PARALLEL COORDINATES : VISUAL Multidimensional Geometry and its Applications

Alfred Inselberg(©1992, 2004)
Senior Fellow San Diego SuperComputing Center, CA, USA
Computer Science and Applied Mathematics Departments Tel Aviv University, Israel aiisreal@post.tau.ac.il
\&
Multidimensional Graphs Ltd
Raanana 43556, Israel
All text and images are COPYRIGHT © by Alfred Inselberg Maybe reproduced only by written permission

Curves

Point-Curves and Line-Curves

\mathcal{R} ecall the fundamental duality in the plane point-to-line correspondence :

$$
\begin{equation*}
P:\left(p_{1}, p_{2}, p_{3}\right) \longrightarrow \bar{P}:\left[\left(p_{1}-p_{2}\right), d p_{3},-d p_{1}\right], \tag{1}
\end{equation*}
$$

where the distance between the x_{1} and x_{2} axes is d, and as usual, the triples within [...] and within (...) denote line and point homogeneous coordinates respectively. For regular (i.e. in the Euclidean plane) points

$$
P:\left(p_{1}, p_{2}, 1\right) \longrightarrow \bar{P}:\left[\left(p_{1}-p_{2}\right), d,-d p_{1}\right]
$$

The second half of the duality is the line-to-point correspondence :

$$
\begin{equation*}
\ell:\left[a_{1}, a_{2}, a_{3}\right] \longrightarrow \bar{\ell}:\left(d a_{2},-a_{3}, a_{1}+a_{2}\right) \tag{2}
\end{equation*}
$$

where the $a_{i}, i=1,2$ are the coefficients of the x_{i} in the equation of ℓ and a_{3} is the constant. When $a_{2} \neq 0$, the slope of ℓ is $m=-\frac{a_{1}}{a_{2}}$ and the intercept $b=-\frac{a_{3}}{a_{2}}$ so :

$$
\begin{equation*}
\ell:[m,-1, b] \longrightarrow \bar{\ell}:(d, b, 1-m) . \tag{3}
\end{equation*}
$$

A way to obtain (2) from (1) is to find the envelope of all the lines \bar{P} which are the images of the points $P \in \ell$. Applied to each point of a smooth point-curve c results in the line-curve \bar{c} shown in Fig. 1.

$$
\text { point - curve } \leftrightarrow \text { line - curve } .
$$

Figure 1: Point-curve and their line-curve images.

Separation in the $x y$-plane

Figure 2: The "above" and "below" relations between points and lines switch at $m=1$.

Lemma P is on, below, above a line ℓ whose slope $m<1(m \geq 1) \Longleftrightarrow \bar{P}$ is on, below(above), above(below) $\bar{\ell}$. Let

$$
\begin{equation*}
M_{c}(I)=\max \left\{m_{c}(P) \mid P\left(x_{1}\right) \in c, x_{1} \in I\right\}, \tag{4}
\end{equation*}
$$

where $m_{c}(P)$ is the slope of the tangent of the curve c at the point P . Further, by considering at each vertex the supporting line with maximum slope instead of the tangent in the above

Figure 3: Curve segments r flip $\mathrm{cu} \leftrightarrow \mathrm{cd}$ for $M_{r}<1$ but not for $M_{r} \geq 1$.
definition, $M_{c}(I)$ can be defined for a complete piece-wise smooth curve. Clearly then, tracing the above/below relation in the image \bar{c} of a curve c depends on whether $M_{c}(I)$ goes through the value 1 . There are some straight-forward consequennces of the Lemma which, for convenience are listed separately. They are true since the statements are true point-wise. corollary

1. For $M_{c}<1, c$ is below (above) a point $\mathrm{P} \Leftrightarrow \bar{c}$ is below(above) \bar{P}.
2. For $M_{c} \geq 1, c$ is below (above) a point $\mathrm{P} \Leftrightarrow \bar{c}$ is above (below) \bar{P}.

corollary

1. If r is a $\mathrm{cd}(\mathrm{cu})$ curve segment with $M_{r}<1 \Rightarrow \bar{r}$ is cu (cd)
2. If r is a $\mathrm{cd}(\mathrm{cu})$ curve segment with $M_{r} \geq 1 \Rightarrow \bar{r}$ is $\mathrm{cd}(\mathrm{cu})$.

