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Curves

Point-Curves and Line-Curves

Recall the fundamental duality in the plane point-to-line correspondence :

P : (p1, p2, p3) −→ P̄ : [(p1 − p2), dp3,−dp1] , (1)

where the distance between the x1 and x2 axes is d, and as usual, the triples within [ ... ]
and within ( ... ) denote line and point homogeneous coordinates respectively. For regular
(i.e. in the Euclidean plane) points

P : (p1, p2, 1) −→ P̄ : [(p1 − p2), d,−dp1].

The second half of the duality is the line-to-point correspondence :

` : [a1, a2, a3] −→ ¯̀ : (da2,−a3, a1 + a2), (2)

where the ai , i = 1, 2 are the coefficients of the xi in the equation of ` and a3 is the constant.
When a2 6= 0, the slope of ` is m = −a1

a2

and the intercept b = −a3

a2

so :

` : [m,−1, b] −→ ¯̀ : (d, b, 1 − m). (3)

A way to obtain (2) from (1) is to find the envelope of all the lines P̄ which are the images of
the points P ∈ `. Applied to each point of a smooth point-curve c results in the line-curve
c̄ shown in Fig. 1.

point − curve ↔ line − curve .
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Figure 1: Point-curve and their line-curve images.
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Separation in the xy-plane
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Figure 2: The “above” and “below” relations between points and lines switch at m = 1.

Lemma P is on, below, above a line ` whose slope m < 1(m ≥ 1) ⇐⇒ P̄ is on,
below(above), above(below) ¯̀. Let

Mc(I) = max{mc(P )|P (x1) ∈ c, x1 ∈ I}, (4)

where mc(P ) is the slope of the tangent of the curve c at the point P. Further, by considering
at each vertex the supporting line with maximum slope instead of the tangent in the above
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¯̀
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cd

Figure 3: Curve segments r flip cu ↔ cd for Mr < 1 but not for Mr ≥ 1.
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definition, Mc(I) can be defined for a complete piece-wise smooth curve. Clearly then,
tracing the above/below relation in the image c̄ of a curve c depends on whether Mc(I) goes
through the value 1. There are some straight-forward consequennces of the Lemma which,
for convenience are listed separately. They are true since the statements are true point-wise.
corollary

1. For Mc < 1, c is below (above) a point P ⇔ c̄ is below(above) P̄ .

2. For Mc ≥ 1, c is below (above) a point P ⇔ c̄ is above (below) P̄ .

corollary

1. If r is a cd (cu) curve segment with Mr < 1 ⇒ r̄ is cu (cd)

2. If r is a cd (cu) curve segment with Mr ≥ 1 ⇒ r̄ is cd (cu).

Cusps, Inflection Points and Duality
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Figure 4: Cusp ↔ Inflection point duality is independent of the curves’ orientation.

Point-Curves from Point-Curves

Early in the development (1980) of ‖-coords the direct construction of the a curve’s image
as a point curve was accomplished as outlined below. Among benefits this when applied
judiciously avoids over-plotting by the plethora of the lines which are the tangents at the
non-convex portions of the image curve.

Consider a general planar curve c given by :

c : F (x1, x2) = 0, (5)

Substituting in eq. (3) yields the point-coordinates

x =
∂F/∂x2

(∂F/∂x1 + ∂F/∂x2)
, y =

(x1∂F/∂x1 + x2∂F/∂x2)

(∂F/∂x1 + ∂F/∂x2)
. (6)
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Figure 5: Obtaining the point-curve c̄ directly from the point-curve c.

There is an important special case when the original point-curve is given explicitly by x2 =
g(x1). Then eq. (6) reduces to :

x =
1

1 − g′(x1)
, y =

x2 + x1g
′(x1)

1 − g′(x1)
(7)

d

x

y

P̄∞
m

0 < m < 1

m = 0

m < 0

m = ±∞

1 < m

x = d
1−m

X̄1 X̄2

Figure 6: Horizontal position of ¯̀ depends only on the slope m of `.

5



Curve Plotting

T he image of a piecewise smooth curve can be computed and plotted via eq. (6). Qualita-
tively we can learn quite a bit to sketch the curve’s image to sketch using some considerations
of the duality by reviewing Fig. 6 which we saw earlier.

