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An Explicit Construction of Quantum Expanders

Avraham Ben-Aroya ∗ Oded Schwartz † Amnon Ta-Shma ‡

Abstract

Quantum expanders are a natural generalization of classical expanders. These objects were
introduced and studied by [1, 3, 4]. In this note we show how to construct explicit, constant-degree
quantum expanders. The construction is essentially the classical Zig-Zag expander construction
of [5], applied to quantum expanders.

1 Introduction

Classical expanders are graphs of low degree and high connectivity. One way to measure the expan-
sion of a graph is through the second eigenvalue of its adjacency matrix. This paper investigates the
quantum counterpart of these objects, defined as follows. For a linear space V we denote by L(V)
the space of linear operators from V to itself.

Definition 1.1. We say an admissible superoperator G : L(V) → L(V) is D-regular if G = 1

D

∑
d Gd,

and for each d ∈ [D], Gd(X) = UdXU
†
d for some unitary transformation Ud over V.

Definition 1.2. An admissible superoperator G : L(V) → L(V) is a (N,D, λ) quantum expander if
dim(V) = N , G is D-regular and:

• G(Ĩ) = Ĩ, where Ĩ denotes the completely-mixed state.

• For any ρ ∈ L(V) that is orthogonal to Ĩ (with respect to the Hilbert-Schmidt inner product,
i.e. Tr(ρĨ) = 0) it holds that ‖G(A) ‖ ≤ λ ‖A ‖ (where ‖X ‖ =

√
Tr(XX†)).

A quantum expander is explicit if G can be implemented by a quantum circuit of size polynomial in
log(N).

The notion of quantum expanders was introduced and studied by [1, 3, 4]. These papers gave sev-
eral constructions and applications of these objects. The disadvantage of all the constructions given
by these papers is that each construction is either constant-degree or explicit, but not both. In this
paper we show how to construct explicit quantum expanders of constant-degree. Our construction
is an easy generalization of the Zig-Zag expander construction given in [5].
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2 Preliminaries

We denote by HN the Hilbert space of dimension N .
For a linear space V, we denote by L(V) the space of linear operators from V to itself. We

use the Hilbert-Schmidt inner product on this space, i.e. for X,Y ∈ L(V) their inner product is
〈X,Y 〉 = Tr(XY †). The inner product gives rise to a norm ‖X ‖ =

√
〈X,X〉 =

√∑
si(X)2, where

{si(X)} are the singular values of X. Throughout the paper this is the only norm we use.
We also denote by U(V) the set of all unitary operators on V, and by T (V) the space of supero-

peartors on V (i.e. T (V) = L(L(V))).
Finally, we denote by Ĩ the identity operator normalized such that Tr(Ĩ) = 1. That is, Ĩ denotes

the completely mixed state (on the appropriate space).

3 Explicit constant-degree quantum expanders

3.1 The basic operations

The construction uses as building blocks the following operations:

• Squaring: For a superoperator G ∈ T (V) we denote by G2 the superoperator given by
G2(X) = G(G(X)) for any X ∈ L(V).

• Tensoring: For superoperators G1 ∈ T (V1) and G2 ∈ T (V2) we denote by G1 ⊗ G2 the
superoperator given by (G1 ⊗ G2)(X ⊗ Y ) = G1(X) ⊗ G2(Y ) for any X ∈ L(V1), Y ∈ L(V2).

• Zig-Zag product: For superoperators G1 ∈ T (V1) and G2 ∈ T (V2) we denote by G1 z©G2

their Zig-Zag product. A formal definition of this is given in Section 4. The only requirement
is that G1 is dim(V2)-regular.

Proposition 3.1. If G is a (N,D, λ) quantum expander then G2 is a (N,D2, λ2) quantum expander.
If G is explicit then so is G2.

Proposition 3.2. If G1 is a (N1,D1, λ1) quantum expander and G2 is a (N2,D2, λ2) quantum
expander then G1 ⊗ G2 is a (N1 · N2,D1 · D2,max(λ1, λ2)) quantum expander. If G1 and G2 are
explicit then so is G1 ⊗ G2.

Theorem 1. If G1 is a (N1,D1, λ1) quantum expander and G2 is a (D1,D2, λ2) quantum expander
then G1 z©G2 is a (N1 · D1,D

2
2
, λ1 + λ2 + λ2

2
) quantum expander. If G1 and G2 are explicit then so

is G1 z©G2.