Cusps, Inflection Points and Duality

Figure 4: Cusp \leftrightarrow Inflection point duality is independent of the curves' orientation.

Point-Curves from Point-Curves

\mathcal{E} arly in the development (1980) of $\|$-coords the direct construction of the a curve's image as a point curve was accomplished as outlined below. Among benefits this when applied judiciously avoids over-plotting by the plethora of the lines which are the tangents at the non-convex portions of the image curve.

Consider a general planar curve c given by :

$$
\begin{equation*}
c: F\left(x_{1}, x_{2}\right)=0 \tag{5}
\end{equation*}
$$

Substituting in eq. (3) yields the point-coordinates

$$
\begin{equation*}
x=\frac{\partial F / \partial x_{2}}{\left(\partial F / \partial x_{1}+\partial F / \partial x_{2}\right)}, y=\frac{\left(x_{1} \partial F / \partial x_{1}+x_{2} \partial F / \partial x_{2}\right)}{\left(\partial F / \partial x_{1}+\partial F / \partial x_{2}\right)} . \tag{6}
\end{equation*}
$$

Figure 5: Obtaining the point-curve \bar{c} directly from the point-curve c.

There is an important special case when the original point-curve is given explicitly by $x_{2}=$ $g\left(x_{1}\right)$. Then eq. (6) reduces to :

$$
\begin{equation*}
x=\frac{1}{1-g^{\prime}\left(x_{1}\right)}, y=\frac{x_{2}+x_{1} g^{\prime}\left(x_{1}\right)}{1-g^{\prime}\left(x_{1}\right)} \tag{7}
\end{equation*}
$$

Figure 6: Horizontal position of $\bar{\ell}$ depends only on the slope m of ℓ.

Curve Plotting

\mathcal{T} he image of a piecewise smooth curve can be computed and plotted via eq. (6). Qualitatively we can learn quite a bit to sketch the curve's image to sketch using some considerations of the duality by reviewing Fig. 6 which we saw earlier.

Later (p. 16) it is pointed out that the image \bar{c} of an algebraic (i.e. described by a polynomial) curve c of degree n is also algebraic with degree n^{*} as given by the Plücker class formula eq. (14) where s, d are the number of cusps and double-crossing points respectively. For the curve c on the left of Fig. $7, n=3, d=0, s=0$, hence for the image curve (right) is $n^{*}=6$. The analysis is facilitated by Fig. 8. The curve c has slope $m=1$ at the points A_{L} and A_{R} causing the image curve \bar{c} to split the tangents there mapping to ideal points. The portion c_{I} of c between A_{L} and A_{R} has the the right branch of \bar{c} as its the image, i.e. \bar{c}_{I} The inflection point $i p I$ is mapped into the cusp \bar{i} of \bar{c} in between the two axes since its slope m_{i} is negative. On c_{I} the curve's slope m are $m_{i} \geq m<1$ and for this reason \bar{c}_{I} opens to the right intersecting the \bar{X}_{2} at two points; the images of the tangents at the extrema where $m=0$ the higher for the higher intercept (i.e. b) in this case the maximum M_{a} of c. The left portion of c_{I} being $c d$ maps into the upper portion of the of \bar{c}_{I} which is $c u$ and approaching \bar{A}_{L} assymptotically. Similarly the right portion of c_{I} being $c u$ maps into the lower portion which is $c d$ approaching \bar{A}_{R} assympotically. Similarly, the left portion of \bar{c} approaches the \bar{X}_{1}-axis assymptotically for asqq $\left|x_{1}\right| \rightarrow \infty$ the curve's slope $m \rightarrow \infty$. The upper portion of the left branch is $c u$ being the image of the portion $-\infty<x_{1}<x_{1}\left(A_{L}\right)$ which is also $c u$. Note that the symmetry of c with respect to the tangent i at I is transformed to symmetry

Figure 7: The algebraic curve's $c: x_{2}=x_{1}^{3}+x_{1}^{2}-x_{1}-1$ (left) image has degree 6. See also following figure.

Figure 8: (Right)Analysis of the image curve above in terms of the slope (left) at the cubic's important points.
with respect to the line \bar{I} through the cusp \bar{i} the point image of the tangent i (see exercises below).

