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Abstract

Efremenko showed locally-decodable codes of sub-exponential length that can handle
close to 1

6 fraction of errors. In this paper we show that the same codes can be locally
unique-decoded from error rate 1

2 − α for any α > 0 and locally list-decoded from error
rate 1− α for any α > 0, with only a constant number of queries and a constant alphabet
size. This gives the first sub-exponential length codes that can be locally list-decoded with
a constant number of queries.

1 Introduction

Locally Decodable Codes (LDCs) are codes that allow retrieving any symbol of a message by
reading only a constant number of symbols from its codeword, even if a large fraction of the
codeword is corrupted. Formally, a code C is said to be locally decodable with parameters
(α, q, ε) if it is possible to recover any symbol xi of a message x by making at most q queries
to C(x), such that even if up to a 1 − α fraction of C(x) is corrupted, the decoding algorithm
returns the correct answer with probability at least 1− ε.

The first formal definition of Locally Decodable Codes was given by Katz and Trevisan
in [KT00]. The Hadamard code is the best-known 2-query Locally Decodable Code, and its
length is 2n (where n is the message length). For 2-query LDCs tight lower bounds on the
code length of 2θ(n) were given in [GKST02] for linear codes and in [KdW03] for general
codes. For an arbitrary constant number of queries q, there are weak polynomial bounds, see
[KT00, KdW03, Woo07].

The first sub-exponential LDCs (with a constant number of queries) were obtained by
Yekhanin in [Yek08]. Yekhanin obtained 3-query LDCs with sub-exponential length under a
highly believable number theoretic conjecture. Later, Efremenko [Efr09], building on Yekhanin [Yek08]
and Raghavendra [Rag07], gave an unconditional construction of sub-exponential length LDCs.
This construction also allowed a tradeoff between the number of queries and the codeword
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length. Unfortunately, these constructions could handle only 1
q fraction of errors (where q is

the number of queries) over a large alphabet and 1
2q over the binary alphabet. In [Woo08],

Woodruff showed how to increase the handled error rate to 1
q over binary alphabets. Dvir,

Gopalan and Yekhanin [DGY10], showed how to handle 1
4 fraction of errors.

Locally Decodable Codes have many applications in cryptography and complexity theory,
see surveys [Tre04, Gas04]. Many of these applications require LDCs that can handle high
error rates. Therefore, the question of local decoding from a high error rate attracted much
attention.

The goal of this paper is to construct LDCs that can handle 1−α fraction of errors. Clearly,
when the error rate of a code is above half its distance, it is impossible to find a unique answer.
Thus, we have to consider list-decoding. A code C is said to be (1−α,L)-list-decodable if for
every word, the number of codewords within relative distance 1− α from that word is at most
L. The notion of list-decoding dates back to works by Elias [Eli57] and Wozencraft [Woz58] in
the 50s. Roughly speaking, a code C is Locally List-Decodable if it is (1−α, L)-list-decodable,
and given a corrupted word w, an index k ∈ [L] and a target bit j, the decoder returns the j’th
message bit of the k’th codeword that is close to w. As expected, there are some subtleties in
the definition. The main issue is guaranteeing that for a fixed k, all answers for inputs (k, j)
correspond to the same codeword. More formally, a local list-decoding algorithm generates
L machines {Mk}, such that the machine Mk locally decodes one codeword that is close to
w, and the machines {Mk} together cover all the codewords that are close to w (for a formal
definition, see Section 2).

The notion of local list-decoding is a central one in the theory of computer science. It
first (implicitly) appeared in the celebrated Goldreich-Levin result [GL89], that can be seen
as a local list-decoding algorithm for the Hadamard code. Later on, many local list-decoding
algorithms were studied. Most of the currently known Locally List-Decodable Codes can
be divided into three categories: Reed-Muler codes [GRS00, AS03, STV01, GKZ08], direct
product and XOR codes [IW97, IJK06, IJKW08] and low-rate random codes [KS09]. Many of
these results play an important role in Complexity Theory.

Our Results In this paper we show how to locally list-decode the codes given in [Efr09]
(and which have sub-exponential length) with only a constant number of queries. We also
show that one can uniquely decode this code up to radius close to 1

2 . The code we work with is
a linear code over a finite field F of constant-size, i.e., |F| = f(k, α) = Θ(1), where f is some
function. For unique local decoding we show:

Theorem 1 (Unique decoding). For every k ≥ 2, α > 0, there exists a (1
2 + α, q, ε) LDC of

dimension n over F of length

exp(exp(O( k

√
log n(log log n)k−1))),

with q = Θ
(

kk log( 1
ε )

α2+k

)
= Θ(1) queries.

