follows that if f is Hölder continuous (respectively
with summable variations, finite memory) in the above sense, then it is
Hölder (respectively with summable variations, finite memory) in the
ordinary sense.
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Clearly, if α ∶ G→ R is a continuous homomorphism, then α○HG ⊂ HR

and α ○ FG ⊂ FR.
A measurable function f ∶ Σ→ G is called periodic if ∃ γ ∈ Ĝ , z ∈ S1

and g ∶ Σ → S1 measurable, not constant, such that γ ○ f = zgg ○ T. It
is known that in the case f ∈ HG, g is necessarily in HS1 . The function
f is called aperiodic if it is not periodic.

2.1 Theorem
Suppose that ΣA is topologically mixing, and that f ∈ HG is aperiodic.

For every continuous homomorphism α ∶ G→ R:
1) there is a unique (e−α(φf ), τ)-conformal probability µα ∈ P(Σ0);
2) µα is non-atomic;
3) τφf is ergodic with respect to the Maharam measure on Σ0×G defined

by dmα(x, y) = e−α(y)dµα(x)dy.

Theorem 2.1 is essentially known (although we indicate the proof). Our
main result in this section is

2.2 Theorem
Suppose that f ∶ Σ→ G is aperiodic and has finite memory.
If m is an ergodic, τφf -invariant locally finite measure on Σ0 × G,

then m = cmα for some c > 0 and some continuous homomorphism
α ∶ G→ R.
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The collection of all locally finite, τφ-invariant measures on Σ0 × G
is identified by theorems 2.1 and 2.2 as the collection of mixtures of
Maharam measures. This is because by the ergodic decomposition
(see e.g. [A1]), any locally finite, τφ-invariant measure is a mixture of
ergodic ones.

Conditions for aperiodicity based on [Kow] were given in §3 of [A-
D1]. We’ll say that a topologically mixing subshift of finite type (Σ, T )
is almost onto if ∀ a, b ∈ S, ∃ n ≥ 1, a = s0, a1, . . . , sn = b ∈ S such that
T [sk] ∩ T [sk+1] ≠ ∅ (0 ≤ k ≤ n − 1).
2.3 Proposition

Suppose that Σ is mixing and almost onto, and that φ ∶ Σ → G sat-
isfies φ(x) = φ(x0), then either φ is aperiodic, or ∃ γ ∈ Ĝ, λ ∈ S1 such

that γ ○ φ ≡ λ. In particular, if Group(φ(Σ) − φ(Σ)) = G, then φ is
aperiodic.

Some of the proofs use the theory of non-singular equivalence rela-
tions and we provide some background.

Let (X,B) be the standard Borel space. An equivalence relation R ⊂
X ×X is called standard, if R is a Borel subset of X ×X, that is R is in
the product σ-field B×B. For any x ∈X R(x) ∶= {y ∶ (x, y) ∈ R} is the
equivalence class of x, and for a subset A ⊂X, R(A) = ∪{R(x) ∶ x ∈ A)}
is called the saturation of A. The standard equivalence relation R is
called countable if R(x) is countable for any x.

For a countable, standard relation R, A ∈ B Ô⇒ R(A) ∈ B. If
G is a countable group of automorphisms of X then RG = {(x, g(x)) ∶
x ∈ X, g ∈ G} is a countable, standard equivalence relation, and con-
versely, any countable standard relation R is generated in this way by
a countable group of automorphisms (see theorem 1 in [F-M]). A σ-
finite measure µ is called non-singular for R if µ(R(A)) = 0 whenever
µ(A) = 0; it is called ergodic if, in addition, either µ(R(A)) = 0 or
µ(X ∖R(A)) = 0 for every A ∈ B.

By a holonomy we mean a Borel automorphism φ ∶ A→ φ(A) (some
A ∈ B) whose graph Γ(φ) ∶= {(x,φ(x)) ∶ x ∈ A} is a subset of R.
A σ- finite measure which is non-singular with respect to R is called
invariant for R if µ(A) = µ(φA) for any holonomy φ. By corollary 1 in
[FM], µ is invariant under R iff µ is invariant for the action of any G
with RG = R.

The following proposition appears in [P-S] (see also [B-M]). We use
the notation a =M±1b for the double inequality M−1a ≤ b ≤Mb.

2.4 Proposition
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Suppose that ΣA is topologically mixing, and f ∈ FR. There is a
unique (e−φf , τ)-conformal probability µ ∈ P(Σ0), and there exists M >
1 such that

(◇) µ([x1, . . . , xn]) =M±1e−Pn+∑
n−1
k=0 f(T

kx) ∀ x ∈ Σ, n ≥ 1

where P = max{hp(T ) + ∫Σ fdp ∶ p ∈ P(Σ), p ○ T −1 = p}.

The property (◇) is known as the Gibbs property. A T -invariant prob-
ability with the Gibbs property is known as a Gibbs measure.

As is shown in [Bo] and [R1]:

● ∃ a unique probability µf ∈ P(Σ) such that
dµf○T

dµf
= λe−f for some

λ > 0;

● T is exact (whence τ is ergodic) with respect to µf ;

● ∃ a T -invariant probability pf ∼ µf such that ∥ log
dpf
dµf

∥∞ < ∞;

and

● ∃ M > 1 such that

pf([x1, . . . , xn]), µf([x1, . . . , xn]) =M±1e−Pn+∑
n−1
k=0 f(T

kx) ∀ x ∈ Σ, n ≥ 1

where P is the topological pressure of f given by the variational prin-
ciple

P ∶= max{hp(T ) + ∫
Σ
fdp ∶ p ∈ P(Σ), p ○ T −1 = p} = hpf (T ) + ∫

Σ
fdpf .

The probability pf is known as the equilibrium measure of f (being the
unique maximizing T -invariant probability) and is a Gibbs measure.

Proof of proposition 2.4 For every admissible word c = (c1, . . . , cn)
and x ∈ Σ such that Acnx1 = 1 let (c, x) denote the concatenation
(c1, . . . , cn;x1, x2, . . .). The proof relies on the characterization of (e−φf , τ)-
conformal measures as those measures µ for which

dµ ○ κ
dµ

= e−ψf ((a,x),(b,x))

whenever a = [a1, . . . , an], b = [b1, . . . , bn] are nonempty with an = bn,
and κ ∶ a → b is defined by κ(a, x) ∶= (b, x). To check this charac-
terization, suppose x ∈ Σ0 and set y = τ(x). By the definition of
the Adic Transformation, there exists some n0 such that for every
z ∈ [x1, . . . , xn0],

τ(z) = (y1, . . . , yn0 ; zn0+1, zn0+2, . . .).
Equivalently, τ ∣[x1,...,xn0 ] = κ where κ ∶ a → b is defined as before with
a = (x1, . . . , xn0) and b = (y1, . . . , yn0). For z = (a,w), the conformality
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condition now reads
dµ ○ κ
dµ

(a,w) = e−φf (a,w) = e−ψf ((a,w),τ(a,w)) = e−ψf ((a,w),(b,w)).

Existence
We claim that µf is (e−φf , τ)-conformal. To establish this, suppose

that a, b and κ are as in the above. We show that
dµf○κ

dµf
(a, x) = e−ψf ((a,x),(b,x)).

For va ∶ T [an] → a defined by va(x) ∶= (a, x) we have that v−1
a = T n ∶

a→ T [an] whence

dµf ○ va
dµf

(x) = (dµf○T
n

dµf
(a, x))

−1

= λ−ne∑n−1k=0 f○T
k(a,x),

and, since κ = vb ○ v−1
a ,

dµf○κ

dµf
(a, x) = dµf○vb

dµf
(T n(a, x))dµf○T

n

dµf
(a, x)

= dµf○vb
dµf

(b, x)dµf○T
n

dµf
(a, x)

= e−ψf ((a,x),(b,x)).
Uniqueness

Suppose that ν ∈ P(Σ0) is (e−φf , τ)-conformal. It follows that if
a = [a1, . . . , an], b = [b1, . . . , bn] are both nonempty with an = bn, and
κ ∶ a→ b is defined by κ(a, x) ∶= (b, x) then

dν○κ
dν (a, x) = e−ψf ((a,x),(b,x)),

whence ∃ M > 1, Kn(s) > 0 (n ≥ 1, s ∈ S) such that

ν([x1, . . . , xn]) =M±1Kn(xn)e∑
n−1
k=0 f(T

kx) ∀ n ≥ 1, x ∈ Σ0.