The curve c shown in Fig. 9 is prescribed by an implicit polynomial with $n=3, s=d=0$.

Figure 9: The image of the algebraic curve $c: F\left(x_{1}, x_{2}\right)=x_{1}^{3}-x_{1}-x_{2}^{2}=0$ (left) has degree 6.

Figure 10: The image of the curve $c: F\left(x_{1}, x_{2}\right)=x_{1}^{3}+x_{1}^{2}-x_{1}-x_{2}^{2}=0$ also has degree 6 .

Again \bar{c} has degree $n^{*}=6$ but with two cusps stemming from the $2 i p$ of c. The image of the right branch \bar{c}_{R} of c is the portion containing the cusps. The slope $m \rightarrow \infty$ as $x_{1} \rightarrow \infty$ with \bar{c}_{R} approaching the \bar{X}_{1}-axis assyptotically. The (two) points of c where the slope $m=1$ are on the oval spliting its image to the hyperbola-like part. Proceeding with another curve c (left) Fig. 10 also prescribed by an implicit polynomial. Again $n=3, s=d=0$ and the image curve \bar{c} has degree $n^{*}=6$ There are two points of c where $m=1$ responsible for the split of \bar{c}. The cusp to the right of the \bar{X}_{2}-axis is the image of the lower $i p$ of c where the

Figure 11: The image of the curve $c: F\left(x_{1}, x_{2}\right)=x_{1}^{3}+x_{1}^{2}-3 x_{1} x_{2}=0$ has degree 4.

Figure 12: The image of the parametric polynomial $x(t)=t^{2}, x_{2}(t)=t^{3}$ has degree 3 .
slope $0<m<1$ and also, since the slope $m \rightarrow \infty$ as $x_{1} \rightarrow \infty$, this part of \bar{c} approaches the \bar{X}_{1}-axis assyptotically. In the next example shown in Fig. 11 the image curve has degree $n^{*}=4$ since $n=3, d=1, s=0$. Both points of c where $m=1$ are to the right of the double-crossing point with the part c_{R} to the right of these points is mapped into the upper portion of c. The remaining part c_{L} of c containing the double-point is mapped into two

Figure 13: The image of the exponential curve $c: x_{2}=e^{x_{1}}$ does not have a portion in between the axes since the curve does not have negative slopes.

Figure 14: The image of the trigonometric curve $c: x_{2}=\sin \left(x_{1}\right)$ in the interval $x_{1} \in[0,2 \pi]$ is a non-oscillating curve.
branches each approaching assympotically the negative \bar{X}_{1}-axis. The two tangents at the double-point map into two points; the one on the \bar{X}_{2} is the image of the horizontal tangent. These two points have the same tangent the x-axis. A tangent at two points of a curve is

Figure 15: The image of $c: x_{2}=\sin \left(x_{1}\right)$ for $x_{1} \in[-2 \pi, 2 \pi]$ is symmetric about the x-axes. The $i p$ at $x_{1}= \pm \pi$ are mapped into the two cusps, and the $i p$ at the origin having slope $m=1$ is mapped to the ideal point along the x-axis.

Figure 16: The image of the oscillatory curve $x_{2}=x_{1} \cos \left(x_{1}\right)$ is a non-oscillating curve symmetrical with respect to the x-axis.
called bitangent. The algebraic curve c shown in Fig. 12, is specified parametrically, and has $n=3, s=1, d=0$ so that \bar{c} has degree $n^{*}=3$. The two branches of c are tangent to the x_{1}-axis at the cusp and, therefore, it maps to the inflection point where \bar{c} crosses the \bar{X}_{2}-axis. As in the previous examples due to $m \rightarrow \infty$ as $x_{1} \rightarrow \infty \bar{c}$ approaches the positive \bar{X}_{1}-axis assympotically on either side.

It is very easy to sketch the image of the exponential curve seen in Fig. 13. There is one point with slope $m=1$ spliting the image curve \bar{c} into a part left of \bar{X}_{1}, corresponding to the the part on the right part where $1<m<\infty$, and the left part of c where $0<m<1$ whose image is to the right of the \bar{X}_{2}-axis. In the absence of negative slopes of c, \bar{c} does not have a portion in between the $\|$-axes.