Later (p. 16) it is pointed out that the image c̄ of an algebraic (i.e. described by a
polynomial) curve c of degree n is also algebraic with degree n∗ as given by the Plücker class
formula eq. (14) where s, d are the number of cusps and double-crossing points respectively.
For the curve c on the left of Fig. 7, n = 3, d = 0, s = 0, hence for the image curve (right) is
n∗ = 6. The analysis is facilitated by Fig. 8. The curve c has slope m = 1 at the points AL

and AR causing the image curve c̄ to split the tangents there mapping to ideal points. The
portion cI of c between AL and AR has the the right branch of c̄ as its the image, i.e. c̄I The
inflection point ip I is mapped into the cusp ī of c̄ in between the two axes since its slope
mi is negative. On cI the curve’s slope m are mi ≥ m < 1 and for this reason c̄I opens to
the right intersecting the X̄2 at two points; the images of the tangents at the extrema where
m = 0 the higher for the higher intercept (i.e. b) in this case the maximum Ma of c. The left
portion of cI being cd maps into the upper portion of the of c̄I which is cu and approaching
ĀL assymptotically. Similarly the right portion of cI being cu maps into the lower portion
which is cd approaching ĀR assympotically. Similarly, the left portion of c̄ approaches the
X̄1-axis assymptotically for asqq |x1| → ∞ the curve’s slope m → ∞. The upper portion of
the left branch is cu being the image of the portion −∞ < x1 < x1(AL) which is also cu.
Note that the symmetry of c with respect to the tangent i at I is transformed to symmetry
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Figure 7: The algebraic curve’s c : x2 = x3

1
+ x2

1
− x1 − 1 (left) image has degree 6. See also

following figure.
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Figure 8: (Right)Analysis of the image curve above in terms of the slope (left) at the cubic’s
important points.

with respect to the line Ī through the cusp ī the point image of the tangent i (see exercises
below).

The curve c shown in Fig. 9 is prescribed by an implicit polynomial with n = 3, s = d = 0.
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Figure 9: The image of the algebraic curve c : F (x1, x2) = x3

1
− x1 − x2

2
= 0 (left) has degree

6.
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Figure 10: The image of the curve c : F (x1, x2) = x3

1
+ x2

1
− x1 − x2

2
= 0 also has degree 6.

Again c̄ has degree n∗ = 6 but with two cusps stemming from the 2 ip of c. The image of the
right branch c̄R of c is the portion containing the cusps. The slope m → ∞ as x1 → ∞ with
c̄R approaching the X̄1-axis assyptotically. The (two) points of c where the slope m = 1 are
on the oval spliting its image to the hyperbola-like part. Proceeding with another curve c
(left) Fig. 10 also prescribed by an implicit polynomial. Again n = 3, s = d = 0 and the
image curve c̄ has degree n∗ = 6 There are two points of c where m = 1 responsible for the
split of c̄. The cusp to the right of the X̄2-axis is the image of the lower ip of c where the
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Figure 11: The image of the curve c : F (x1, x2) = x3

1
+ x2

1
− 3x1x2 = 0 has degree 4.
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Figure 12: The image of the parametric polynomial x(t) = t2, x2(t) = t3 has degree 3.

slope 0 < m < 1 and also, since the slope m → ∞ as x1 → ∞, this part of c̄ approaches the
X̄1-axis assyptotically. In the next example shown in Fig. 11 the image curve has degree
n∗ = 4 since n = 3, d = 1, s = 0. Both points of c where m = 1 are to the right of the
double-crossing point with the part cR to the right of these points is mapped into the upper
portion of c. The remaining part cL of c containing the double-point is mapped into two
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Figure 13: The image of the exponential curve c : x2 = ex1 does not have a portion in
between the axes since the curve does not have negative slopes.
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Figure 14: The image of the trigonometric curve c : x2 = sin(x1) in the interval x1 ∈ [0, 2π]
is a non-oscillating curve.

branches each approaching assympotically the negative X̄1-axis. The two tangents at the
double-point map into two points; the one on the X̄2 is the image of the horizontal tangent.
These two points have the same tangent the x-axis. A tangent at two points of a curve is
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Figure 15: The image of c : x2 = sin(x1) for x1 ∈ [−2π, 2π] is symmetric about the x-axes.
The ip at x1 = ±π are mapped into the two cusps, and the ip at the origin having slope
m = 1 is mapped to the ideal point along the x-axis.
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Figure 16: The image of the oscillatory curve x2 = x1cos(x1) is a non-oscillating curve
symmetrical with respect to the x-axis.

called bitangent. The algebraic curve c shown in Fig. 12, is specified parametrically, and
has n = 3, s = 1, d = 0 so that c̄ has degree n∗ = 3. The two branches of c are tangent to
the x1-axis at the cusp and, therefore, it maps to the inflection point where c̄ crosses the
X̄2-axis. As in the previous examples due to m → ∞ as x1 → ∞ c̄ approaches the positive
X̄1-axis assympotically on either side.