Independent of our work, Dvir, Gopalan and Yekhanin in [DGY10] show a restricted ver-
sion of this theorem for α ≥ 1

4 .
For local list-decoding we show:
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Theorem 2 (List-Decoding). For every k ≥ 2, α > 0, there exists a code of dimension n over
F of length

exp(exp(O( k

√
log n(log log n)k−1))),

which is (α, L, q, ε) Locally List-Decodable Code with probabilistic reconstruction. The num-

ber of queries is q = O(
kk log( 1

ε )
α2k+1 ) = Θ(1) and the list size is L = |F|O(

log n
ε

α
) = poly(n).

It can be shown that at distance 1−ε there is only a constant number of codewords. The only
reason that our algorithm outputs a list of non-constant size is that it requires a logarithmic-size
advice.

In comparison, Reed-Muler codes are also locally list-decodable [STV01]. However, they
are either of large length or require a non-constant number of queries:

• There are Reed-Muler codes of length exp(nζ), for any constant ζ > 0, which are locally
list-decodable codes with a constant number of queries.

• There are Reed-Muler codes of polynomial length which are locally list-decodable codes
with a poly-logarithmic number of queries.

As we said before, the above code (from Theorems 1 and 2) is a linear code over a finite
field F of constant-size, i.e., |F| = f(k, α) = Θ(1), where f is some function. We can get
a Locally List-Decodable binary Code, by concatenating the code of Theorem 2 with a good
binary code, namely,

Theorem 3. For every k ≥ 2, α > 0, there exists a binary code of dimension at least n and
length

exp(exp(O( k

√
log n(log log n)k−1))) · |F|,

which is (α, L, q, ε) locally list-decodable with probabilistic reconstruction. The number of

queries is q = O(
kk log( 1

ε )
α3(2k+1) · poly( log |F|

α )) = Θ(1) and the list size is L = |F|O(
log n

ε
α3 ) =

poly(n). Furthermore, if the field F is of characteristic two, the binary code is linear.

We remark that as in [Efr09], a field F of characteristic 2 and of size f(k, α) ≤ 2m where
m = (k/α)O(k), can be used. With this field F the resulting binary code is linear. Alternatively,
using the Prime Number Theorem for arithmetic progressions it can be shown that we can use
a field F of prime order f(k, α) ≈ m log m (for the above m), which results in a shorter code,
fewer queries and shorter output lists, but produces a non-linear binary code.

The rest of the paper is organized as follows: In Section 2 we give the necessary prelimi-
naries. Section 3 gives the formal definitions of locally decodable and list-decodable codes. In
Section 4 we recall the construction of the code and analyze its local structure. Sections 5 and
6 contain the proofs of Theorems 1 and 2, respectively. The proof of Theorem 3 will appear
in the full version of this paper.

Related work Gopalan [Gop09] observes that in the Locally Decodable Codes of [Efr09],
restrictions of codewords to (multiplicative) lines are polynomials whose exponents come from
a small set S. Dvir, Gopalan and Yekhanin [DGY10] and independently we observe that for
the specific set S used by the code (that originates from the work of Grolmusz [Gro00]), the
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polynomials whose exponents lie in S, do not have many roots. Using this observation Dvir,
Gopalan and Yekhanin [DGY10] handle 1

4 fraction of errors and we get an optimal unique
decoding and local list-decoding from any constant fraction of agreement. While the results of
[DGY10] and our results were obtained independently, the results of [DGY10] were published
before ours.

2 Preliminaries

We use the following standard mathematical notation:

• [s] = {1, . . . s};

• F is a finite field;

• F∗ is the multiplicative group of the field;

• Zm = Z/mZ, the integers modulo m;

• ∆(x, y) denotes the relative Hamming distance between vectors x, y ∈ Σn, i.e. ∆(w, w′) =
Pri∈[n̄][wi 6= w′i];

• Ag(w, w′) , 1−∆(w, w′), i.e. Ag(w,w′) = Pri∈[n̄][wi = w′i];

• AB denotes the set of functions from B to A, i.e., AB = {f : B → A}. We identify
A[m] with Am.

A code is a function C : Σn → Σn̄. We identify a code C with its image C = {C(λ) | λ ∈ Σn}.
The distance d of the code is the minimum distance between two codewords in C and the rel-
ative distance is δ = d/n. The Hamming balls of radius d−1

2 around codewords are disjoint,
and therefore one can uniquely correct up to so many errors. If we allow more than d/2 errors
several decodings are possible. In many cases one can allow much more than d/2 errors and
still get only few possible decodings.

