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Multidimensional LinesAdjacent Variables FormIn R3 a line is the intersection of two planes. So a line ` in RN is the intersection of N � 1non-parallel hyperplanes. Equivalently, it is the set of points (speci�ed by N-tuples) whichsatisfy a set ofN�1 linearly independent equations which after some algebraic manipulations(and a few exceptions) can be put in the following form:
` :

8>>>>>><>>>>>>:
`1;2 : x2 = m2x1 + b2`2;3 : x3 = m3x2 + b3� � �`i�1;i : xi = mixi�1 + bi� � �`N�1;N : xN = mNxN�1 + bN :

Each equation contains a pair of adjacently labeled variables. In the xi�1xi-plane the relationlabeled `i�1;i is a line, and by the previous point $ line duality it can be represented by apoint �̀i�1;i written in homogeneous coordinates below.�̀i�1;i = ((i�2)(1�mi)+1 ; bi ; 1�mi): (1)There are N � 1 such points for i = 2 ; : : : ; N which represent the line `.2



Y
X1 1 1 1�X1 �X2 �X3 �Xi�1 �Xi �XN�1(i-2) �XNFigure 1: Standard spacing between adjacent axes is taken as 1 unit.Base Variable FormAnother common way of describing a line ` � RN is in terms of one, sometimes called thebase, variable which after appropriate relabeling may be taken as x1. Then

` :
8>>>>>>><>>>>>>>:

`1;2 : x2 = m12x1 + b12`1;3 : x3 = m13x1 + b13� � �`1;i : xi = m1ix1 + b1i� � �`1;N : xN = m1Nx1 + b1N
;

and the N � 1 points representing it are :�̀1;i = (i� 1; b1i ; 1�m1i ) ; (2)
3
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Figure 2: Line interval in 10-D { the thicker polygonal lines represent it's end-points. Theadjacent variables representation, consisting of nine properly indexed points, is obtained bythe sequential intersections of the polygonal lines' linear portions. Note that �̀1;2 is to theright of the X2-axis and �̀6;7 is an ideal point. The remaining points are in between thecorresponding pairs of axes.
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Figure 3: Algorithm for constructing a pairwise linear relation, in this case �̀25, given theN � 1 points, �̀i�1;i , representing the line. 4



Figure 4: The Collinearity for the 3 points �̀i;j; �̀j;k; �̀i;k i 6= j 6= k 2 (1; 2; :::; N). DesarguesTheorem with the two triangles being in perspective with respect to the ideal point in verticaldirection. The y-axis is o�scale.

Figure 5: Two intersecting lines ` and `0 in R5 . The points representing one line are markedwith * and the other with circles Æ. Points with the same subscripts are joined i; i+ 1 withi; i+1 then i+1; i+2 with i+1; i+2. If at any stage the lines do not intersect the common �Xiaxis at the same point that shows non-intersection and algorithm terminates. Otherwise, asabove, the construction continues to the last pair the output being the polygonal representingthe point of intersection. Alternatively, one of the lines ` rotated about one of it's pointsshown here by the polygonal. This corresponds to the translation of the �̀s to the newpositions �̀0s on the same polygonal line. 5
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Figure 6: On the left is the intersection, for the base-variable T description, of two lines in 4-D. They are the equations of the trajectories of two particles moving with constant velocities.Intersection is the space and time T coordinates of the collision. On the right is non-intersection between two lines in 4-D. The gap between the upper and lowest intersections(lines joining points with the same indices) on the �T axis indicates the minimum distance(20) between the two moving particles. and time = .9 when it occurs. Note the maximumgap on the �T -axis formed by the lines joining the �̀'s with the same subscript. The polygonallines represent the points where the minimum distance occurs at the same value of T areshown i.e. the time T and the positions of the particles where they are closest.Y
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Figure 7: Diminishing the minimum distance with a near collision shown on the right.6
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x0i x0i+1xi+1 x0NxN�X1 �X2 �X1 �Xi+1 �XNFigure 8: L1 distance between the points P = (x1; :::; xi; :::; xN) and P 0 = (x01; :::; x0i; :::; x0N ).Theorem(Constrained Min-Dist) { The unique minimum value of the L1(x1) distance isattained at x1 = �i for at least one i = 2 ; : : : ; N .

Figure 9: Constructing the x1 = �I minimizing the L1 distance between two lines whichhere occurs at x1 = �4. For comparison the minimum L2 distance occurs at x1 = ��.7



Application to Collision Avoidance for Air TraÆc Control

Figure 10: On the left 6 aircraft ying at the same altitude. The positions are at a certaintime (taken as 0 seconds and shown on the bottom left). Circles centered at each aircraftare the protected airspaces with the the minimum allowable separation as diameter. Thearrows represent the velocities. On the right conicts, the overlaping circles, occur withinthe next 5 minutes.

Figure 11: On the left after conict resolution maneuvers an instance with 3 pairs of tangentcircles and on the right a triple tangency. Parallel coordinates are used internally by thealgorithm.References[1] A. Inselberg and B. Dimsdale. Multidimensional lines i: Representation. SIAM J. ofApplied Math., 54-2:559{577, 1994.[2] A. Inselberg and B. Dimsdale. Multidimensional lines ii: Proximity and applications.SIAM J. of Applied Math., 54-2:578{596, 1994.8


