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Planes, p-flats & Hyperplanes

Vertical Line Representation
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Figure 1: A plane 7 in R® can be represented by two vertical lines and a polygonal line
representing one of its points.

Figure 2: A set of coplanar points on a regular grid in R* with the two vertical lines pattern.

This generalized to RN where a hyperplane can be represented by N — 1 vertical lines.



4.3 D.90e) 19.173

8L . 7o
R8 R9 R96& R101 R1D05 R106 R111 R112

Figure 3: Industrial data. Note pattern between the R111 and R112 axes.

Figure 4: Portion between the R111 and R112 axes in || and cartesian coords. A parameter
linearly related to R111 and R112 had not been measured and was discovered as a result of
these plots.



Figure 5: A line £ on a plane 7 is represented by one point 75 in terms of the coordinates
(i.e. line in 2-D —) point in Y; and Y5 which is collinear with the two point £15 and f53. This
is a consequence of Desargues projective geometry theorem.

Figure 6: Rotation of a plane about a line <» Translation of a point along a line.



The family or pencil of planes :
o (563 — M3xro — bg) + k(LUQ — Mo — bg) =0 , (1)
is on the line:

(2)

each value of k& determines a(the rotated) plane and, in turn, the translated position 7;s:

) ()

The above generalize to RV where a hyperplane being represented by N — 1 vertical lines.

flg I L9 = MoxT1 + bQ
l:
lo3 : w3 = mg3T + b3

N _( m§—2m3—k2 bgk2-|—m3b3
2= m3 —m3+k%2(ma—1) ° m3—m3+ k?*(mg — 1)

Representation by Indexed Points

The family of “Super-Planes” &£

We consider the set of points P € RY whose representation in ||-coords collapses to a straight
line. They form a 2-D subspace (2-flat) That is, P : y = max + b and for each choice of

(m, b) the corresponding point is :

P = (md1+b, md2+b,...,mdN+b):m(d1, dg,...,dN)—l—b(l,...,l) . (4)
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Figure 7: Points in RY represented by lines.



Therefore, the super-planes (abbr.sp) are on the line u containing the points
(0,0,...,0),(1,1,...,1). They can be described in terms of the axes spacing and for R® the sp

are given by:
7’ (dg — dg)iEl + (d1 — dg)ﬂﬁg + (d2 — d1)333 =0 (5)

For the standard axes spacing used so far, d; = 0,dy = 2,d3 = 2 the corresponding, called

the first, sp is :

Wf:$1—2$2+$3:0 (6)
For a plane
T 1% + caxo + 373 = ¢ (7)
671'12 - L2 = _cc;—i—_Qc(?gajl + 0246-()2(33
by =mNny : : (8)
671-23 Ty = —i?jccfx + (33070(31'

These two points representing ¢, coincides since it is a line in a sp, and in homogeneous
coordinates
7193 = Uy = lry, = (C2 + 2¢3, ¢y 1+ 2+ C3) . (9)

This is the first indexed point for 7. To understand its significance follow the next two
figures.

Figure 8: On the first 3 axes a set of polygonal lines representing a randomly sampled set
of points on a plane 7 C R3.
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Figure 9: Coplanarity! In [|-coords joining the pairs of points representing lines on a plane
forms a pencil of lines on a point. The point shown is 793 in eq. (9). Review also the
3-point-collinearity for multidimensional lines (previous chapter).
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Figure 10: The axes spacing for the second super-plane 7j,.



Next the axis X is translated to the position X! one unit to the right of the X3 providing

the new axes spacing dy = 4,dy = 1,d3 = 2. The corresponding sp is
i1+ 29 — 223 =0, (10)

The x; values of the coplanar points shown in Fig. 8 are transfered to the X;, see Fig.

Y

Figure 11: Transferring the values from the X; to the X,-axis.
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Figure 12: The plane 7 represented by two points
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Figure 13: The intersections of a plane 7 with the two super-planes 7%, and 77, are two lines
lr , 0 which specify the plane and provide its representation. This is the equivalent of the

™ ot

previous figure but in cartesian coordinates.