For w ∈ Σn̄ and µ > 0, define

LC(w, µ) = {z ∈ C : ∆(w, z) ≤ µ}.

When the code C is implicit from the text we abbreviate LC(·) to L(·).
Definition 1. We say that a code C is (µ,L) list-decodable if for every w ∈ Σn̄ there are at
most L codewords within distance µ from w, i.e. |L(w, µ)| ≤ L.

Fact 4 (The Johnson Bound). Let C be a code with relative distance δ. Then, for every α >√
1− δ, the code C is (1− α, α−(1−δ)

α2−(1−δ)
) list-decodable.
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3 Locally Decodable and List-Decodable Codes

As always, one can study the combinatorial properties of a code, or ask for an explicit decoding
algorithm. If the decoding algorithm makes only a few queries to the corrupted word, we say
it is local. We begin with a formal definition of local unique decoding:

Definition 2. We say that a probabilistic oracle machine Mw locally outputs a string s with
confidence 1− ε, if

∀i Pr[Mw(i) = si] ≥ 1− ε,

where the probability is taken over the randomness of M .

Definition 3 (Local Unique Decoding). A code C over a field F, C : Fn 7→ Fn̄ is said to
be (α, q, ε) locally decodable if there exists a probabilistic oracle machine Mw (the decoding
algorithm) with oracle access to a received codeword w such that:

1. For every message λ = (λ1, λ2, . . . λn) ∈ Fn and for every w ∈ Fn̄ such that Ag(C(λ), w) ≥
α1, it holds that Mw locally outputs λ with confidence 1− ε.

2. Mw(i) makes at most q queries to w for all i ∈ [n].

Recall that a code C is list-decodable if for every codeword w there are few codewords near
w. Let C(y1), C(y2), . . . , C(yL) be the list of codewords near w. Roughly speaking, a code C is
Locally List-Decodable if there exists a machine M that given i, j and an oracle access to the
received word w, outputs the jth symbol of yi. The locality property requires that the machine
M makes a few queries to w. To make this formal:

Definition 4. Let C : Σn → Σn̄ be a code. We say that a set of probabilistic oracle circuits
M1 . . .ML with oracle queries to w, (α, L, q, ε) local list-decodes C at the word w ∈ Σn̄, if,

• Every oracle circuit Mj makes at most q queries to the input word w.

• For every codeword c = C(λ) ∈ C with Ag(c, w) ≥ α, there exists some k ∈ [L], such
that Mw

k locally outputs λ with confidence 1− ε.

Definition 5 (Locally List-Decodable Codes with deterministic reconstruction). Let C : Σn →
Σn̄ be (α, L) list-decodable. A deterministic algorithm A (α, L, q, ε) local list-decodes C, if on
input n, A outputs probabilistic oracle circuits M1 . . . ML which (α,L, q, ε) local list-decode
C at every word w ∈ Σn̄.

The code C is (α, L) list-decodable and therefore every w ∈ Σn̄ has at most L α-close
codewords c1, . . . , cL. Each such codeword ci = C(λi) is represented by a probabilistic circuit
Mi such that ∀j Mi(j) = (λi)j (recall that Mi is a probabilistic circuit, and therefore Mi(j) =
(λi)j means that Mi outputs (λi)j with probability at least 1− ε). The algorithm A outputs L
machines that are good for every w ∈ Σn̄. One way to think about it is that i ∈ [L] is an advice
that tells which of the L solutions corresponds to the codeword we are interested in.

For instance, in [STV01] the advice string is a position in the codeword and a value of the
codeword at this position. Since the Reed-Muller code considered in [STV01] is of polynomial
length, there is a polynomial number of possible advice strings. This property can be used to

1Note that here α denotes agreement and not distance.
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give a local list-decoding algorithm for Reed-Muller codes with a deterministic reconstruc-
tion and a polynomial list size. However, for codes of super-polynomial length (such as the
Hadamard code and the code considered in this paper), one cannot have a position in a code-
word as part of the advice string and still maintain a polynomial number of possible advice
strings. One way to solve this problem is to allow the algorithm A to be randomized. This
allows A to narrow down the number of machines {Mi} it outputs (instead of having to output
a machine for every position in the codeword) and still succeed with high probability.

Definition 6 (Locally List-Decodable Codes with probabilistic reconstruction). Let C : Σn →
Σn̄ be (α, L) list-decodable. A probabilistic algorithm A (α,L, q, ε) local list-decodes C, if on
input n, A outputs probabilistic oracle circuits M1 . . . ML such that for every word w ∈ Σn̄,
with probability 2/3 over the random coins of A, M1 . . . ML local list-decode C at w, i.e.,

∀w ∈ F n̄ Pr
A

[
∀λ

(
Ag(C(λ), w) ≥ α ⇒ ∃i ∀j Pr[Mi(j) = λj ] ≥ 1− ε

)]
≥ 2/3.