It is interesting to trace the image of oscillatory curves starting with the trigonometric function $x_{2}=\sin \left(x_{1}\right)$ plotted in Fig. 14 for the interval $x_{1} \in[-\pi, 0]$. The $i p$ at $x_{1}=\pi$ maps into the cusp which is in between the axis since the tangents' slopes $m<0$ in its vicinity. In the remainder the slope $0<m\left(x_{1}\right)=\cos \left(x_{1}\right) \leq 1$ and hence \bar{c} opens to the right the upper portion approaching the x-axes assyptotically due the ideal point from $x_{1}=0$ where the slope $m=1$. The graph for the interval $x_{1} \in[0,2 \pi]$ is the mirror image the curve above, Fig. 15 , since the slopes $m\left(x_{1}\right)=\cos \left(-x_{1}\right)$. Altogether then the $i p$ at $x_{1}= \pm \pi$ with $m=1$ are mapped into the two cusps with $x=1 / 2$ and the $i p$ at the origin, having slope $m=1$, is mapped to the ideal point along the x-axis. The mirror symmetry is preserved for the image of the curve $c: x_{2}=x_{1} \cos \left(x_{1}\right)$ in Fig. 16 and for the analogous reasons.

Conic Transforms

\mathcal{T} he treatment is particularly pleasing for the conic sections which are described by the quadratic function

$$
\begin{align*}
F\left(x_{1}, x_{2}\right) & =A_{1} x_{1}^{2}+2 A_{4} x_{1} x_{2}+A_{2} x_{2}^{2}+2 A_{5} x_{1}+2 A_{6} x_{2}+A_{3}= \\
& =\left(x_{1}, x_{2}, 1\right)\left(\begin{array}{ccc}
A_{1} & A_{4} & A_{5} \\
A_{4} & A_{2} & A_{6} \\
A_{5} & A_{6} & A_{3}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right), \tag{8}
\end{align*}
$$

where the type of conic is determined by the sign of the discriminant $\Delta=\left(A_{4}{ }^{2}-A_{1} A_{2}\right)$. The coefficient matrix is denoted by A and its determinant, which plays an important role in the development, is

$$
\begin{equation*}
\operatorname{det} A=A_{3}\left(A_{1} A_{2}-A_{4}{ }^{2}\right)-A_{1} A_{6}{ }^{2}-A_{2} A_{5}{ }^{2}+2 A_{4} A_{5} A_{6} . \tag{9}
\end{equation*}
$$

For conics, using the identity that for a polynomial F of degree $n F(\mathbf{x})=0 \Rightarrow \nabla F \cdot \mathbf{x}=$ $\nabla F \cdot \mathbf{x}-n F$ with the second expression being linear, eq. (6) and becomes

$$
\begin{align*}
x & =\frac{A_{4} x_{1}+A_{2} x_{2}+A_{6}}{\left[\left(A_{1}+A_{4}\right) x_{1}+\left(A_{2}+A_{4}\right) x_{2}+\left(A_{5}+A_{6}\right)\right]} \tag{10}\\
y & =-\frac{A_{5} x_{1}+A_{6} x_{2}+A_{3}}{\left[\left(A_{1}+A_{4}\right) x_{1}+\left(A_{2}+A_{4}\right) x_{2}+\left(A_{5}+A_{6}\right)\right]} .
\end{align*}
$$

These are Mobius ${ }^{1}$ transformations which form a group (see any good book in modern Algebra) [1]). This observation enables substantial simplifications of the earlier treatment of conics and their transforms (see [3] and [4]). The inverse, expressing x_{1} and x_{2} in terms of x and y, is a Mobius transformation of the form

$$
\begin{equation*}
x_{1}=\frac{a_{11} x+a_{12} y+a_{13}}{a_{31} x+a_{32} y+a_{33}}, x_{2}=\frac{a_{21} x+a_{22} y+a_{23}}{a_{31} x+a_{32} y+a_{33}}, \tag{11}
\end{equation*}
$$

The result obtained is

$$
f(x, y)=\left(\begin{array}{lll}
x & y & 1
\end{array}\right) \mathbf{a}\left(\begin{array}{l}
x \tag{12}\\
y \\
1
\end{array}\right)=0
$$

The conclusion then is that

$$
\text { conics in the } x y \text { - plane } \mapsto \text { conics in the } x_{1} x_{2} \text { - plane }
$$

The specific result obtained is

$$
f(x, y)=\left(\begin{array}{lll}
x & y & 1
\end{array}\right) \mathbf{a}\left(\begin{array}{l}
x \tag{13}\\
y \\
1
\end{array}\right)=0
$$

with a is a $3 x 3$ matrix whose elements are given in terms of the coefficients in eq. 8 enabling the classification of the conic transforms into six cases.