11 and the construction in Fig. 9 is repeated providing the second point
77'('231/ = €I7T1/2 = glﬂ%, = (301 + (&) + 263, Co, C1 + Co + Cg). (11)

shown Fig. 12. These two points represent the plane 7 since from their coordinates the
coefficients of eq. (7). Geometrically, we have determined the plane 7 by the two lines
Uy, ¢! C 7 shown in Fig. 13. A plane in R? can be specified in terms of any two intersecting
lines it contains. The reason for choosing the lines in the sp is that in ||-coords such lines

are represented by one rather than two points and there are further advantages. Note that

Tog1 — T123 = (3¢1,0,0) . (12)

The four Indexed Points

The X, and X3 axes are each translated to positions X} and X}

5 3 units to the right
providing the third

Tyt —2@1 + 29 + 23 =0, (13)



J//a RN

~

Figure 14: The plane 7 intersected with four super-planes. Each point represents one of the
intersection lines.

and similarly the fourth sp 7}, . Two new points are constructed and shown in Fig. 14
As for the previous 2 points

T3y — T3 = (3¢2, 0, 0)
_ _ 14
312 — T2y = (303, 0, 0) : ( )

It is easiy checked that the translations correspond to 120° rotations of the sp 7 about the
line u on the points (0,0,0), (1,1, 1) with 793 coinciding with 7. To simplify notation the
index permutation is unimportant so that maz; = my193.
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Figure 15: The distances between adjacent points are proportional to the coefficients of

T : 1T+ %o+ c3x3 = ¢g. The proportionality constant is the dimensionality of the space.
The plane’s equation can be read from the picture!
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Synthetic Constructions in R’
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Figure 16: The parallel planes p, 7 are above and below respectively the plane m whose
upper half-space is marked by the two dashed half-lines.
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Figluie 17: Ailine ¢ is contained in a plane 7 < the points ly9, £13, lo3, T193 are on a line P
and éllg,éllg,ggg,ﬁ'ggll are on a line P'. Then P = (W N7 and P = éwl n.
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Figure 18: Two intersecting planes

Constructing the four indexed points

Figure 19: Representation of a plane 7 C R® by two indexed points. First step in the
construction of the points 391/, T3 from 793, Moz, A (any) line £ C 7 is constructed as
in Fig. 17. The points /15, {15 are constructed and the horizontal lines 12,13,23 are drawn
on the /s with the corresponding indices.
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Figure 20: Construction of the third point 7y/9/3.
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Figure 21: Construction of the fourth point 7y/95. Note that P” on fy5 is parallel to P
since P" is the point P = 7 N/, in the X/, Xo, X3 axes.
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Figure 22: The collinear triples of points ¢ corresponding to a line ¢ as they appear in each
of the four coordinate systems X, X5, X3 through Xy, Xo, X3 .

Special Planes

Principal 2-planes

y y
Q23 = Qg = Q3 ayoy Br23 Bozi = By = Bray
z3 =10 z3 =10 X 71 =0 z1=0
X] XQ Xg X]f Xzf ng Xl Xg Xg le XQ/ ng

Figure 23: Indexed points corresponding to o : x3 = 0 the x12, principal 2-plane on the left
and for the zox3 principal 2-plane 8 : 2y = 0 on the right.
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Figure 24: Indexed points corresponding to v : x9 = 0 the principal 2-plane z;x;.

The constant planes

y y
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K123 Ra3r = R3ry = Ryyy 123 77 Pasl ez 7 Frs
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X
Xl XQ X3 le X2/
X1 X2 Xg X]/

Figure 25: Indexed points representing the constant planes k : 7 = kg (left) and  : 29 = kq
(right).
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Figure 26: Representation of the plane k : x3 = k.
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Projecting Planes and Lines
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Figure 27: A line / as the intersection of the projecting planes fo L o and /5 L .
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Figure 28: The projecting planes la, £3, ¢~y the line £ whose ¢ points are shown in Fig. 22.
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Figure 30: On the left are the initial data, are points specifying the plane 7 and line /, for
intersection construction on the right. First 7 = 7 N fa is constructed (need only 73 since
Ti9g = //]2). Then R = (T],T'Q,Tg) =rnNf=nnN4¢.

This is a geometrical /graphical solution of the system of linear equations

T 01T+ Cako + C3T3 = (g
6172 . C11T =+ C12T9 = C10 . (15)
log @ €Ty + Co3T3 = Cy
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Separation in R? — Points and Planes
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Figure 31: The “above” and “below” relations between points and lines switch at m = 1.