But
e∑

n−1
k=0 f(T

kx) =M±1ePnpf([x1, . . . , xn])
and so

ν([x1, . . . , xn]) =M±2Kn(xn)ePnpf([x1, . . . , xn]).
It follows that

ν(T −n[s]) =M±2Kn(s)ePnpf([s])
whence ∑s∈SKn(s) ≍ e−Pn, ν([x1, . . . , xn]) ≤ M ′pf([x1, . . . , xn]), and
ν ≪ µf .

Writing F ∶= dν
dµf

, we see from dν○τ
d ν = dµf○τ

dµf
that F ○ τ = F mod µf ,

whence by ergodicity F ≡ 1 and ν = µf . �
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Proof of theorem 2.1
Let α ∶ G → R be a continuous homomorphism. By proposition 2.4

and its proof, there is a unique (e−α(φf ), τ)-conformal probability µα ∈
P(Σ0), and this measure is equivalent to the (invariant) equilibrium
probability measure pα(φf ).

It is shown in [G] (see also [A-D2]) that if f ∈ HG is aperiodic then Tf
is exact with respect to m = p×mG where p is some equilibrium measure
on Σ. In particular, Tf is exact with respect tomα ∼ pα(φf )×mG, whence
τφf is ergodic with respect to mα. �

Now let f ∶ Σ→ G be measurable. If ∃ a globally supported, σ-finite
Tf -nonsingular measure m on Σ ×G such that
(Σ ×G,B(Σ ×G),m,Tf) is exact, then f is aperiodic.

To see this, suppose otherwise, that ∃ γ ∈ Ĝ , z ∈ S1 and g ∶ Σ → S1

Hölder continuous, not constant , such that γ ○ f = zgg ○ T . Consider
G ∈ L∞(Σ × G) defined by G(x, y) ∶= g(x)γ(y), then G is not m-a.e.
constant and G○Tf = zG. Thus Tf is not weakly mixing and hence not
exact (in particular, G is T −n

f B-measurable ∀ n ≥ 0).

2.5 Proposition
Let f ∈ FG. Any τφf -invariant, ergodic locally finite measure m on

Σ × G with Hm = G is proportional to a Maharam measure, and the
existence of such implies that f is aperiodic.

Proof Let m be a τφf -invariant, ergodic locally finite measure on
Σ × G with Hm = G. By the Basic Lemma, m has the form dm(x, y) =
eα(y)dµ(x)dy where α ∶ G → R is a continuous homomorphism and
µ is (eα○φf , τ)-conformal, whence (eφα○f , τ)-conformal. Proposition 2.4
shows that the (unique) conformal measure has the Gibbs property (◇),
and is therefore globally supported on Σ. It follows that m is globally
supported and so as shown above, f is aperiodic. �

By possibly changing the state space, we may assume that f(x) =
g(x1, x2) in the assumptions of theorem 2.2. The proof of theorem 2.2
uses lemma 2.6 below.

For u ∶ Σ→ S1 and ` ≥ 1, set u`(x) ∶= ∏`−1
j=0 u(T jx).

2.6 Lemma
Assume u ∶ Σ→ S1 is Hölder continuous, then either:

(1) ∃ z ∈ S1, g ∶ Σ→ S1 Hölder continuous, such that u = zgg ○ T ;
or

(2) ∃ ε > 0, `0 ≥ 1 such that ∀ ` ≥ `0, x ∈ Σ, ∃ y ∈ Σ satisfying

x1 = y1, T
`y = T `x and ∣u`(y) − u`(x)∣ ≥ ε.
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Proof Let L ∶ C(X) → C(X) be the operator (Lf)(x) = ∑Ty=x f(y).
Ruelle’s Perron-Frobenius theorem implies that ∃λ > 0, a Borel proba-
bility measure ν and a positive continuous function h such that L∗ν =
λν, Lh = λh, ∫ hdν = 1. Moreover, ν and h are uniquely determined
up to a multiplicative constant, and ∀f ∈ C(X), λ−nLnf → h ∫ fdν
uniformly on Σ. Let P be the operator Pf = λ−1L( h

h○T f). It is not
difficult to check that P1 = 1 and that if ϕ ∶ Σ → S1 is continuous and
Pϕ ≡ 1, then ϕ ≡ 1.

Let Pu be the perturbed operator Puf ∶= P (uf). One checks that for
every n, P n

u f = P n(unf) = λ−nLn( h
h○Tnunf). In [G-H] it is shown that

either ∃z ∈ S1 and ∃g ∶ Σ→ S1 Hölder continuous such that Pu(g) = zg,
or ∥P n

u f∥∞ → 0 for every f ∈ C(Σ).
We show that if (2) fails, then ∥P n

u f∥∞ /→ 0 for some f ∈ C(Σ). This
proves the lemma, because it implies that ∃z ∈ S1 and ∃g ∶ Σ → S1

Hölder continuous such that Pu(g) = zg, and Pu(g) = zg implies that
P ( g

zg○T u) = 1, whence u = z g○Tg . hdν is known to be ergodic and globally

supported, (see e.g. [R2]). Therefore ∣g∣ ≡ 1 and (1) follows.
If (2) fails, ∀ε > 0 there are x(k) ∈ Σ, 1 ≤ `k ↑ ∞ such that if

y ∈ Σ, k ≥ 1, x
(k)
1 = y1 and T `kx(k) = T `ky

then

∣u`k(x(k)) − u`k(y)∣ < ε.
By possibly passing to a subsequence, we can ensure that ∃a ∈ S∀k ≥
1, x

(k)
1 = a. Set γ0 ∶= min{h(x)h(y) ∶ x, y ∈ Σ}. Since Σ is compact, γ0 > 0

and

∥P `k
u 1[a]∥∞ ≥ ∣(P `k

u 1[a])(T `kx(k))∣

= λ−`k
RRRRRRRRRRRR

∑
y∈Σ, T `ky=T `kx(k)

h(y)
h(T `ky)u`k(y)1[a](y)

RRRRRRRRRRRR
≥ γoλ−`k ∑

y∈Σ, T `ky=T `kx(k)

(1 − ∣u`k(y) − u`k(x(k))∣)1[a](y)

≥ γ0(1 − ε)λ−`kL`k1[a](x(k))
Since λ−n(Ln1[a])(x) tends uniformly to h(x)ν[a], we have that

lim inf
n→∞

∥P n
u 1[a]∥∞ ≥ γ0(1 − ε)min

x∈Σ
h(x) > 0

as required. �

If u ∶ W2(Σ) → S1, u(x) = u(x1, x2) and a ∈ Wn+1 is a path a =
(a1, . . . , an+1) of length n, then un is constant on a. We denote un(a) ∶=
un∣a = ∏n

i=1 u(ai, ai+1).
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In lemma 2.6, when u(x) = u(x1, x2), (2) has the combinatorial form:
(2’) ∃ `0 such that ∀ ` ≥ `0, paths a = (a1, . . . , a`+1) ∈ W`, ∃ a path
b = (b1, . . . , b`+1) ∈ W` such that a1 = b1, a`+1 = b`+1 and u`(a) ≠ u`(b).
Proof of theorem 2.2

By the Basic Lemma and proposition 2.4, it suffices to show that
Hm = G.

Suppose otherwise that H ≠ G, then ∃ γ ∈ Ĝ, γ ≠ 1 such that γ∣H ≡ 1.
Since m is τφf -invariant, it is also T(Tf)-invariant and if κ ∶ A →

κ(A) (A ∈ B(Σ ×G) is a T(Tf)-holonomy, then m(κ(A)) =m(A).
Using aperiodicity and lemma 2.6, we fix ` ≥ 1 so large that ∀ paths

a = (a1, . . . , a`+1) ∈ P`, ∃ a path b = ba = (b1, . . . , b`+1) ∈ P` such that
a1 = b1, a`+1 = b`+1 and γ○f`(a) ≠ γ○f`(b), equivalently f`(a)−f`(b) ∉H.