It is very easy to sketch the image of the exponential curve seen in Fig. 13. There is one
point with slope m = 1 spliting the image curve c̄ into a part left of X̄1, corresponding to
the the part on the right part where 1 < m < ∞, and the left part of c where 0 < m < 1
whose image is to the right of the X̄2-axis. In the absence of negative slopes of c, c̄ does not
have a portion in between the ‖-axes.

It is interesting to trace the image of oscillatory curves starting with the trigonometric
function x2 = sin(x1) plotted in Fig. 14 for the interval x1 ∈ [−π, 0]. The ip at x1 = π maps
into the cusp which is in between the axis since the tangents’ slopes m < 0 in its vicinity.
In the remainder the slope 0 < m(x1) = cos(x1) ≤ 1 and hence c̄ opens to the right the
upper portion approaching the x-axes assyptotically due the ideal point from x1 = 0 where
the slope m = 1. The graph for the interval x1 ∈ [0, 2π] is the mirror image the curve above,
Fig. 15, since the slopes m(x1) = cos(−x1). Altogether then the ip at x1 = ±π with m = 1
are mapped into the two cusps with x = 1/2 and the ip at the origin, having slope m = 1, is
mapped to the ideal point along the x-axis. The mirror symmetry is preserved for the image
of the curve c : x2 = x1cos(x1) in Fig. 16 and for the analogous reasons.
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Conic Transforms

T he treatment is particularly pleasing for the conic sections which are described by the
quadratic function

F (x1, x2) = A1x1
2 + 2A4x1x2 + A2x2

2 + 2A5x1 + 2A6x2 + A3 =

= (x1, x2, 1)





A1 A4 A5

A4 A2 A6

A5 A6 A3









x1

x2

1



 , (8)

where the type of conic is determined by the sign of the discriminant ∆ = (A4
2 − A1A2).

The coefficient matrix is denoted by A and its determinant, which plays an important role
in the development, is

detA = A3(A1A2 − A4
2) − A1A6

2 − A2A5
2 + 2A4A5A6 . (9)

For conics, using the identity that for a polynomial F of degree n F (x) = 0 ⇒ ∇F · x =
∇F · x − nF with the second expression being linear, eq. (6) and becomes

x =
A4x1 + A2x2 + A6

[(A1 + A4)x1 + (A2 + A4)x2 + (A5 + A6)]

(10)

y = −
A5x1 + A6x2 + A3

[(A1 + A4)x1 + (A2 + A4)x2 + (A5 + A6)]
.

These are Mobius1 transformations which form a group (see any good book in modern Al-
gebra) [1]). This observation enables substantial simplifications of the earlier treatment of
conics and their transforms (see [3] and [4]). The inverse, expressing x1 and x2 in terms of
x and y, is a Mobius transformation of the form

x1 =
a11x + a12y + a13

a31x + a32y + a33

, x2 =
a21x + a22y + a23

a31x + a32y + a33

, (11)

The result obtained is

f(x , y) = (x y 1)a





x
y
1



 = 0 . (12)

The conclusion then is that

conics in the xy − plane 7→ conics in the x1x2 − plane

The specific result obtained is

f(x , y) = (x y 1)a





x
y
1



 = 0 . (13)

with a is a 3x3 matrix whose elements are given in terms of the coefficients in eq. 8 enabling
the classification of the conic transforms into six cases.

1Also called linear rational transformations.

12



Figure 17: Ellipses always map into hyperbolas. Each assymptote is the image of a point
where the tangent has slope 1.

Classification of the Conic Transforms

Figure 18: A parabola whose ideal point does not have direction with slope 1 always trans-
forms to a hyperbola with a vertical assymptote. The other assymptote is the image of the
point where the parabola has tangent with slope 1.
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Figure 19: A parabola whose ideal point has direction with slope 1 transforms to a parabola
- self-dual.

Figure 20: Hyperbola to ellipse – dual of case shown in Fig. 17
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Figure 21: Hyperbola to parabola. This occurs when one of the assymptotes has slope 1 –
dual of case shown in Fig. 18

.

Figure 22: Hyperbola to hyperpola – self-dual case.
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Transforms of Algebraic Curves

Conic transforms are studied for two reasons. One is the ease of use of the Mobius trans-
formations which is completely general for Quadrics, the surfaces prescribed by quadratic
equations, in any dimension. The other is that their detailed analysis serves as a model
and guide in the study of the related images of far more complex curves, regions and their
ramifications in the next section.