Figure 32: Point T = (1,5, 13) is above the plane 7. Line / = w N k where £ : x; = t; with
P = (t1,t2,p3) € £ Nw. With fy3 between the Xy, X, i.e. the slope of £y is negative, and
below the portion Ths of the polygonal line T, T is above ¢ in the plane x and also 7. This
is also clear from the picture since T, P € k have the same xq, x5 coords and p3 < t3.

18



X, X, X X1

Figure 33: Point T = (1,5, t3) is above the plane 7. Line / = w N k where k : x1 = t; with
P= (tl,tz,pg) elNm.

Rotation of a Plane about a Line and the Dual Translation

P WP . p/ L pilt

Figure 34: Rotation of a 2-flat (plane) about a 1-flat(line) in R® corresponds to a translation
of the points with 3 indices on the horizontal line H along the lines L, L', L" , L" joining
the points with 2 indices.
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Figure 35: Rotation of a plane 72 about a line 7! such that ¢; remains constant.

Hyperplanes and p-flats in RY

Designate the axes spacing by d = (dy,ds, ..., d;, ...,dy) and recall that the super-planes sp
are on the line

U:To=T1, T3 =T, ..., i =Tj_1, .., TN = TN_1 - (16)

Being 2-flats the sp are described by N — 2 linearly independent equations which after some
matrix manipulations can be written with 2 variables each as :

(% : (zo — 1) + ki(z3 —12) =0,
% : (23 — ) + ko(zs —23) =0,
Ns
s 17
T ) W%'H)(HQ) : (Titi — 23) + ki(Tigo — 2440) =0, (17
L 7r(NAf72)(N71)N : (tn—i —2n—i1) +hy1(zy —2y1) = 0.

The form of the equations stems from the fact that in the 3-dimensional subspace x;_sx; _17; ,

71—(];5@2)(7271)12 the equation for = ) describes the pencil of 2-flats on the 1-flat (line) z; | =

Ns

i(i+1)(i+2

20



Ti 9, T; = ;1. Pointing out that each such 2-flat contains the points (1,1,1), (d;_2,d; 1, d;)
enables the elimination of the parameter k; in the equations 77V* and rewriting them in terms
of the axes spacing as :

v (dla d27 d3) : (d3 - d2)331 + (dl - d3)332 + (dQ - d1)3?3 =0,
’ﬂ'Ns (dg, dg, d4) : (d4 — d3).7,'2 + (dg — d4)373 + (dg — dg).’L’4 =0 s
. (18)
TV (di digr, diva) 0 (diga — dig1) i + (di — diga)igs + (digs — di)zise =0,
e (dn_2,dn_1,dN) : (dy —dn_1)xn_o+ (dv_o —dn)on_1 + (dy_1 —dy_9)zny =0 .

The actual axes spacing used can be stated explicitly, as above rather, than subscripts when
it is clear from the context. To get a better feel let’s play around a bit in R* with

s { 7ril§3 H(ds — dy)wy + (dy — ds)zy + (d — dy) x5 = 0 (19)

ngm . ((]4 — dg)mg + (dg — d4).’1?3 + (dg — dg).’l)4 =0

Substituting x; = d;, x; = d; yields the remaining two dy, d, for i # j # k # s confirming
that this is the correct 2-flat.

This is a good time to make some notational conventions' by defining the axes spacing
recursively. Initially it is d% = (0,1,2,---, N) and after i successive translations, where the
X, axis is in the X, position,

i—1

. ——T—
dy =dy + (N, N,--- | N,0,---,0) = (dir, djo, .. ., dige, . .., din). (20)

When the dimensionality is clear from the context the subscript N can be omitted. For a
flat 7P expressed in terms of the d{\I spacing points ﬁf,,.,,,i,,H],.,N of its representation are
denoted compactly by 7}, and it is consistent to write 77 = 7y which we may do on occasion.
For the standard axis spacing d = (0, 1, 2, 3) the sp is
: 21

1234 {7r534 t Ty — 223+ x4 =0 (21)
To emphasize the notational equivalence note that 7*%(0,1,2) = n{5;. The axes are trans-
lated, as in R?, to generate different sp corresponding to rotations about u which are sum-
marized in Fig 36. First, the axis X, is translated to position Xy, one unit to the right of
X, with the resulting the axes spacing d = (4, 1, 2, 3) yielding

(22)

s gy X1 + 2w — 323 =0
! .
17234 Ty X9 —2x3+ 14 =0

The angle of rotation between 75, and 7}, computed via eq. (?7) is cos™' (—4/3/7) =

