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Multidimensional Lines

Adjacent Variables Form

In R? a line is the intersection of two planes. So a line £ in RV is the intersection of N — 1
non-parallel hyperplanes. Equivalently, it is the set of points (specified by N-tuples) which
satisfy a set of N —1 linearly independent equations which after some algebraic manipulations

(and a few exceptions) can be put in the following form:

5172 . X9 = moxy + b
5273 S msxy + b3

bic1i @ xp = mixi—1 + b

AN N - xny = mpyzy_1 + by

Each equation contains a pair of adjacently labeled variables. In the x; ;x;-plane the relation
labeled ¢;_; ; is a line, and by the previous point <+ line duality it can be represented by a

point ¢;_; ; written in homogeneous coordinates below.

li1;=((E=2)(1—my)+1, b, 1—m;). (1)

There are N — 1 such points for i = 2, ..., N which represent the line /.
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Figure 1: Standard spacing between adjacent axes is taken as 1 unit.
Base Variable Form

Another common way of describing a line £ C RV is in terms of one, sometimes called the
base, variable which after appropriate relabeling may be taken as x;. Then

§
5172 L XT9 = m%xl + b%

. | |
5173 L X3 = M3 + b3

. _ 1 1
5172' DXy = myTy bi ’

: .| 1
and the N — 1 points representing it are :

l; = (i—1, b, 1—ml)), (2)
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Figure 2: Line interval in 10-D  the thicker polygonal lines represent it’s end-points. The
adjacent variables representation, consisting of nine properly indexed points, is obtained by
the sequential intersections of the polygonal lines’ linear portions. Note that 17],2 is to the
right of the Xs-axis and /76,7 is an ideal point. The remaining points are in between the

corresponding pairs of axes.
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Figure 3: Algorithm for constructing a pairwise linear relation, in this case /55, given the

N — 1 points, ¢;_;; , representing the line.



(i_1’pi,2)

=

lik

Figure 4: The Collinearity for the 3 points ¢; j, €;x, lip i # j#k € (1,2,..., N). Desargues
Theorem with the two triangles being in perspective with respect to the ideal point in vertical
direction. The y-axis is offscale.
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Figure 5: Two intersecting lines £ and ¢’ in R®. The points representing one line are marked
with * and the other with circles o. Points with the same subscripts are joined 7,7 + 1 with
i,i+1 then i+1,74+2 with i41,i+2. If at any stage the lines do not intersect the common X;
axis at the same point that shows non-intersection and algorithm terminates. Otherwise, as
above, the construction continues to the last pair the output being the polygonal representing
the point of intersection. Alternatively, one of the lines ¢ rotated about one of it’s points
shown here by the polygonal. This corresponds to the translation of the /s to the new
positions #'s on the same polygonal line.
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Figure 6: On the left is the intersection, for the base-variable T description, of two lines in 4-
D. They are the equations of the trajectories of two particles moving with constant velocities.
Intersection is the space and time T coordinates of the collision. On the right is non-
intersection between two lines in 4-D. The gap between the upper and lowest intersections
(lines joining points with the same indices) on the T axis indicates the minimum distance
(20) between the two moving particles. and time = .9 when it occurs. Note the maximum
gap on the T-axis formed by the lines joining the £’s with the same subscript. The polygonal
lines represent the points where the minimum distance occurs at the same value of T are
shown i.e. the time T and the positions of the particles where they are closest.
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Figure 7: Diminishing the minimum distance with a near collision shown on the right.
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Figure 8: L; distance between the points P = (z1,...,x;,...,xx) and P = (x|, ... 2}, ..., 2'y).

Theorem(Constrained Min-Dist) The unique minimum value of the L, (z;) distance is
attained at x, = o; for at least one i =2,... ,N .
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Figure 9: Constructing the z; = «a; minimizing the L; distance between two lines which
here occurs at x1 = 4. For comparison the minimum L, distance occurs at z; = ax.



Application to Collision Avoidance for Air Traffic Control

T=10 T = 300

Figure 10: On the left 6 aircraft flying at the same altitude. The positions are at a certain
time (taken as 0 seconds and shown on the bottom left). Circles centered at each aircraft
are the protected airspaces with the the minimum allowable separation as diameter. The
arrows represent the velocities. On the right conflicts, the overlaping circles, occur within
the next 5 minutes.

T = 3817 T=421.1

Figure 11: On the left after conflict resolution maneuvers an instance with 3 pairs of tangent
circles and on the right a triple tangency. Parallel coordinates are used internally by the
algorithm.
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