[^0]

Figure 17: Ellipses always map into hyperbolas. Each assymptote is the image of a point where the tangent has slope 1 .

Classification of the Conic Transforms

Figure 18: A parabola whose ideal point does not have direction with slope 1 always transforms to a hyperbola with a vertical assymptote. The other assymptote is the image of the point where the parabola has tangent with slope 1.

Figure 19: A parabola whose ideal point has direction with slope 1 transforms to a parabola - self-dual.

Figure 20: Hyperbola to ellipse - dual of case shown in Fig. 17

Figure 21: Hyperbola to parabola. This occurs when one of the assymptotes has slope 1 dual of case shown in Fig. 18

Figure 22: Hyperbola to hyperpola - self-dual case.

Transforms of Algebraic Curves

\mathcal{C} onic transforms are studied for two reasons. One is the ease of use of the Mobius transformations which is completely general for Quadrics, the surfaces prescribed by quadratic equations, in any dimension. The other is that their detailed analysis serves as a model and guide in the study of the related images of far more complex curves, regions and their ramifications in the next section.

Algebraic curves, described by polynomial equations, are studied in Algebraic Geometry. An algebraic curve c has many invariants which are properties independent of the particular coordinate system used. Examples are the number of components in its graph, degree n, number of double-points d (points where the curve crosses itself once), cusps s, inflection points ip and bitangents b (i.e. tangents at two points). The dual curve c^{*} is the image of c under a point \leftrightarrow line duality. The same symbols with the $*$ superscript denote the dual's invariants. Algebraic curves and their duals have been studied extensively starting in 1830 by the mathematician and physicist Julius Plücker who also made other important contributions to the field. His results apply to the class of Plücker curves i.e.

1. c is irreducible and of degree $n \geq 2$, and
2. the singularities of c, \bar{c} are at most simple double-points (i.e. point where curve crosses itself once) and cusps.

Whereas all irreducible quadratics and cubics are Plücker curves, there exists quartics, $n=4$, which are not.

Of interest here are the relations a curve's invariants and those of its dual. As indicated in the equalities tabulated below, in addition to the $i p \leftrightarrow c u s p$ duality, there is a bitangent \leftrightarrow double - point duality which we already met in Fig. 10. This is reasonable for the two tangents at a double-point map into the two points on a bitangent which is the doublepoint's image.

Point(s) on curve $c \rightarrow$	map into points of the curve $\bar{c} \Rightarrow$	relation
The 2 points of c on a bitangent	map into a double-point of \bar{c}	$b=d^{*}$.
A double-point of c	maps into two points on a bitangent of \bar{c}	$d=b^{*}$.
An inflection-point of c	maps into a cusp of \bar{c}	$i p=s^{*}$.
A cusp of c	maps into an inflection-point of \bar{c}	$s=i p^{*}$.

Table 1: Equalities between invariants of Plücker curves and their duals.

The dual of c is an algebraic curve whose degree n^{*} depends n and the invariants d, s as given by the Plücker class formula :

$$
\begin{equation*}
n^{*}=n(n-1)-2 d-3 s \tag{14}
\end{equation*}
$$

For $n=2$ the Plücker class formula yields $n^{*}=2$ and $s^{*}=0$ confirming the conclusions in section.

The polynomial describing the dual c^{*} can be found for any point \leftrightarrow line duality by two different methods. However, with $n^{*}=O\left(n^{2}\right)$ and the complexity increasing rapidly with the number of non-zero coefficients of the polynomial specifying c the process is very tedious. All this applies to \bar{c}, which is the image under the particular $\|$-coords duality, when c is an algebraic curve c. As pointed out in section, the properties of \bar{c} are immediately available from Plücker's results. Together with the qualitative considerations discussed and a good curve-plotter gives a complete grasp of \bar{c} and its properties. This avoids the laborious process of obtaining the polynomial for \bar{c} and its subsequent computation for plotting.