Notice the order of the quantifiers: for every w ∈ Σn̄ most of the random coins of A are
good for w; however, it is not the case that most of the random coins of A are good for every
w.

3.1 Comparison with the Reed-Muller and Hadamard list-decoding algorithms

There are other useful variants of Definitions 5 and 6. In particular, the notion used in the local
list-decoder of [STV01] is such that the algorithm A is allowed to access the received word
w before outputting the machines that list-decode it. Of course, when such access is allowed,
the number of queries to w that A performs should also be bounded (for otherwise A could
simply read w and compute all the close codewords). In [STV01] it is required that both A and
M1, . . . , M` are efficient (running in polylogarithmic time) and this, in particular, bounds the
number of queries.

The advantage of allowing A to access w is that it allows the list-decoder of [STV01]
to output a constant number of machines. Without access to w, and since the alphabet size
of their code is non-constant, it seems the list-decoder has to output a non-constant number of
machines (since it needs to output a machine for each possible value of a given coordinate from
the non-constant size alphabet). The list-decoder of [GL89] also outputs a constant number
of machines (even without accessing w). In contrast, our list-decoder outputs a polynomial
number of machines (polynomial in the dimension).

The main distinction between our code and the Reed-Muller and Hadamard codes is that
our code is locally decodable while the latter codes are locally correctable. A locally cor-
rectable code allows recovering any symbol of the encoding rather than any symbol of the
message. (These codes are also locally decodable since the message is embedded within the
encoding.) This allows the local decoders of [STV01] and [GL89] to perform a first stage
of weak-decoding, in which each machine only outputs a word with 90% agreement with a
codeword. Then, a second stage decoding corrects the erroneous 10% of the coordinates. In
our case, if a machine outputs a word with only 90% agreement with a message, we have no
way to detect the erroneous coordinates. We overcome this by using the union bound over the
coordinates and this union bound is precisely the source of our non-constant list size.

6



4 The Code

In this section we define the code and study its local properties.

4.1 Definition of the Code

We first review the definition of the code from [Efr09]. Fix a composite number m = p1 ·
p2 . . . pk which is a product of k distinct primes. The definition of the code will depend only
on m.

In order to define the code we need the following definition:

Definition 7. A family of vectors {ui}n
i=1 ⊆ Zh

m is said to be S-matching if the following
conditions hold:

1. 〈ui, ui〉 = 0 for every i ∈ [n].

2. 〈ui, uj〉 ∈ S for every i 6= j.

Grolmusz [Gro00] showed how to construct a large set of S-matching vectors {ui}n
i=1, ui ∈

Zh
m, for

S = {x ∈ Zm \ {0} | ∀i, x mod pi ∈ {0, 1}}.
Let F be a field that contains an element γ ∈ F of order m, i.e. γm = 1 and γi 6= 1 for

i < m. We define a code C : Fn 7→ Fmh
, where we think of a codeword as a function from Zh

m

to F. The encoding of the message λ1, λ2 . . . λn is the function:

C(λ1, λ2, . . . , λn)(x) ,
n∑

i=1

λiγ
〈ui,x〉.

Equivalently, we can write

C(λ1, λ2, . . . , λn) =
n∑

i=1

λifi, (1)

where fi(x) , γ<ui,x>. We denote the codeword length by n̄ = mh. An asymptotic relation
between n and n̄ is:

n̄ = exp(exp(O( k

√
log n(log log n)k−1))).

Note that the asymptotic rate of the code depends only on k, the number of different primes
dividing m.

For simplicity, sometimes we denote G , Zh
m.

4.2 Local Properties of the Code

In this subsection we study local properties of the code. Specifically, we study the restriction
of the code to lines.

Definition 8. (line) Let v, u ∈ G. The line through v in direction u is the function ` = `v,u ∈
G[m] defined by `(t) = v + tu.

Definition 9 (restriction). Let ` ∈ G[m] be a line.
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• For a function f ∈ FG, the restriction of f to `, denoted by f |` ∈ F[m] is defined by
f |`(t) = f(`(t)).

• For a code C : Fn → FG, the restriction of C to `, denoted by C|` : Fn → Fm, is the
vector space {C(λ)|` | λ ∈ Fn}.