180° — ¢, ¢ =cos ' (y/3/7) ~ 49.1° . Note that since 73,, remains unchanged this is not

T am indebted to Liat Cohen for providing this notation.
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4s __ _4s
M2 = Mroy
4s __ __4s
T34 = Torzy

Figure 36: The rotations of 7*s about the line u. This is a a projection on a plane perpen-
dicular to u and the 3-flats 73, , 95, whose projections are lines.

a complete rotation of 7{3,, about the line u. Proceeding, with the translation of X, to
position X} one unit to the right of Xy provides the axes spacing d = (4, 5,2, 3) and the sp

S . o - o

Ty - gy 23T — 2m9 — 13 =10 (23)

¢ : S . . .
Mgy T+ 2x3 — 3wy =0

The angle between 73,55 and 7§y is cos™'(—1/7) = 2¢ while the angle between 73;, and
Torg, 18 180 — ¢. Continuing by translating X3 to position Xy one unit to the right of X}
yields d = (4,5, 6, 3) and

s . 7T]S/2/3/ X1 — 2.1'2 + T3 = 0 924
Tyrgr3r4 - s <3 92 =0 ( )
Torgr4 Ol — 4T3 — T4 =

returning 4 to its original position 7j,; while bringing 73, at an angle 2¢ from 7J,,,.
Again this is not a complete rotation of the whole sp about the line u. The final translation
of X, to Xy one unit to the right of X3 provides d = (4,5,6,7) and

s . 71—{/2/3/ 1 — 2.7;2 + r3 = O 925
Tyrorgigr - 5 . - (25)
71'2,3,4, . .7/12 - 2.7/13 + .’I;4 — O

which is identical to my,. Unlike R® the rotations angles are not all equal though the sum
is a full circle. The “anomaly” suggest that ¢(N) is a function of the dimensionality N with
$(3) = 60° and ¢(4) ~ 49.1°. It is interesting to investigate that. For RV we look at 53
with u = (0,1,2,..., N —2, N — 1) and after the translation of X to position X/ one unit to
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the right of Xy the axes spacing is u = (N,1,2,...,N — 2, N — 1) yielding respectively the
two corresponding 7% (dy, dy, d3) :

WIZ\;% T — 2-772 + T3 = 0 ) (26)
7T{\/T23 T]+(N*2)’L'2+(1*N)T3:0
The angle function is
_ V3(N-—

some of values are ¢(5) ~ 47.88°, ¢(6) = 45° and the limy_,oo ¢(IN) = 30°. Next let us
compute the one-flat (line) intersection ¢, = 7% N where the plane 7 C R*. These will
provide the index point representation for 7 representing the one-flats :

T D C1T1 + Cag + C3Ty + C4Ty = C,
7.‘.115% . (dq dg)l‘l + (dl d3).’172 + (d2 dl)l‘g =0 (28)
Wg§4 . ((]4 — dg)mg + (dg — d4).7,'3 + (dg — dg).??4 = 0.

{ CL:Cl(dg—d1)+63(d2—d3)+64(d2—d4) s (29)
b= Cg(dg - dl) + C3(d3 — dl) + C4(d4 — dl)
Uiy = —%aﬁ + Mco : (30)

Since £, C 53, , ZW” l,,. for distinct indices i,7,k,r € (1,2,3,4) and in homogeneous
coordinate

4 4

gﬂ']g = ( (dQ d])b+ dl Zz 1Gi ,(dg - d])co ’Z?:] Ci) ) (Z C7 ) 760 ) Cv (31)

i=1 i=1

From these the “generic” indexed points which provide the representation for a 7 C R* for
the axes spacing d we write 7(d) are obtained. After performing the standard translations
d; — d; + N we have and take the differences we obtain :

11934 — T1234 = (4¢,,0,0),

Tyrggs — Toza = (4 ,0,0) (32)
Tyggs — ez = (4¢3 ,0,0),

Tyoga — Tryys = (4es,0,0) .

Indexed Points in RY

Remarkably, the collinearity property (as in 2-D with the 3-pt-collinearity and 3-D with the
collinearity of two pts with 2-indices and one of the pts representing a plane on the line
see Fig. 9) generalizes to higher dimensions enabling the recursive (on the dimensionality)
construction of the representation of p-flats for 2 < p < N — 1. To achieve this some
intermediate steps are needed. The ss corresponding to the axes spacing di; (i.e. obtained
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from the translation of the axes X, ..., X; to the positions Xy, ..., Xy see 20) is denoted
by 7l
Theorem: The 1-flat 7 N 7)Y | where

N

e chxk =q, (33)

k=1
is a hyperplane in RN an (N — 1)-flat, is represented by the point :

N

N
Ty = (Z dikCr 5 Co , ch) (34)
k=1

k=1
where the d;;, are the inter-axes distances for the spacing di; as given in eq. (20).