Set J ∶= {f`(a) − f`(ba) ∶ a ∈ P`}, then J ⊂ G ∖H and J is finite. Set
m ∶= ∑j∈Jm ○ Qj, then m ⊥ m and ∃ K ⊂ Σ × G compact such that
m(K) > 0, m(K) = 0.

Set M = ∣W`∣. Approximating K by larger precompact open sets,
we see that ∃ U ⊂ Σ × G open , U compact such that K ⊂ U and

m(U) < m(K)

2M .
For each z = (x, y) ∈K ∃ a set W (z) = C(z)×V (z) of form cylinder×

open such that z ∈W (z) ⊂ U . By compactness of K ∃ z1, . . . , zN such
that K ⊂ V ∶= ⋃Nk=1W (zk). We claim that V is a disjoint union of sets
of form cylinder×open. To see this, let L be the maximum length of the
cylinders C(z1), . . . ,C(zN), then V = ⋃Nk=1W (zk) = ⋃Nk=1⋃c∈WL, c⊂C(zk) c×
V (zk) – a disjoint union. Thus K ⊂ V and m(V ) < m(V )

2M .
It follows that ∃ a set C × W of form cylinder × open such that

m(C ×W ) > 0 and m(C ×W ) < m(C×W )

2M , otherwise V would not have
these properties.

Since C ×W = ⋃a∈W`
(C,a) ×W , ∃ a ∈W` such that m((C,a) ×W ) ≥

m(C×W )

M .
Next, ∃ b = (b1, . . . , b`+1) ∈ W` such that a1 = b1, a`+1 = b`+1 and

f`(a) − f`(b) ∈ J .
Define τ ∶ (C,a) × W → C × G by τ((C,a, x), y) ∶= ((C, b, x), y +

f`(b)−f`(a)). Evidently τ is a T(Tf)-holonomy and so by assumption,

m(τ((C,a) ×W )) =m((C,a) ×W ) ≥ m(C×W )

M .
On the other hand, τ((C,a) ×W )) ⊂ Qf`(b)−f`(a)C ×W whence

m(C×W )

M ≤m(τ(C,a)×W ) ≤m(Qf`(b)−f`(a)C×W ) ≤m(C×W ) < m(C×W )

2M

and 1
2 > 1. This contradiction establishes theorem 2.2. �

Remark
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The proof of theorem 2.2 establishes the (stronger) statement:
Suppose that f ∶ Σ→ G is aperiodic and has finite memory.
If m is an ergodic, T(Tf)-invariant locally finite measure on Σ × G,

then m = cmα for some continuous homomorphism α ∶ G→ R and some
c > 0.

We conclude this section with an application of theorem 2.2 to the
“Markov-Pascal-adic” transformations considered in [P-S].

Let Σ = ΣA be a mixing subshift of finite type and let f ∶ Σ→ G. We
use the notation

xji ∶= (xi, xi+1, . . . , xj) , x∞i = (xi, xi+1, . . .) (x ∈ Σ)
Recall from [P-S], the equivalence relations:
S+A ⊂ ΣA ×ΣA defined by

S+A = {(x, y) ∈ ΣA ×ΣA ∶ ∃ n ≥ 1, x∞n = y∞n ,
(y1, . . . , yn) a permutation of (x1, . . . , xn)};

and SfA ⊂ ΣA ×ΣA defined by

SfA ∶= {(x, y) ∈ ΣA ×ΣA ∶ ∃ n ≥ 1, x∞n = y∞n , fn(x) = fn(y)}.

Evidently S+A = SF#

A where F# ∶ Σ→ ZS is defined by F#(x1, x2, . . . )i ∶=
δi,x1 (i ∈ S).

Suppose that G is discrete. Evidently if f ∶ Σ→ G then

(x, y) ∈ SfA ⇐⇒ ((x,0), (y,0)) ∈ T(Tf)
whence

(x, y) ∈ SfA ∩Σ2
0 ⇐⇒ ∃ n ∈ Z, (y,0) = τnφf (x,0)

and SfA ∩Σ2
0 is generated by the induced transformation (τφf )Σ0×{0}.

We claim (as in [P-S]) that if f has finite memory and α ∶ G → R is

a homomorphism, then µα is SfA-invariant, ergodic.
To see this, recall from theorem 2.1, that mα is τφf -invariant, ergodic;

whence mα∣Σ0×{0} is (τφf )Σ0×{0}-invariant, ergodic; whence our claim
(since mα(A × {0}) = µα(A)).
2.7 Corollary

Suppose that f ∶ Σ→ Zd (d ≥ 1) is aperiodic and has finite memory.

If ν ∈ P(Σ) is SfA-invariant and ergodic, then ν = µα for some homo-
morphism α ∶ Zd → R.

Proof
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We’ll deduce this from theorem 2.2. To do this, we show first that
ν(Σ ∖Σ0) = 0.

We claim that all SfA-equivalence classes are infinite (this implies
that ν is non atomic, whence ν(Σ ∖Σ0) = 0 as this set is countable).

To see this we’ll need the symmetrization F of f defined on the
mixing SFT Σ×Σ by F (x, y) = f(x)−f(y) (F ∶ Σ×Σ→ Zd). Evidently
F has finite memory.

We claim that F is aperiodic. If not, then

e2πiq(f(x)−f(y)) = z g(Tx,Ty)g(x,y) (x, y ∈ Σ)

for some q ∈ Z, q ≠ 0, z ∈ S1, g ∶ Σ ×Σ→ S1 and then

e2πiq(fN (x)−fN (y)) = zN g(TNx,TNy)
g(x,y) ∀ N ≥ 1, x, y ∈ Σ.

Choosing N ≥ 1 and periodic points y = TNy, y′ = TN+1y′, we have for
all x ∈ Σ0,

e2πiqfN (Tx) = e2πiqfN (y)zN g(TN+1x,y)
g(Tx,y)

e2πiqfN+1(x) = e2πiqfN+1(y
′)zN+1 g(T

N+1x,y′)
g(x,y′)

whence (!) e2πiqf(x) = Z G(Tx)
G(x) contradicting the aperiodicity of f .

Let µ be the measure of maximal entropy on Σ and let
P ∶ L1(µ × µ) → L1(µ × µ) be the transfer operator. By the local limit
theorem of [G-H], ∃ c > 0 such that ∀ cylinders a, b ⊂ Σ,

n
d
2P n(1(a×b)∩[Fn=0])(x, y) → cµ(a)µ(b) uniformly on Σ ×Σ as n→∞.

Now fix x ∈ Σ and N ≥ 1, then ∃ nN such that

n
d
2P n(1([a]×[b])∩[Fn=0])(T nx,T nx) ≥ c

2µ([a])µ([b]) ∀ a, b ∈ WN , n ≥ nN
whence

∣{y ∈X ∶ (x, y) ∈ SfA}∣ ≥ ∣{y ∈X ∶ T nNy = T nNx, FnN (x, y) = 0}∣
≥ ∣WN ∣ → ∞

as N →∞ and establishing our claim.
As mentioned above, ν(Σ∖Σ0) = 0 and the probability ν on Σ0×{0}

defined by ν(A×{0}) = ν(A) is (τφf )Σ×{0}-invariant and ergodic. Define
the measure m on Σ0 ×Zd by

m(A) ∶= ∫
Σ0

ϕ−1

∑
k=0

1A ○ τ kφfdν.

The measure m is evidently locally finite. By Kac’s formula, it is
τφf -invariant, and by Kakutani’s tower theorem it is τφf -ergodic (see
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e.g. [A1]). Thus, by theorem 2.2, m = mα for some homomorphism
α ∶ Zd → R. It follows that ν = µα. �

2.8 Corollary
Suppose Σ is a mixing, almost onto SFT.
If ν ∈ P(Σ) is S+A-invariant and ergodic, then ν = µα for some homo-

morphism α ∶ Zd → R.