Algebraic curves, described by polynomial equations, are studied in Algebraic Geometry.
An algebraic curve c has many invariants which are properties independent of the particular
coordinate system used. Examples are the number of components in its graph, degree n,
number of double-points d (points where the curve crosses itself once), cusps s, inflection

points ip and bitangents b (i.e. tangents at two points). The dual curve c∗ is the image
of c under a point ↔ line duality. The same symbols with the ∗ superscript denote the
dual’s invariants. Algebraic curves and their duals have been studied extensively starting
in 1830 by the mathematician and physicist Julius Plücker who also made other important
contributions to the field. His results apply to the class of Plücker curves i.e.

1. c is irreducible and of degree n ≥ 2, and

2. the singularities of c, c̄ are at most simple double-points (i.e. point where curve crosses
itself once) and cusps.

Whereas all irreducible quadratics and cubics are Plücker curves, there exists quartics, n = 4,
which are not.

Of interest here are the relations a curve’s invariants and those of its dual. As indicated in
the equalities tabulated below, in addition to the ip ↔ cusp duality, there is a bitangent ↔
double − point duality which we already met in Fig. 10. This is reasonable for the two
tangents at a double-point map into the two points on a bitangent which is the double-
point’s image.

Point(s) on curve c → map into points of the curve c̄ ⇒ relation

The 2 points of c on a bitangent map into a double-point of c̄ b = d∗ .

A double-point of c maps into two points on a bitangent of c̄ d = b∗ .

An inflection-point of c maps into a cusp of c̄ ip = s∗ .

A cusp of c maps into an inflection-point of c̄ s = ip∗ .

Table 1: Equalities between invariants of Plücker curves and their duals.

The dual of c is an algebraic curve whose degree n∗ depends n and the invariants d, s as
given by the Plücker class formula :

n∗ = n(n − 1) − 2d − 3s . (14)
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For n = 2 the Plücker class formula yields n∗ = 2 and s∗ = 0 confirming the conclusions in
section .

The polynomial describing the dual c∗ can be found for any point ↔ line duality by
two different methods. However, with n∗ = O(n2) and the complexity increasing rapidly
with the number of non-zero coefficients of the polynomial specifying c the process is very
tedious. All this applies to c̄, which is the image under the particular ‖-coords duality, when
c is an algebraic curve c. As pointed out in section , the properties of c̄ are immediately
available from Plücker’s results. Together with the qualitative considerations discussed and
a good curve-plotter gives a complete grasp of c̄ and its properties. This avoids the laborious
process of obtaining the polynomial for c̄ and its subsequent computation for plotting.

There exist numerous generalizations of the Plücker formulae.

Convex Sets and their Relatives

Consider a double-cone, as shown in Fig. 23, whose base is a bounded convex set rather
than a circle. The three type of sections shown are generalizations of the conics and are
conveniently called gconics2. They are either a :

bounded convex set is abbreviated by bc, or an

2The corresponding regions have been previously referred to as estars, pstars and hstars [10], [11].

Figure 23: Gconics - three types of sections: (left) bounded convex set bc, (right) unbounded
convex set uc and (middle) hyperbola-like gh regions.
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Figure 24: A bounded convex set bc always transforms to a gh (generalized hyperbola) – this
is the generalization of the case shown in Fig. 17 .

Figure 25: An unbounded convex set uc whose ideal points do not have slope 1 transforms
to a gh (generalized hyperbola). This is the generalization of the case shown in Fig. 18.

unbounded convex set is denoted by uc containing a non-empty set of ideal points whose
slope m is in an interval m ∈ [m1 , m2], or a

18



Figure 26: Unbounded convex set uc having ideal point with slope 1 transforms to a uc –
self-dual case. This is the generalization of the case shown in Fig. 19.

Figure 27: A gh whose supporting lines have slope m ∈ [m1, m2] where the m1 < 1 < m2 are
the assymptotes’ slopes transforms to a bounded convex bc set. This is the generalization of
the conic case shown in Fig. 20.

generalized hyperbola denoted by gh consisting of two full(not segments) lines `u , ``,
called assymptotes two infinite chains, convex-upward chain cu above both assymp-
totes, and another convex-downward chain c` below both assymptotes.

Gconics and their Transforms

Theorem The images of gconics are gconics

19



Figure 28: A gh with 1 6∈ [m1 , m2] , where the mi are the assymptotes’ slopes, transforms
to a gh – Self-dual case. This is the generalization of the case shown in Fig. 22.

Figure 29: The Convex Union (also called “Convex Merge”) of bcs corresponds to the Outer
Union of their images (ghs).
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