Corollary [Hyperplane Representation] The hyperplane 7 given by eq. (33) is
represented by the N — 1 points 7, given by eq. (34), fori =10,1,2,..., (N — 2).

A p-flat in R is specified by N — p linearly independent linear equations which, without
loss of generality, can be of the form:

p

( 7T12___(p+1) D C11T +...+ C(p,l)la?p + Cp1Tp+1 = Cio
P . _
7T23___(p+2) L C92T9 + ...+ Cp2Tp41 + C(p+1)2mp+2 = C9p
P
: p e . . . o =
Titprg) - CidTy Tt Cpti1)jTpri-1 T Cpt)iTpti = Cjo
P . _
[ T(N-p)N F CN-(N-p)TN—p T EN-D(N-p)TN-1 T+ EN(N-p)TN = C(N-p)0

and is rewritten compactly as

p+j

LU C P chkl"kzcjo , J=12,...,(N-p}. (35)
k=i

A p-flat 77 C R" is the intersection of N — p hyperplanes and eq. 35 is the analogue of the
“adjacent-variable” description for lines in Chapter ?? the indexing being a direct extension.
Unless otherwise specified, a p-flat is described by eq. (35) with the standard spacing dY.

Theorem A p-flat in RV given by eq. (35) is represented by the (N — p)p points :

p+1 p+1
Mooty = (D dircsns cios D can), (36)
k=1 k=1

where 7 =1,2,...,N—p, 1+=1,2,...,p and the d;; are the distances specified by the axes
spacing di; .

To clarify, a hyperplane 7 in R* 7 (i.e. 3-flat) can be represented by the three points
Ti934, T1/234, T1/2/34 - (37)

24



For a 2-flat 7%, p =2, N =4, p(N — p) = 4 and it can be represented by the four points :

2 =2 —2 . 2 =2 —2
T93 + Tyo3s Tyro3 5 To34 < Togqs Torgy- (38)

Similarly in R®, a hyperplane 7 is represented by the four, a 3-flat 7® and a 2-flat 72 by six
points each i.e.

(T Tiosas , Ti2sas , Trwads s T35
3 . -3 _3 _3
a3 { 7r];234 : 7r];234 ) W%'234a 7r;;'2'34
% T345 + T9345 » Morzas » Torgias (39)

2 . =2 —9
Moz + Moz, Myr93
. 2 . =2 _9
™ T34 - To34 5 Tor3g

2 . =2 —9
L T345  + 345 5 T3r45 -

In many instances it is possible to use simplified notation by just retaining the subscripts
so that the three points in eq. (37) are referred by 1234,1'234,1'2'34. The dimensionality
is one less than the number of indices. Continuing, the points representing pi® in eq. (39)
denoted simply by 1234, 1'234,1'2'34; 2345, 2'345, 2'3'45; since there 2 sets of 3 points with
5 different indices altogether we can conclude that this is a 2-flat in R%. The simplified and
the more formal notation are used interchangeably. This theorem unifies all previous
results for p-flats 77 where 0 < p < N. Recall that in Chapter on lines the representation
of a point P € RV, a 0-flat 7, is also be given in terms of N points each with one index.

y
P
- \\ / 1z Yy
p N\ / 12
e N\ Vi ]
- N/
\\\\\\\ // /ﬁ-h
", -
e VAR RN .
1T N ~J123 _o il
- - 7 Y S S L <
P 7T12 - -..\\.‘. / \\\ \_\. __g-t--- -Q—\ N \23
\\\\\\\ / ‘\‘ \ 7—_[_11 S
- \ 12 . N )
\\\\\\\ \ N N e —1y
~\ x - B | T
| 1o AN x
—]]\ e 123 AN
34 1 1.5
1y b
\\\ 7r34 AN
X X5 X3 X, X, < X, X,