Proof
As mentioned above, S+A = SF#

A where F# ∶ Σ → ZS is defined by
F#(x)i ∶= δi,x1 (i ∈ S). Since evidently Group(F#(Σ)−F#(Σ)) = ZS,
F# is aperiodic by proposition 2.3. The result follows from corollary
2.7. �

Remark
Theorems 2.9 and 2.11 in [P-S] both follow from corollary 2.8. In

both cases, S = {0,1}, d = 1 and Σ is almost onto.

§3 A logarithmic ergodic theorem

As in §2, let S = {0,1, . . . , s−1} where s ∈ N and let A ∶ S×S → {0,1}
be an irreducible and aperiodic matrix and let Σ = Σ+

A ⊂ SN be the
corresponding (topologically mixing) subshift of finite type. Recall
that T ∶ Σ → Σ is the left shift, τ ∶ Σ0 → Σ0 is the induced adding
machine, where Σ0 is obtained from Σ as in §2.

In this section, we consider the asymptotic properties of τφf , where
f ∶ Σ → Rd an aperiodic Hölder continuous function, with respect to
Maharam measures. It will be convenient to use the supremum norm
on Rd, ∥(x1, . . . , xd)∥ ∶= max1≤k≤d ∣xk∣.

Fix some α ∈ Rd and consider the Maharam measure mα ∶ B(Σ×Rd) →
[0,∞] defined by dmα(x, y) = e−α⋅ydµ(x)dy where µ = µα is the (eα⋅f , τ)-
conformal measure.

As mentioned above, the aperiodicity of f implies that Tf is exact
with respect to mα. It follows that τφf is ergodic with respect to mα

(generating the the tail relation for Tf ) and also conservative (being
invertible, ergodic and preserving a non-atomic measure).

We prove the

Logarithmic ergodic theorem

(‡)
log∑n−1

k=0 F ○ τ kφf
logn

Ð→ hpα(T )
htop(T ) mα-a.e. as n→∞

∀F ∈ L1(mα)+ where pα is the equilibrium measure of α ⋅ f .
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It will sometimes be convenient to denote

Sn(F ) = S
(τφf )

n (F ) ∶=
n−1

∑
k=0

F ○ τ kφf .

The proof of the logarithmic ergodic theorem is based on the follow-
ing two reductions:

Firstly, it is sufficient to establish (‡) for a single F0 ∈ L1(mα)+
since then, by the ratio ergodic theorem, Sn(F )

Sn(F0)
→ ∫X Fdm

∫X F0dm
a.e., whence

logSn(F ) ∼ logSn(F0) a.e..
Secondly, in order to establish (‡) for F0 ∈ L1(mα)+, it is sufficient

to find:
● sets A, B ∈ B(Σ × Rd) with mα(A), mα(B) > 0 and
● (random) subsequences Mk ∶ A→ N, Nk ∶ B → N such that Mk, Nk ↑
∞, logMk ∼ logMk+1, logNk ∼ logNk+1 as k →∞;

satisfying

(‡) lim sup
k→∞

logSMk
(F0)

logMk

≤ hpα(T )
htop(T ) on A,

and

(‡) lim inf
k→∞

logSNk(F0)
logNk

≥ hpα(T )
htop(T ) on B.

To see this, note that ∀ n large ∃ k = kn ≥ 1 such that Mk ≤ n ≤Mk+1,

whence logSn(F0)

logn ≤ logSMk+1(F0)

logMk
and it follows from logMk ∼ logMk+1

that
lim supn→∞

logSn(F0)

logn ≡ lim supk→∞
logSMk(F0)

logMk
.

Similarly lim infn→∞
logSn(F0)

logn ≡ lim infk→∞
logSNk(F0)

logNk
.

The functions lim supn→∞
logSn(F0)

logn and lim infn→∞
logSn(F0)

logn are τφf -
invariant, whence so are the sets

A ∶= [lim sup
n→∞

logSn(F0)

logn ≤ hpα(T )

htop(T )
], B ∶= [lim inf

n→∞

logSn(F0)

logn ≥ hpα(T )

htop(T )
].

By ergodicity, both sets (containing sets of positive measure by (‡) and
(‡)) are of full measure and (‡) is established for F0.

In the Main Lemma (below), we’ll establish (‡) and (‡) for F0 =
1Σ×BM (0) and A = B = Σ×BM ′(0) (for some M,M ′ > 0 where BM(0) ∶=
{y ∈ Rd ∶ ∥y∥ ≤ M}) using the local limit theorem of [G-H] and large
deviation techniques.

The subsequences Mk, Nk are related to some counting functions,
which we proceed to define.
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We define the counting functions Λn ∶ ΣA → N by

Λn(x) ∶= min{N ≥ 1 ∶ {(τ kx)n1 ∶ 0 ≤ k ≤ N − 1} = Wn}
where Wn denotes the collection of admissible words of length n (as in
§2). The reader may easily verify that in case Σ is a full shift, Λn ≡
sn = ∣Wn∣ and consequently k ↦ (τ kx)n1 defines a bijection {0,1, . . . , sn−
1} ↔ Wn ∀ x ∈ Σ. In other words, τ generates T-equivalence classes
efficiently. For a mixing topological Markov shift, as shown by the
counting proposition below, the situation is analogous.

3.1 Counting Proposition Suppose that ΣA is a mixing topological
Markov shift, and that L ≥ 1 is such that all entries of AL are positive,
then for x ∈ Σ0:

∣Wn∣ ≤ Λn(x) < 3∣Wn+L∣

Proof. The left hand inequality follows directly from the definition
of Λn(x). To see the right side, assume by way of contradiction that
Λn(x) ≥ 3∣Wn+L∣, then there is a word a ∈ Wn+L and 0 ≤ k1 < k2 <
k3 ≤ Λn(x) − 1 such that τ kjx ∈ [a] for k = 1,2,3. Set τ kjx = (a, z(j)),
then z(1) ≺ z(2) ≺ z(3). For every ε ∈ Wn choose some point of the
form x(ε) = (ε,wL−1

0 , z(2)) where wL−1
0 is some word which makes x(ε)

admissible. Clearly, τ k1x ≺ x(ε) ≺ τ k3x. Thus Wn is spanned by τ jx
for 0 ≤ j < k3 in contradiction to the minimality of Λn(x). The right
hand inequality is thus proved. �

Set λ ∶= exphtop(Σ) and assume without loss of generality that L > 2,
where L is as in proposition 3.1. For every x ∈ Σ0 and n large enough
set

un(x) ∶= min{u > n +L ∶ xu−1 < Pmax(xu)} , u′n ∶= un −L
`n(x) ∶= max{` < n +L ∶ x`−1 < Pmax(x`)} , `′n ∶= `n −L

where Pmax is as in §2. By possibly adding a vector of constants to f ,
we may assume that ∫ fdpα = (0, . . . ,0) (note that neither φf nor pα
change when a constant is added to f).

Set
ρn ∶= (n +L) − `n, σn ∶= un − (n +L).

3.2 Lemma ∃ M0 ∈ R+ such that

lim sup
n→∞

ρn
logn

, lim sup
n→∞

σn
logn

≤ M0 a.e.