There exist numerous generalizations of the Plücker formulae.

Convex Sets and their Relatives

Consider a double-cone, as shown in Fig. 23, whose base is a bounded convex set rather than a circle. The three type of sections shown are generalizations of the conics and are conveniently called gconics ${ }^{2}$. They are either a :
bounded convex set is abbreviated by $b c$, or an

[^1]

Figure 23: Gconics - three types of sections: (left) bounded convex set bc, (right) unbounded convex set $u c$ and (middle) hyperbola-like $g h$ regions.

Figure 24: A bounded convex set $b c$ always transforms to a $g h$ (generalized hyperbola) - this is the generalization of the case shown in Fig. 17.

Figure 25: An unbounded convex set $u c$ whose ideal points do not have slope 1 transforms to a $g h$ (generalized hyperbola). This is the generalization of the case shown in Fig. 18.
unbounded convex set is denoted by $u c$ containing a non-empty set of ideal points whose slope m is in an interval $m \in\left[m_{1}, m_{2}\right]$, or a

Figure 26: Unbounded convex set $u c$ having ideal point with slope 1 transforms to a $u c-$ self-dual case. This is the generalization of the case shown in Fig. 19.

Figure 27: A $g h$ whose supporting lines have slope $m \in\left[m_{1}, m_{2}\right]$ where the $m_{1}<1<m_{2}$ are the assymptotes' slopes transforms to a bounded convex $b c$ set. This is the generalization of the conic case shown in Fig. 20.
generalized hyperbola denoted by $g h$ consisting of two full(not segments) lines ℓ_{u}, ℓ_{ℓ}, called assymptotes two infinite chains, convex-upward chain c_{u} above both assymptotes, and another convex-downward chain c_{ℓ} below both assymptotes.

Gconics and their Transforms

Theorem The images of gconics are gconics

Figure 28: A $g h$ with $1 \notin\left[m_{1}, m_{2}\right]$, where the m_{i} are the assymptotes' slopes, transforms to a $g h$ - Self-dual case. This is the generalization of the case shown in Fig. 22.

Figure 29: The Convex Union (also called "Convex Merge") of bcs corresponds to the Outer Union of their images (ghs).

References

[1] A.F. Beardon. The Geometry of Discrete Groups. Springer-Verlag, New York, 1983.
[2] D. Cox, J. Little, and D. O'Shea. Ideals, Varieties, and Algorithms. 2nd edition, Springer-Verlag, New York, 1997.

Figure 30: Inner intersection and intersections are dual.
[3] B. Dimsdale. Conic Transformations - IBM LASC Tech. Rep. G320-2713. IBM LA Scientific Center, 1981.
[4] B. Dimsdale. Conic Transformations and Projectivities - IBM LASC Tech. Rep. G3202753. IBM LA Scientific Center, 1984.
[5] M. G. Ewing. On the definition of inflection point. Amer. Math. Mon., 45:681-683, 1938.
[6] J. Harris. Algebraic Geometry. Springer-Verlag, New York, 1992.
[7] D. Hilbert and Cohn-Vossen S. Geometry and the Imagination. Chelsea, New York, 1983.
[8] W. Hodge and D. Pedoe. Methods of Algebraic Geometry, Vol. II. Cambridge Univ. Press, Cambridge, 1952.
[9] C.K. Hung and D. Ierardi. Constructing Convex Hulls of Piecewise Smooth Objects. Univ. of S. Calif. CS Dept. Tech R. 94-583, 1994.
[10] A. Inselberg. The plane with parallel coordinates. Visual Computer, 1:69-97, 1985.
[11] A. Inselberg, M. Reif, and T. Chomut. Convexity algorithms in parallel coordinates. J. ACM, 34:765-801, 1987.
[12] R. J. Walker. Algebraic Curves. Springer-Verlag, New York, 1978.
[13] W. A. Walker. What is a point of inflection? Amer. Math. Mon., 63:182-183, 1956.

[^0]: ${ }^{1}$ Also called linear rational transformations.

[^1]: ${ }^{2}$ The corresponding regions have been previously referred to as estars, pstars and hstars [10], [11].