Figure 37: Recursive Construction in R*. A pair of points (polygonal lines) determines a line
(1-flat) 7't represented by the 3 constructed points 7?3,;.7] . 1 =1,2,3,4 (left). The 1-flat
7'" and another 7'2 (right), | represented by the 3 black points, determine a 2-flat (plane)
721 represented by the two points 71a; , s, These points are the intersections of the two

polygonal lines joining the points previously obtained representing the 1-flat 7't.
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These points are simply the values of the coordinates p;, i € [1,..., N] of P. They can also
be thought of as N equations:
Ty = Pi -

Let N, be the number of points and n, the number of indices appearing in the representation
of a flat in R then for p-flat, N, = (N — p)p, n, = p+ 1 and

Ny4+n,=(N—pp+p+1)=—p"+p(N+1)+1. (40)
Then in RY for
1.p=0—points 7 : N, +n, = N+1,
2.p=1 linesw' : N,+n,=(N-1)+2=N+1,
3. p=2  2-flats (2-planes) 72 : N, +n, = (N —2)2+3=2N —1,
4. p=N —1  hyperplanes N, =N -1, n.,=N: N, +n,=N—-14+N=2N—-1.

Note that eq. (40) does not cover the case points (p = 0). In summary, the point
representation reveals that the object being represented is a flat whose dimensionality is one
less than the number of indices used. The dimensionality of the space where the flat resides
is, of course, equal to the number of parallel axes.
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Figure 38: Recursive Construction in R*. Two 2-flats, 7' constructed previously and an-
other 722 represented by the 2 black points (left), determine a 3-flat 73'. Pairs of points
representing the same 2-flat are joined and their intersection is the point 7i4,,. This is one
of the 3 points representing the 3-flat. The “debris” from the previous constructions, points
with fewer than 4 indices, can now be discarded.A new axis (right) X/ is placed one unit
to the right of X3 and the 2, values are transfered to it from the X, axis. Points are now
represented by new polygonal lines between the X, and X,/ axes and one of the points 7?3“1,,
representing the 1-flat 7't on the new triple of ||-coords axes, is constructed as in 1st step.
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Figure 39: Polygonal lines (left) on the X ... X4 axes representing randomly selected points
on a 5-flat 7° C RS. ted points on a 5-flat 7> C R® .The 7} , 7y} portions of the 1-flats C 7°
constructed (right) from the polygonal lines lines. No pattern is evident.

Collinearity Property

The underpining of the construction algorithm for the point representation of a 2-flat 72 C
R?, as we saw, is the collinearity property. Namely for any 7' C 72 the points 7i,, Tis, Tas

.
/74/
- //T I
?f/ . = L__Jj(r—/
- L IS NN R L
o - X R e X
%1:‘ i @“\1\“\%\\
L -
A “SNn
-
L ——
I .
e TR |
X1 X2 X3 X4 X1 X2 X3 X4 X5

Figure 40: The 7jhs , 7as, (left) portions of the 2-flats C 7° constructed from the polygonal
lines joining 74 , Ty , 7si. The Trh, , 7oy, (right) portions of the 2-flats C 7° constructed
from the polygonal lines joining 71 ,ﬁég , ﬁég.
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Figure 41: This is it (left)! The 7jis,s , Ty Of the 4-flats C 7° constructed from the
polygonal lines joining 7??534 ,ﬁ§§45 ,7?3356. This shows that the original points whose repre-
sentation is in Fig. 39(left) are on a 5-flat in R®. The remaining points of the representation
are obtained in the same way and all 7 points of the representation of 7° are seen on the
right. The coefficients of its equation are equal to 6 times the distance between sequentially
indexed points for in Fig. ?? for R?.

are collinear with 7y93. For the generalization to p-flats let

Pk —Pk —Pk
Li" = Titped) ® TG (o) (41)
denote the line E?’“ on the indicated two points. The gist of this section is the proof prove
that 7e~11, 712 c 7P ¢ RV

ﬁ

_ 71 7 (p—1):
gy = L TNVLEE (42)

An example is for j = 1,p = 2, N = 3 recasts our old friend from section 77 as :