The proofs of Propositions 3.1 and 3.2 are trivial. The proof of Theorem 1 is given in Section 4.

3.2 The construction

The construction starts with some constant-degree quantum expander, and iteratively increases its
size via alternating operations of squaring, tensoring and Zig-Zag products. The tensoring is used to
square the dimension of the superoperator. Then a squaring operation improves the second eigen-
value. Finally, the Zig-Zag product reduces the degree, without deteriorating the second eigenvalue
too much.
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Suppose H is a (D8,D, λ) quantum expander. We define a series of superoperators as follows.
The first two superoperators are G1 = H2 and G2 = H ⊗ H. For every t > 2 we define

Gt =
(
G⌈ t−1

2
⌉ ⊗ G⌊ t−1

2
⌋

)2

z©H.

Theorem 2. For every t > 0, Gt is an explicit (D8t,D2, λt) quantum expander with λt = λ+O(λ2).

The proof of this Theorem for classical expanders was given in [5]. The proof only relies on
the properties of the basic operations. Proposition 3.1, Proposition 3.2 and Theorem 1 assure the
required properties of the basic operations are satisfied in the quantum case as well. Hence, the proof
of this theorem is identical to the one in [5] (Theorem 3.3) and we omit it.

3.3 The base superoperator

Theorem 2 relies on the existence of a good base superoperator H. In the classical setting, the
probabilistic method assures us that a good base graph exists, and so we can use an exhaustive
search to find one. The quantum setting exhibits a similar phenomena:

Theorem 3. ([4]) There exists a D0 such that for every D > D0 there exist a (D8,D, λ) quantum

expander for λ = 4
√

D−1

D
1.

We will use an exhaustive search to find such a quantum expander. To do this we first need to
transform the searched domain from a continuous space to a discrete one. We do this by using a
net of unitary matrices, S ⊂ U(HD8). S has the property that for any unitary matrix U ∈ U(HD8)
there exists some VU ∈ S such that

sup
‖X ‖=1

∥∥∥UXU † − VUXV
†
U

∥∥∥ ≤ λ.

It is not hard to verify that indeed such S exists, with size depending only on D and λ. Moreover,
we can find such a set in time depending only on D and λ 2.

Suppose G is a (D8,D, λ) quantum expander, G(X) = 1

D

∑D
i=1

UiXU
†
i . We denote by G′ the

superoperator G′(X) = 1

D

∑D
i=1

VUiXV
†
Ui

. Let X ∈ L(HD8) be orthogonal to Ĩ. Then:

∥∥G′(X)
∥∥ =

∥∥∥∥∥
1

D

D∑

i=1

VUiXV
†
Ui

∥∥∥∥∥ ≤

∥∥∥∥∥
1

D

D∑

i=1

UiXU
†
i

∥∥∥∥∥+
1

D

D∑

i=1

∥∥∥UiXU
†
i − VUiXV

†
Ui

∥∥∥

≤ ‖G(X) ‖ + λ ‖X ‖ ≤ 2λ ‖X ‖ .

Hence, G′ is a (D8,D, 8
√

D−1

D
) quantum expander 3. This implies that we can find a good base

superoperator in time which depends only on D and λ.

1[4] actually shows that for any D there exist a (D8, D, (1 + O(D−16/15 log D)) 2
√

D−1

D
) quantum expander.

2One way to see this is using the Solovay-Kitaev theorem (see, e.g., [2]). The theorem assures us that, for example,
the set of all the quantum circuits of length O(log4 ǫ−1) generated only by Hadamard and Tofolli gates give an ǫ-net
of unitaries. The accuracy of the net is measured differently in the Solovay-Kitaev theorem, but it can be verified that
the accuracy measure we use here is roughly equivalent.

3We can actually get an eigenvalue bound of (1+ ǫ) 2
√

D−1

D
for an arbitrary small ǫ on the expense of increasing D0.
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4 The Zig-Zag product

Suppose G1, G2 are two superoperators, Gi ∈ T (HNi), and Gi is a (Ni,Di, λi) quantum expander. We

further assume that N2 = D1. G1 is D1–regular and so it can be expressed as G1(X) = 1

D1

∑
d UdXU

†
d

for some unitaries Ud ∈ U(HN1
). We lift the ensemble {Ud} to a superoperator U̇ ∈ L(HN1

⊗HD1
)

defined by:

U̇(|a〉 ⊗ |b〉) = Ub |a〉 ⊗ |b〉 ,

and we define Ġ1 ∈ T (HN1
⊗HD1

) by Ġ1(X) = U̇XU̇ †.