Proof We prove this only for σn, the proof for ρn being essentially
the same. Set P ∶= Ptop (α ⋅ f). Recall that Σ∞ consists of at most s
points, all of which are periodic. Set Σ∞ = {x(1), x(2), . . . , x(r)} and let
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p be the least common multiple of the periods of x(i), then r ≤ s and
for every x ∈ Σ∞, T px = x. Define by induction P k+1

max = Pmax ○ P k
max. By

the definition of σn, if σn(x) > b then

T n+Lx ∈ [P b
max(xn+b+L), . . . , Pmax(xn+b+L), xn+b+L]

For b > s the word (P b
max(xn+b+L), . . . , P b−s

max(xn+b+L)) is made of a re-
peating period, hence is the prefix of a maximal point. Applying this
argument to bn ∶= ⌊M0 logn⌋, using the invariance of pα and the struc-
ture of Σ∞, we have

pα [σn > bn] ≤
r

∑
i=1

pα [x(i)
0 , . . . , x

(i)
bn−s

]

Since pα is a Gibbs measure and since for every i, T px(i) = x(i)

pα [x(i)
0 , . . . , x

(i)
bn−s

] = O (eα⋅fbn(x(i))−bnP) = O (e
bn
p
α⋅fp(x(i))−bnP)

whence

(1) pα [σn >M0 logn] = O (
r

∑
i=1

nM0(
α⋅fp(x

(i)
)

p
−P )) .

It follows from the unicity of the equilibrium measure that
α⋅fp(x(i))

p < P .

Thus, the exponents in (1) are all negative and for M0 large enough,
∞

∑
n=1

pα [σn >M0 logn] < ∞.

The result follows. �
The next lemma is the main lemma, being the version of (‡) and (‡))

that we prove. Let

B ∶= 2L∥f∥ +
∞

∑
k=1

vk(α ⋅ f)

where vk(α ⋅ f) = sup{∣α ⋅ ϕ(x) − α ⋅ ϕ(y)∣ ∶ xk−1
0 = yk−1

0 }.

3.3 Main Lemma There exists M > 2B for which
(2)

lim sup
n→∞

1

n
logSΛu′n

−1(1Σ×BM (0)) ≤ hpα(T ) mα - a.e. on Σ ×BM/2(0)

(3) lim inf
n→∞

1

n
logSΛ`′n

−1(1Σ×BM (0)) ≥ hpα (T ) mα - a.e. onΣ×BM/2(0)

The rest of this section is devoted to the proof of the main lemma.
Set

UN (x,M) ∶= {ε ∈ WN ∶ ∀y ∈ [ε] ∥fN (y) − fN (x)∥ <M}
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VN (x,M) ∶= {y ∈ Σ0 ∶ ∀z ∈ [yN−1
0 ] ∥fN (z) − fN (x)∥ <M}

= ⋃
ε∈Un(x,M)

[ε].

3.4 Lemma
For each M > 2B, ∃M1,M2 > 0 such that for all (x, t) ∈ Σ0×BM/2(0)

and n large enough,

∣U`′n(x,M2)∣ ≤
Λ`′n

−1

∑
j=0

1Σ×BM (0) (τ jφf (x, t))

and
Λu′n

−1

∑
j=0

1Σ×BM (0) (τ jφf (x, t)) ≤ ∣Uun(x,M1)∣

Proof
Fix some x ∈ Σ0 and t ∈ Rd. We estimateAN ∶= ∑ΛN−1

j=0 1Σ×BM (0) (τ jφf (x, t))
for N = u′n, `′n. It follows from the minimality of Λn that ∀0 ≤ j ≤ ΛN−1,
TN+L (τ jx) = TN+L (x), because all the entries of AL are positive, so
∀ε ∈ Wn there exists c ∈ WL−1 such that (ε, c, Pmax(xN+L), x∞N+L) is ad-

missible and strictly larger than x. Thus ∑j−1
k=0 φf (τ kx) = fN+L (x) −

fN+L (τ jx), whence

AN = ♯ {0 ≤ j ≤ ΛN − 1 ∶ ∥fN+L (τ jx) − fN+L (x) − t∥ ≤M}

Since for j < ΛN (τ jx)∞N+L = x∞N+L, the map j ↦ (τ jx)N+L−1
0 is 1-1, so

AN = ∣BN ∣ where

BN = {(τ jx)N+L−1

0
∶ ∥fN+L (τ jx) − fN+L (x) − t∥ ≤M ; 0 ≤ j < ΛN} .

We now prove the required inequalities. Setting N = u′n in the above
inequality we have ∀(x, t) ∈ Σ0 ×BM/2(0)

Au′n = ∣{(τ jx)un−1
0 ∶ ∥fun (τ jx) − fun (x) − t∥ ≤M ; 0 ≤ j < Λu′n}∣

≤ ∣{ε ∈ Wun ∶ ∀y ∈ [ε] ∥fun(y) − fun(x)∥ ≤
3

2
M +B}∣

and the upper inequality follows with M1 ∶= B + 3M/2.
Using the same argument for N = `′n one shows that for all (x, t) ∈

Σ0 ×BM/2(0) and n large enough so that `′n is well defined,

A`′n ≥

∣{ (τ jx)`n−1

0
∶ ∀y ∈ [(τ jx)`n−1

0 ] ∥f`′n(y) − f`′n (x)∥ < M
2 −B 0 ≤ j < Λ`′n}∣.
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Since {(τ jx)`
′

n−1
0 ∶ 0 ≤ j ≤ Λ`′n − 1} = W`′n ,

AN ≥ ∣{ε ∈ W`′n ∶ ∥f`′n (τ jx) − f`′n (x)∥ <
M

2
−B}∣

and this is the lower inequality for M2 ∶= M
2 −B. �

The following lemma provides, together with lemma 3.4, the upper
estimation (2) in the Main Lemma.

3.5 Lemma ∀M > 0 lim
n→∞

1
n log ∣Un(x,M)∣ ≤ hpα (T ) mα a.e.

Proof Since pα is the Gibbs measure for α ⋅ f , there exists some
constant K such that for all y ∈ [εn−1

0 ],

K−1eα⋅fn(y)−nP (α⋅f) ≤ pα [εn−1
0 ] ≤Keα⋅fn(y)−nP (α⋅f).

By the definition of Un, for every εn−1
0 ∈ Un (x,M) and y ∈ [εn−1

0 ]

pα [εn−1
0 ] ≍ eα⋅fn(y)−nP (α⋅f) ≍ eα⋅fn(x)−nP (α⋅f)

whence

∣Un (x,M)∣ ≍ pα (Vn (x,M))
eα⋅fn(x)−nP (α⋅f)

Thus, ∣Un(x,M)∣ = O (enP (α⋅f)−α⋅fn(x)). Recall that according to our
assumptions, ∫ α ⋅ fdpα = 0, so P (α ⋅ f) = hpα (T ). The lemma follows
since by the ergodicity of pα, for almost all x ∈ Σ0 , α⋅fn (x) = o (n). �

We now turn to the lower estimation (3) in the Main Lemma.
For every N ∈ N and δ > 0 set

EN (δ) ∶= {y ∈ Σ0 ∶ pα [yN−1
0 ] > e−N (hpα(T )−δ)}

By the definition of UN(x,M), ∀M > 0, x ∈ Σ0 and N > 0,

(4) ∣UN(x,M)∣ ≥ eN(hpα(T )−δ) [pα (VN (x,M)) − pα (EN (δ))]
We prove that

lim
n→∞

1
n log pα (En (δ)) < 0 pα-a.e.

lim
n→∞

1
n log pα (Vn (x,M)) = 0 pα-a.e.

Since for almost all x ∈ Σ0, `n (x) ∼ n, (3) will follow from this, (4) and
lemma 3.4

3.6 Lemma lim
n→∞

1
n log pα (En (δ)) < 0 pα-a.e.
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Proof pα is a Gibbs measure, so ∃K such that ∀n∀ y

pα [yn−1
0 ] <Keα⋅fn(y)−nP (α⋅f)

whence

En (δ) ⊆ {y ∈ Σ ∶Keα⋅fn(y)−nP (α⋅f) > enδ−nhpα(T )} .
Since pα (α ⋅ f) = 0, P (α ⋅ f) = hpα (T ). Thus, for n large enough

En (δ) ⊆ {y ∈ Σ ∶ α ⋅ fn (y) > nδ/2} .
We will prove that

lim
n→∞

1

n
log pα {y ∈ Σ ∶ α ⋅ fn (y) > nδ/2} < 0.

using large deviations theory for the pα-distributions of α ⋅ fn.
Using the Hölder continuity of f and the Gibbs property of pα, it is

not difficult to prove that the following limit exists for q ∈ R (see [Bo]):

lim
n→∞

1

n
logEpα (eqα⋅fn) = P (α ⋅ f + qα ⋅ f) − P (α ⋅ f) =∶ c(q)

where P (⋅) denotes topological pressure and Epα denotes expectation
with respect to pα.