E,ﬂk 1y 1y _ 1 gl
1 =msemyt, k=12 7, =L NL,

The pair (41) and (42) state the basic recursive construction implied in the Representation
Mapping stated formally below. The recursion is on the dimensionality, increased by one at
each stage, of the flat whose representative points are constructed. Though the notation may
seem intimidating the idea is straight forwar, and to clarify it we illustrate it for N=4,p=3
in Figs. 37 and 38. Starting with the polygonal lines on a 3-flat 7%, first the points
Tih, oy , s, representing 1-flats (lines) on 7, are constructed and ]01ned to form polygonal
lines having 3 vertices (the points) joined by two lines. From the intersection of these new
polygonal lines the points 7??%3, ,ﬁ;§4, representing 2-flats on 73!, are constructed. At any
stage a point representing 7", where the superscript is the flat’s dimension, is obtained by

any pair of lines joining points representing flats of dimension » — 1 and contained in 7",
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Figure 42: Continuing the construction of indexed points for a 3-flat 72 in 4D. On the left is
the point 7934 previously constructed in Fig. 38. Using simplified notation the construction
is continued on the right to obtain the point 7934 — marked by 1'234. The 123,123, 234,
are points of the representation of a 2-flat 72 contained in 3. The lines P, P] on 1234 and
1’234 share the indices 234 and necessarily intersect at the 234, point.

Theorem [Collinearity Construction Algorithm] : For any 7*~? c 7z~ c RN,
(r—2) —(p—2) —(p—1)

the points 7?1...(;;71) » T (pe1yp » M1 (p—1)

, are collinear.

Corollary For any =2 C mP=1) C RY, the points
—(p—2) —(p—2) —(p—1 :
ik 4 Ty 4 Ty 4 are collinear.
{G-p+3—2)}s * “HGHFD - (p+i-D}y 7 “H{G(p+i—1)}
Yy Yy
234/23-1 2'34 21314! 2134
x x
1234234 | 1234 9ol /
P 1234 1234 1”4/ . 1234
1'2'34
p P P
1 2 3 4 1’ 2/ 3 4’ 1 2 3 4 1 2/ 3/ 4'

Figure 43: On the left are the initial data for a 3-flat 7 in R*. Three points (right)
Pemnnis P emnns P e x*na' are chosen. In the xoz314 subspace of R? they
determine a 2-flat 73,,.
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Figure 44: Completing the construction of the 5 points for a hyperplane’s representation in
R*.
Construction Algorithms in R*

The generalization of the 3-D construction algorithms to 4-D is direct and is an opportune
time to introduce simplified notation which is used when the context is clear.

y y

030 | 1934 19'34. 1934, | 1'234112'34,

1230, | 11234, | 1734, - x P23 1934,
1231, 17234, 12'34, ‘ 12401934, | 12734, | 1234, ’
| -- 1234 mmmeetd) 1244,
191 L-~9lal, ol ~
,,,,,,,, 23'},, _ 2,3,%,,;4?,%},,,,,,,2,/5%,,\%:7\,, 234
D! D "

1 2 3 4 I 1 2 & 47 2 3 4

Figure 45: On the left are the initial data specifying two 3-flats 731, 732 in R*. On the right
the lines P, P', P" are drawn on the pair of points 1234, 1’234, 1'2'34 respectively providing
the 234 and 2'34 points for the 2-flat 72 = 7% N 7. Then the points 2'3'4,2'3'4 for 72,,
and 1'2'3'4;, shown within the dotted circles, are constructed.
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Figure 46: Intersection of two 3-flats in 4-D. The result is the 2-flat 72 given by the points
123,1'2'3' etc. representing 7%,; and 234, 2'34 etc for 72,,.

Detecting Near Coplanarity

The coplanarity of a set of points S C 7 can be visually verified. What if the points are
perturbed staying close to by no longer being on the plane 7, can “near-coplanarity” still

Figure 47: Polygonal lines representing a randomly selected set of “nearly” coplanar points.
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Figure 48: The “near-coplanarity” pattern (left) is very similar to that obtained for copla-
narity with the points of intersection forming two clusters (right).

detected? Let us formulate this question more specifically by perturbing the the coefficients
¢; of a plane’s equation by a small amount ¢;. This generates a family of “proximate” planes
forming a surface resembling a “slab” with nearly parallel sides. Now the experiment is
performed by selecting a random set of points from such a “slab”, and repeating the con-
struction for the representation of planes. As shown in Fig. 47, 48 the there is a remarkable
resemblance to the coplanarity pattern. The construction also works for any N. It is also
possible to obtain error-bounds measuring the “near coplanarity” [3]. This topic is covered
in a subsequent Chapter.

Experiments on points selected from several slabs simultaneously and performing sim-
ilar construction showed that it is possible to determine the actual slabs from which the
points were obtained or conversely can be fitted to. All this has important and interesting
applications (USA patent # 5,631,982).
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