Definition 4.1. Let G1, G2 be as above. The Zig-Zag product, G1 z©G2 ∈ T (HN1
⊗HD1

) is defined

to be (G1 z©G2)X = (I ⊗ G2)Ġ1(I ⊗ G
†
2
)X.

We claim:

Proposition 4.2. For any X,Y ∈ L(HN1
⊗HD1

) such that X is orthogonal to the identity operator
we have:

| 〈 G1 z©G2X , Y 〉 | ≤ f(λ1, λ2) ‖X ‖ · ‖Y ‖

where f(λ1, λ2) = λ1 + λ2 + λ2
2
.

And as a direct corollary we get:

Theorem 1. If G1 is a (N1,D1, λ1) quantum expander and G2 is a (D1,D2, λ2) quantum expander
then G1 z©G2 is a (N1 · D1,D

2
2
, λ1 + λ2 + λ2

2
) quantum expander. If G1 and G2 are explicit then so

is G1 z©G2.

Proof: Let X be orthogonal to Ĩ and let Y = (G1 z©G2)X. By Proposition 4.2 ‖Y ‖2 ≤ f(λ1, λ2) ‖X ‖·
‖Y ‖. Equivalently, ‖ (G1 z©G2)X ‖ ≤ f(λ1, λ2) ‖X ‖ as required.

The explicitness of G1 z©G2 is immediate from the definition of the Zig-Zag product.

We now turn to the proof of Proposition 4.2. We adapt the proof given in [5] for the classical
case to the quantum setting. For that we need to work with linear operators instead of working
with vectors. Consequently, we replace the vector inner-product used in the classical proof with the
Hilbert-Schmidt inner product on linear operators, and replace the Euclidean norm on vectors, with
the Tr(XX†) norm on linear operators. Interestingly, the same proof carries over to this generalized
setting. One can get the proof below by simply going over the proof in [5] and doing the above
translation. We provide the details here for completeness.

Proof of Proposition 4.2: We first decompose the space L(HN1
⊗HD1

) to

W || = Span
{

σ ⊗ Ĩ | σ ∈ L(HN1
)
}

and,

W⊥ = Span
{

σ ⊗ τ | σ ∈ L(HN1
) , τ ∈ L(HD1

) ,
〈
τ, Ĩ
〉

= 0
}

.
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Decompose X to X = X || + X⊥, where X || ∈ W || and X⊥ ∈ W⊥, and similarly Y = Y || + Y ⊥.
By definition,

| 〈G1 z©G2X,Y 〉 | = |
〈
(I ⊗ G2)Ġ1(I ⊗ G

†
2
)X,Y

〉
| = |

〈
Ġ1(I ⊗ G2)(X

|| + X⊥), (I ⊗ G2)(Y
|| + Y ⊥)

〉
|.

Opening to the four terms and pushing the absolute value inside, we see that

| 〈G1 z©G2X,Y 〉 | ≤ |
〈
Ġ1(I ⊗ G2)X

||, (I ⊗ G2)Y
||
〉
| + |

〈
Ġ1(I ⊗ G2)X

||, (I ⊗ G2)Y
⊥
〉
| +

|
〈
Ġ1(I ⊗ G2)X

⊥, (I ⊗ G2)Y
||
〉
| + |

〈
Ġ1(I ⊗ G2)X

⊥, (I ⊗ G2)Y
⊥
〉
|

= |
〈
Ġ1X

||, Y ||
〉
| + |

〈
Ġ1X

||, (I ⊗ G2)Y
⊥
〉
| +

|
〈
Ġ1(I ⊗ G2)X

⊥, Y ||
〉
| + |

〈
Ġ1(I ⊗ G2)X

⊥, (I ⊗ G2)Y
⊥
〉
|

Where the last equality is due to the fact that I ⊗ G2 is identity over W || (since G2(Ĩ) = Ĩ). In
the last three terms we have I ⊗G2 acting on an operator from W⊥. As expected, when this happen
the quantum expander G2 shrinks the operator. Formally,

Claim 4.3. For any Z ∈ W⊥ we have ‖ (I ⊗ G2)Z ‖ ≤ λ2 ‖Z ‖.