By standard large deviations theory (see e.g. theorem II.6.1 of [El]):

lim sup
n→∞

1

n
log pα {y ∈ Σ ∶ α ⋅ fn (y) ≥ nδ/2} ≤ − inf

p≥δ/2
I (p)

where I(p) is the Legendre-Fenchel transform of c(q) defined by I (p) ∶=
supq {pq − c (q)}.

We outline the (standard) proof that inf
p≥
δ
2

I(p) > 0.

By theorem 5.26 in [R1], c (q) is C2 in R (see also [G-H]). By ape-
riodicity, α ⋅ f is not cohomologous to a constant and therefore (see
[G-H])

c′ (q) = pq (α ⋅ f) and c′′ (q) > 0

where pq is the equilibrium measure of (1 + q)α ⋅ f . It follows that
I (p) = q0p − c (q0) where q0 is the maximum point for q ↦ qp − c(q)
satisfying

0 = p − c′ (q0) = p − pq0 (α ⋅ f)
whence

I (p) = q0pq0 (α ⋅ f) − P [(1 + q0)α ⋅ f] + P (α ⋅ f)
By the variational principle,

P [(1 + q0)α ⋅ f] = hpq0 (T ) + pq0 (α ⋅ f + q0α ⋅ f) .
Thus,

I (p) = P (α ⋅ f) − (hpq0 (T ) + pq0 (α ⋅ f)) > 0
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for p ≠ 0, because then pq0 ≠ pα (since pq0(α ⋅ f) = c′(q0) = p ≠ 0 =
pα(α ⋅ f)). Since I is finite and convex (being the the Legendre-
Fenchel transform of the convex function c), it is continuous, whence
infp≥δ/2 I (p) > 0. �

3.7 Lemma There exists M3 > 0 such that ∀δ > 0, for pα-a.e. x ∈
Σ0, ∃ N1 ∈ N such that ∀n > N1 ∃ n′ < δn, ε ∈ Wn′ satisfying

∥fn′ (y) − fn (x)∥ <M3 ∀y ∈ [ε] .

Proof Fix some δ′ > 0 (to be determined later). By the Ergodic
Theorem, for pα-almost all x ∈ Σ ∥fn (x) ∥ = o (n) so there exists
N1 = N1 (x, δ′) such that ∀n > N1 ∥fn (x)∥ < δ′n. Since f is aperiodic
and pα (f) = 0, {f ○ T k}∞k=1 satisfy a local limit theorem with respect
to pα (see [G-H]). Thus, ∃k0 ∈ N and c > 0 such that ∀ (ω1, . . . , ωd) ∈
{+1,−1}d, k ≥ k0

pα [∀i 3B < ωi(fk)i < 4B] ≥ c
kd/2

where (fk)i denotes the i-th coordinate of that vector. In particular,
for every ω = (ω1, . . . , ωd) ∈ {+1,−1}d, there exists u(ω) ∈ Wk0 such that

(5) ∀z ∈ [u(ω)] ∀i 2B < ωifk0 (z)i < 5B

It follows that for every c ∈ WL such that u(ω)c ∈ W and ∀z ∈ [u(ω)c]
and ∀i

B < ωifk0+L (z)i < 6B

We use u(ω) to construct ε. Fix some n > N1 and 1 ≤ i ≤ d. We
begin by constructing words εi ∈ Wn′i

such that ∣εi∣ < δ′n and such that
for N = ∣εi∣ and all z ∈ [εi]

∣fN(z)j ∣ < 7B for j ≠ i(6)

∣fN(z)j − fn(x)j ∣ < 7B for j = i(7)

We construct by induction sign vectors ωk = (ωk1 , . . . , ωkd) and words ck ∈
WL such that for all k vk ∶= (u(ω1), c1, u(ω2), . . . , ck−1, u(ωk)) is admis-
sible and such that (6) holds for all z ∈ [vk] with N = Nk ∶= ∣vk∣. Choose
ω1 = (ω1

1, . . . , ω
1
d) by ω1

i = sgnfn(x)i . Assume vk has been chosen and
choose some z ∈ [uk]. Define ωk as follows: if ∣fNk(z)i − fn(x)i∣ < 7B
stop and set εi ∶= vk; else set for j = i ωk+1

j ∶= sgn(fn(x)j − fNk(z)j),
and for j ≠ i, ωk+1

j ∶= −sgnfNk(z)j. Now set vk+1 ∶= (vk, ck+1, u(ωk+1))
where ck+1 ∈ WL is some word which makes vk+1 admissible. Since at
each step we get nearer to fn(x)i in steps bounded from below by B,
this procedure will stop after less than ∥fn(x)∥/B ≤ δ′n/B steps, so
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∣εi∣ ≤ δ′n(k0 + L)/B . It can be easily verified that εi satisfies (6) and
(7) for N = ∣εi∣. Now consider

ε ∶= (ε1, c1, ε2, . . . , cd−1, εd)

where cj ∈ WL make the above word admissible. The length of ε is less
than Ld+d(δ′n(k0 +L)/B) so by choosing δ′ small enough and n large
enough (i.e. N1 large enough) we can make this length smaller than
δn as required. Also, it follows from the construction of εi that for all
z ∈ [ε],

∥f∣ε∣(z) − fn(x)∥ < 8Bd

The lemma is thus proved for M3 ∶= 8Bd. �

3.8 Lemma ∃ c > 0, N2 ∈ N such that ∀n > N2

pα {y ∈ Σ ∶ ∀z ∈ [yn−1
0 ] ∥fn (z)∥ < 2B} ≥ c

n
d
2

.

Proof The probability in question is bounded from below by pα [∥fn∥ < B],
and this in turn is bounded below by the local limit theorem. �

3.9 Lemma There exists M4 > 2B such that for almost all x ∈ Σ0

lim
n→∞

1

n
log pα (Vn (x,M4)) = 0 pα-a.e.

Proof Fix some arbitrary δ > 0. FixN4 > max{N1, (N2 +L) /(1 − δ), (N3 +L)/(1 − δ)}
where N1 and N2 are given by lemma 3.7 and lemma 3.8, and N3 is
large enough to ensure that e−δn < c

nδ/2
for n > N3.

Assume n > N4. For almost all x ∈ Σ0 and all t ∈ R ∃ε = ε (x) ∈ Wn′

such that n′ < δn and

∀z ∈ [ε] ∥fn′ (z) − fn (x)∥ < M3

pα ({y ∶ ∀z ∈ [yn−(L+n
′)−1

0 ] ∥fn−(L+n′) (z) ∥ < 2B}) > e−δ(n−(L+n
′)) > e−δn

Set W ∶= {y ∶ ∀z ∈ [yn−(L+n
′)−1

0 ] ∥fn−(L+n′) (z) ∥ < 2B}. Consider the

set

V ′
n ∶= ⋃{[ε; c; yn−(n

′+L)−1
0 ] ∶ y ∈W and c ∈ WL}

One checks that V ′
n ⊆ Vn (x,M4) where M4 = M3 + 3B. We estimate

the measure of V ′
n. Since pα is a Gibbs measure, there exist a constant

K1 > 1 such that [a] , [b] , [a, b] ≠ ∅ ⇒ pα [a, b] > K−1
1 pα [a]pα [b]

and there is a constant K2 such that ∀a ∈ WN pα [a] > K−N
2 . Set
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W ′ ∶= {[yn−(n
′+L)−1

0 ] ∶ y ∈W}, then

pα (Vn) >K−1
1 K

−(n′+L)
2 ∑

[a]∈W ′

pα [a] ≥K−1
1 K

−(n′+L)
2 pα (W )

Thus, pα (Vn) >K−1
1 K−L

2 K−δn
2 e−δn. Since the above is true for all n such

that n > N4,

lim
n→∞

1

n
logVn (x,M4) ≥ −δ (1 + logK2) .

Since δ > 0 is arbitrary, the lemma is proved. �

As mentioned above, lemma 3.6, lemma 3.9 imply via (4) that ∃M >
2B such that

lim inf
n→∞

1

n
log ∣Un(x,M)∣ ≥ hpα(T ) a.e.

whence (using lemma 3.4) we have (3). This proves the Main Lemma,
and the logarithmic ergodic theorem. �

§4 Bounded rational ergodicity

Recall from [A2] that a conservative, ergodic, measure preserving
transformation (X,B,m,T ) is called boundedly rationally ergodic if
there is a set A ∈ B, 0 < m(A) < ∞ such that ∃M > 0 such that
for all n ≥ 1,

(⋆) ∥
n−1

∑
k=0

1A ○ T k∥
L∞(A)

≤M ∫
A
(
n−1

∑
k=0

1A ○ T k)dm.

The rate of growth of the sequence an = 1
m(A)2 ∫A∑

n−1
k=0 1A ○ T kdm does

not depend on the set A ∈ B, 0 < m(A) < ∞ satisfying (⋆). This
sequence is known as the return sequence of T and denoted an(T ) (see
[A1]). In this section we prove the following theorem:

Theorem 4.1
Let Σ be a topologically mixing subshift of finite type, let µ be the

(1, τ)-conformal measure and let f ∈ HRd be aperiodic, then τφf is
boundedly rationally ergodic with respect to m0 = µ ×mRd and

an(τφf ) ≍
n

(logn) d2
.

To prove theorem 4.1, we show that for A = Σ ×BM(0), M large,
∃ 0 < c < C < ∞ such that

cn

(logn) d2
≤ ∫

A
Sn(1A)dm0, ∥Sn(1A)∥L∞(A) ≤

Cn

(logn) d2
.
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As before, these estimations are first carried out along counting func-
tion sequences using the local limit theorem. We begin with the upper
estimation.

Let p0 be the measure of maximal entropy on Σ. It is known that
dp0 = h0dµ where h0 is bounded away from zero and infinity. Since φf
is invariant under addition of constants to f , we can and do assume
that Ep0(f) = (0, . . . ,0).
Lemma 4.2
∀ M > 0, ∃ A(M) > 0 such that

p0[∥fn(⋅) − b∥ ≤M] ≤ A(M)n−d/2 ∀ b ∈ Rd, n ∈ N.

Proof Set F ∶= [∥y∥ ≤ M] ⊆ Rd and fix some a = a(M) ∈ (0,1) such
that

1F (y1, . . . , yd) ≤ 2
d

∏
i=1

(sinayi
ayi

)
2

= γ̂(y)

where γ̂ is the Fourier transform of γ(t) ∶= 2( π
2a2 )d/21[∥t∥≤2a](t)∏d

i=1(1−
∣ ti2a ∣). It follows that

p0[∥fn − b∥ ≤M] = Ep0(1F (fn − b))
≤ Ep0(γ̂(fn − b))

= 1

(2π)d/2 ∫[∥t∥≤2a]
eib⋅tEp0(e−it⋅fn)γ(t)dt

≤ 1

(2π)d/2 ∫[∥t∥≤2a]
∣Ep0(e−it⋅fn)∣γ(t)dt =∶ An(M)

Note that the last term, An(M) does not depend on b.
As shown in [G-H], there exist ε > 0 and λ ∶ [∥ ⋅ ∥ < ε] → C such that

λ(t) = 1 − ct2 + o(∥t∥2) as t→ 0; and that for some 0 < θ < 1,

Ep0(e−it⋅fn) = { λ(t)n +O(θn) ∥t∥ ≤ ε,
O(θn) ∥t∥ ∈ [ε,2a].

Making ε smaller if necessary, we assume that for all ∥t∥ ≤ ε,

∣λ(t)∣ ≤ 1 − 1

2
ct2 ≤ e−ct2
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Using the above to estimate An(M), we have that for some K > 0,

An(M) ∝ ∫
[∥t∥≤2a]

∣Ep0(e−it⋅fn)∣γ(t)dt

≤ 2∫
[∥t∥≤ε]

∣λ(t)∣nγ(t)dt + (4a)dKθn

≤ 2

nd/2 ∫[∥τ∥≤ε
√
n]

∣λ( τ√
n
)∣
n

γ( τ√
n
)dτ + (4a)dKθn

≤ 2

nd/2 ∫[∥τ∥≤ε
√
n]
e−cτ

2

γ( τ√
n
)dτ + (4a)dKθn

∼ 2γ(0)
nd/2 ∫

Rd
e−cτ

2

dτ

The lemma follows from this. �
Set B ∶= L∥f∥∞ +∑k>0 vk(f) where L, as usual is some number such

that all the entries of AL are positive. Fix some M > 4B, set

A ∶= Σ0 × [∥t∥ ≤M]

and ϕ(x, t) ∶= 1A.

Lemma 4.3 There is some C1 > 0 such that for almost all (x, t),

∣SΛn(x)(1A)(x, t)∣ ≤ C1
λn

nd/2

Proof Let s be the number of states of Σ, set L0 ∶= L + s + 2, and
define

un(x) ∶= inf{u ≥ n +L0 ∶ xu−1 < Pmax(xu)}
`n(x) ∶= sup{` ≤ n +L0 ∶ x`−1 < Pmax(x`)}.

For p0-almost all x ∈ Σ these are finite. For such x we have the following
representation:

x = (x`n−1
0 , P un−`n−1

max (xun−1), . . . , Pmax(xun−1), xun−1, x
∞
un)

Define kn(x) ∈ N by the equation

τ kn(x)(x) = (P un−1
max (xun−1), . . . , Pmax(xun−1), xun−1, x

∞
un)

If b > xun−1 is be the minimal state such that bxun is admissible, then

τ kn(x)+1(x) = (P un−1
min (b), . . . , Pmin(b), b, x∞un)



INVARIANT MEASURES AND ASYMPTOTICS FOR SOME SKEW PRODUCTS35

We estimate SΛn1A by breaking it into two members

SΛn(x)(1A)(x, t) = Skn(x)(1A)(x, t) + SΛn(x)−kn(x)(1A)(τ
kn(x)
φf

(x, t))

≤ Skn(x)(1A)(x, t) + SΛn(τkn(x)+1x)(1A)(τ
kn(x)+1
φf

(x, t)) + 1

=∶ I + II + 1.

The inequality follows from the minimality of Λn(x) as {(τ jx)n−1
0 ∶ 0 ≤

j ≤ kn(x) + 1 +Λn(τ kn(x)+1x)} = Wn.
To estimate I, we begin by noting that the map j ↦ (τ jx)`n−1

0 is 1-1
for 0 ≤ j ≤ kn −1. To see this note that for such j, x ≺ τ jx ≺ τ knx in the
reverse lexicographic order whence

x∞`n = (τ knx)∞`n = (P un−`n−1
max (xun−1), . . . , Pmax(xun−1), xun−1, x

∞
un)

Thus the difference between the τ jx’s must be reflected in the first `n
coordinates. Since `n ≤ n +L0,

Skn(1A)(x, t) = ∣{0 ≤ j ≤ kn − 1 ∶ ∥t + (φf)j(x)∥ ≤M}∣
= ∣{0 ≤ j ≤ kn − 1 ∶ ∥fn+L0(τ jx) − fn+L0(x) − t∥ ≤M}
≤ ∣{ε ∈ Wn+L0 ∶ ∀y ∈ [ε] ∥fn+L0(y) − fn+L0(x) − t∥ ≤M +B}∣

Since p0, being the measure of maximal entropy, is the Gibbs measure
for the zero potential, there is some constant K such that for every
a ∈ Wn, K−1λn < p0[a] ≤ Kλn. In particular, cylinders of the same
length are of comparable sizes whence

∣Skn(x)(1A)(x, t)∣ ≤Kλn+L0p0[∥fn+L0(⋅) − fn+L0(x) − t∥ ≤M +B]
Lemma 4.2 now implies that I = O(λnn−d/2) uniformly on A.