We defer the proof for later. Having the claim we see that, e.g., |
〈
Ġ1X

||, (I ⊗ G2)Y
⊥
〉
| ≤

∥∥∥ Ġ1X
||
∥∥∥·
∥∥ (I ⊗ G2)Y

⊥ ∥∥ ≤ λ2

∥∥X || ∥∥·
∥∥ Y ⊥ ∥∥. Similarly, |

〈
Ġ1(I ⊗ G2)X

⊥, Y ||
〉
| ≤ λ2

∥∥X⊥ ∥∥·
∥∥Y || ∥∥

and |
〈
Ġ1(I ⊗ G2)X

⊥, (I ⊗ G2)Y
⊥
〉
| ≤ λ2

2

∥∥X⊥ ∥∥ ∥∥Y ⊥ ∥∥.
To bound the first term, we notice that on inputs from W || the operator Ġ1 mimics the operation

of G1 with a random seed. Formally,

Claim 4.4. For any A ∈ W || orthogonal to the identity operator and any B ∈ W || we have

|
〈
Ġ1A,B

〉
| ≤ λ1 ‖A ‖ · ‖B ‖.

We again defer the proof for later. Having the claim we see that |
〈
Ġ1X

||, Y ||
〉
| ≤ λ1

∥∥X || ∥∥ ·

∥∥Y || ∥∥. Denoting pi =

‚

‚

‚
ρ
||
i

‚

‚

‚

‖ ρi ‖ and qi =
‖ ρ⊥i ‖
‖ ρi ‖ (for i = 1, 2, ρ1 = X and ρ2 = Y ) we see that p2

i +q2

i = 1,

and,

| 〈(G1 z©G2)X,Y 〉 | ≤ (p1p2λ1 + p1q2λ2 + p2q1λ2 + q1q2λ
2

2) ‖X ‖ · ‖Y ‖

Elementary calculus now shows that this is bounded by f(λ1, λ2) ‖X ‖ · ‖Y ‖.

We still have to prove the two claims:

Proof of Claim 4.3: Z can be written as Z =
∑

i σi ⊗ τi, where each τi is perpendicular to Ĩ and
{σi} is an orthogonal set. Hence,

‖ (I ⊗ G2)Z ‖ =

∥∥∥∥∥
∑

i

σi ⊗ G2(τi)

∥∥∥∥∥ ≤
∑

i

‖σi ⊗ G2(τi) ‖ ≤
∑

i

λ2 ‖σi ⊗ τi ‖ = λ2 ‖Z ‖ .
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And,

Proof of Claim 4.4: Since A,B ∈ W ||, they can be written as

A = σ ⊗ Ĩ =
1

D1

∑

i

σ ⊗ |i〉〈i|

B = η ⊗ Ĩ =
1

D1

∑

i

η ⊗ |i〉〈i| .

Moreover, since A is perpendicular to the identity operator, it follows that σ is perpendicular to the
identity operator on the space L(HN1

). This means that applying G1 on σ will shrink it by at least
a factor of λ1.

Considering the inner product

|
〈
Ġ1A,B

〉
| =

1

D2
1

∣∣∣∣∣∣

∑

i,j

Tr
((

(UiσU
†
i ) ⊗ |i〉〈i|

)
(η ⊗ |j〉〈j|)†

)
∣∣∣∣∣∣

=
1

D2

1

∣∣∣∣∣∣

∑

i,j

Tr
(
(UiσU

†
i η†) ⊗ |i〉 〈i |j〉 〈j|

)
∣∣∣∣∣∣

=
1

D2
1

∣∣∣∣∣
∑

i

Tr
(
(UiσU

†
i η†) ⊗ |i〉〈i|

)∣∣∣∣∣

=
1

D2
1

∣∣∣∣∣
∑

i

Tr
(
UiσU

†
i η†
)∣∣∣∣∣

=
1

D1

∣∣∣∣∣Tr

((
1

D1

∑

i

UiσU
†
i

)
η†
)∣∣∣∣∣

=
1

D1

|〈G1(σ), η〉| ≤
λ1

D1

‖σ ‖ · ‖ η ‖ = λ1 ‖A ‖ · ‖B ‖ ,

where the inequality follows from the expansion property of G1 (and Cauchy-Schwartz).
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