We now estimate II. Set (x′, t′) ∶= τ kn(x)+1
φf

(x, t).
We have to estimate SΛn(x′)(1A)(x′, t′). We do this by showing that

(8) Λn(x′) ≤ kn(x′)
thus reducing the problem to that which was discussed in the previous
step.

There exists n+L+ 1 < u′n < un(x′) such that Pmin(xu′n) < Pmax(xu′n)
since otherwise, there would be an admissible word [a1, . . . , ar] for some
r ≤ s + 1 with a1 = ar and Pmax(aj) = Pmin(aj) (1 ≤ j ≤ r). This
contradicts the aperiodicity of A.

Now consider

x′ = (P u′n
min(x′u′n), . . . , Pmin(x′u′n), (x

′)un−1
u′n

, x∞un)

y ∶= (P u′n
max(x′u′n), . . . , Pmax(x′u′n), (x

′)un−1
u′n

, x∞un)
τ kn(x

′)x′ = (P un−1
max (xun), . . . , Pmax(xun−1), x∞un−1)
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Since u′n > n+L+1, for every ε ∈ Wn there is some wL−1
0 such that x(ε) ∶=

(ε,wL−1
0 , y∞n+L) is admissible and since u′n < un, x′ ≺ x(ε) ≺ τ kn(x′)+1x′.

This shows that Wn is spanned by (τ j(x′))n−1
0 for j = 1, . . . , kn(x′) − 1,

whence (8). �
This completes the upper estimation, and we now address the lower

estimation.

Lemma 4.4 There exists n0 such that for all x, ∃0 ≤ i1 < i2 ≤ Λn+n0(x)−
1 such that for every i1 ≤ j ≤ i2, (τ jx)∞n+L is the same, and {(τ jx)n−1

0 ∶
i1 ≤ j ≤ i2} = Wn.

Proof Let L be large enough such that AL > 0 and set n0 ∶= L + n1

where ∣Wn1 ∣ ≥ 3. Choose three different aj ∈ Wn1 . There are 0 ≤
k1, k2, k3 ≤ Λn+n0 − 1 such that z(j) ∶= T n+L(τ kjx) ∈ [aj]. In particular,

z(j) are different. Without loss of generality, z(1) ≺ z(2) ≺ z(3). For every
ε ∈ Wn, construct an admissible word of the form x(ε) = (ε,wL−1

0 , z(2)).
Let x− and x+ be the minimal and maximal points among the x(ε).
Clearly, τ k1x ≺ x− ≺ x+ ≺ τ k3x whence ∃0 ≤ i1 < i2 ≤ Λn+n0(x) − 1 such
that x− = τ i1x and x+ = τ i2x. It follows that Wn is spanned by τ jx for
j = i1, . . . , i2. Since (x−)∞n+L = (x+)∞n+L = z(2), (τ jx)∞n+L is constant for
j = i1, . . . , i2. �

Lemma 4.5 There exists C2 > 0 such that for n large enough,

∫
A
SΛn(x)(1A)(x, t)dm(x, t) ≥ C2

λn

nd/2

Proof It is enough to prove that for some C3 and all ∥t∥ ≤ B,

∫
Σ
SΛn(x)(ϕ)(x, t)dp0(x) ≥ C3

λn

nd/2

(the lemma will then follow by integration dt over [∥t∥ ≤ B]).
By lemma 4.4 for some n0, for every x ∈ Σ and n ∈ N there are

0 ≤ i1 < i2 ≤ Λn+n0(x)−1 such that (τ jx)∞n+L is constant for j = i1, . . . , i2
and such that Wn = {(τ jx)n−1

0 ∶ j = i1, . . . , i2}. It follows that

SΛn+n0(x)
(1A)(x, t) ≥

i2

∑
j=i1

(1A ○ τ jφf )(x, t)

= ∣{i1 ≤ j ≤ i2 ∶ ∥fn+L(τ jx) − fn+L(x) − t∥ <M}∣
= ∣{(τ jx)n+L−1

0 ∶ j ∈ [i1, i2], ∥fn+L(τ jx) − fn+L(x) − t∥ <M}∣
≥ ∣{ε ∈ Wn ∶ ∃y ∈ [ε], ∥fn(y) − fn(x)∥ ≤M − 4B}∣
≥K−1λnp0[∥Fn(x, ⋅)∥ ≤M − 4B]
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where F ∶ Σ×Σ→ Rd is the symmetrization of f (as in the proof of corol-
lary 2.7) given by F (x, y) = f(x)−f(y), and Fn(x, y) ∶= ∑n−1

i=0 F (T ix,T ix).
Integrating with respect to dp0(x) we have for all ∥t∥ < B,

∫
Σ
SΛn+n0(x)

(1A)(x, t) ≥K−1λn(p0 × p0)[∥Fn∥ ≤M − 4B].

As in the proof of corollary 2.7, (Σ×Σ, T ×T ) is a subshift of finite type,
F ∶ Σ×Σ→ Rd is Hölder continuous, and F is aperiodic. Therefore, Fn
satisfy a local limit theorem ([G-H]):

(p0 × p0)[[∥Fn∥ ≤M − 4B∣] ∝ 1

nd/2
.

whence the lemma. �

Proof of theorem 4.1 We prove that for M > 4B, A ∶= Σ × {t ∶ ∥t∥ <
M} satisfies that

∥1ASN1A∥∞ = O(∥1ASN1A∥L1(M0)) (N →∞)
By the counting proposition, uniformly in x, Λn(x) ≍ ∣Wn∣ ≍ λn, where
λ = ehtop(Σ). Therefore, there exists c ∈ N such that for all x ∈ Σ0 and
n, λn−c+1 ≤ Λn(x) ≤ λn+c. Fix N > λ1+c and choose the n such that
λn ≤ N < λn+1. The last estimations imply that for every x ∈ Σ0,

Λn−c(x) ≤ N < Λn+c(x)
whence, by the preceding lemmas, for almost all every (x, t) ∈ A and
N large enough,

SN(1A)(x, t) ≤ C1λn+c

(n + c)d/2

∫
A
SN(1A)dm ≥ C2λn−c

(n − c)d/2
The theorem follows from this. �

References

[A1] J. Aaronson, An introduction to infinite ergodic theory, Mathe-
matical surveys and monographs 50, American Mathematical Society,
Providence, R.I, U.S., 1997.

[A2] J. Aaronson, Rational ergodicity, bounded rational ergodicity and
some continuous measures on the circle, Israel J. Maths., 33, (1979),
181-197.

[A-D1] J. Aaronson and M. Denker, Local limit theorems for Gibbs-
Markov maps, Preprint (1996)



38 J. AARONSON, H. NAKADA, O. SARIG, R. SOLOMYAK

[A-D2] , Group extensions of Gibbs-Markov maps, Preprint
(1999)

[A-K] J. Aaronson and M. Keane, The visits to zero of some determin-
istic random walks, Proc. London Math. Soc. (3) 44, (1982), 535–553.

[A-W] J. Aaronson and B. Weiss, On the asymptotics of a 1-parameter
family of infinite measure preserving transformations, Bol. Soc. Brasil.
Mat. (N.S.), 29, (1998), 181–193.

[B-L] M. Babillot, F. Ledrappier, Geodesic paths and horocycle flow
on abelian covers. in: Lie groups and ergodic theory (Mumbai, 1996)
1–32, Tata Inst. Fund. Res. Stud. Math. 14, Tata Inst. Fund. Res.,
Bombay, 1998.

[B-M] R. Bowen, B. Marcus, Unique Ergodicity for Horocycle Folia-
tions. Israel J. Maths 26, no. 1, 1977.

[Bo] R. Bowen, Equilibrium states and the ergodic theory of Anosov
diffeomorphisms. Lecture Notes in Mathematics 470, Springer-Verlag,
Berlin-New York, 1975.

[C-K] J.-P. Conze, M. Keane, Ergodicité d’un flot cylindrique, (French)
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