Now, we analyze the restriction of the code in direction uj . Observe that

C(λ1, . . . , λn)(v + tuj) =
∑

i

λiγ
〈ui,v+tuj〉 =

∑

i

λiγ
〈ui,v〉(γ〈ui,uj〉)t

=
∑

b∈S∪{0}


 ∑

i:〈ui,uj〉=b

λiγ
〈ui,v〉


 (γt)b.

Define p : F → F by p(x) =
∑

b∈S∪{0} abx
b, where ab =

∑
i:〈ui,uj〉=b λiγ

〈ui,v〉, then

C|`v,uj
(λ)(t) = p(γt). Furthermore, a0 = λjγ

〈uj ,v〉, and so when λj 6= 0, p is a non-zero
polynomial.

The observation that a codeword restricted to a line is a polynomial whose free coefficient
encodes λj appears in [Gop09]. We now prove (Lemma 5) that this polynomial does not have
too many roots and therefore the code restricted to the line has a large distance. This Lemma
was also independently found by Dvir, Gopalan and Yekhanin [DGY10].

Lemma 5. Let C be the code above. For every v ∈ G and j ∈ [n], the code C|`v,uj
: Fn → Fm

is of dimension at most 2k and distance δ ≥ 1−∑k
i=1

1
pi

.

Proof: In order to prove the lemma we need to show that the polynomial p(x) =
∑

b∈S∪{0} abx
b

does not have too many roots in the set H , {γi|0 ≤ i < m}. Recall that the set S is

S = {x ∈ Zm \ {0} | ∀i x mod pi ∈ {0, 1}}.

Notice that p might have a large degree, and therefore might have a large number of roots in F.
Nevertheless, we show that the number of roots p has in H is at most

∑
i

m
pi

. To see that denote

p̃(x) = p(x
∑

i
m
pi ). We show that p̃ has the same number of roots as p. Let s =

∑
i

m
pi

. Then,

s ( mod pi) =
m

pi
( mod pi) 6= 0.

Therefore, gcd(s,m) = 1, that is, s is invertible in Zm . This implies the mapping ψ : H →
H, ψ(x) = xs is a bijection.

Thus, in order to show p has few roots in H , it suffices to show that p̃ is a low-degree
polynomial. Each monomial of p̃ is of degree b · s ( mod m) for some b ∈ S ∪ {0}. Notice
that for every 1 ≤ i, j ≤ k,

m

pi
· b mod pj =





0 j 6= i
0 (j = i) ∧ (b mod pi = 0)
m
pi

mod pi (j = i) ∧ (b mod pi = 1)
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This implies that for every i,

m

pi
· b mod m =

{
0 b mod pi = 0
m
pi

b mod pi = 1

Hence, b · s ( mod m) ≤ ∑
i

bm
pi

( mod m) ≤ ∑
i

m
pi

. We conclude that p̃ has at most
∑

i
m
pi

roots in H and therefore so does p.
For a polynomial p : F → F define the vector p ∈ Fm by p(t) = p(γt). Then, C|`v,uj

is a linear subspace of the vector-space Span
{

xb : b ∈ S ∪ {0}
}

, which is a dimension 2k

F-subspace. Every non-zero codeword corresponds to a non-zero polynomial that can have at
most

∑
i

m
pi

roots. As the elements γt are distinct for 1 ≤ t ≤ m, every codeword has at most
that many zeroes.

Let C be the code above. Let v ∈ G and j ∈ [n]. Then every codeword of C|`v,uj
corre-

sponds to a polynomial with 2k monomials, where the free coefficient is λjγ
〈uj ,v〉. Thus, any

restricted codeword z ∈ C|`v,uj
contains information about λj .

Definition 10. Using the above notation, we denote Dv,j(z) = λj .

In particular,

Corollary 6. Let C be the code above. Let v ∈ G and j ∈ [n]. If z, z′ ∈ C|`v,uj
and

Dv,j(z) 6= Dv,j(z′) then z 6= z′ and therefore ∆(z, z′) ≥ δ.

Another corollary is,

Corollary 7. The distance of the code C is at least δ, where δ = 1−∑k
i=1

1
pi

.

Proof: Look at two different codewords C(λ) and C(λ̃) for some λ 6= λ̃. Then, there exists
some j ∈ [n] such that λj 6= λ̃j . We can now partition G to disjoint lines in direction uj . From
Corollary 6 it follows that on each of these lines the restrictions of C(λ) and C(λ̃) are different.
From Lemma 5 we know that the distance on each of these lines is at least δ. It follows that the
distance between C(λ) and C(λ̃) is at least δ.

Remark 8. By taking all pi’s of the same order we get that δ = 1− O( k
k√m

). In this paper we
assume that m is such a product.

5 Local Unique Decoding

We are given some word w ∈ FG that has agreement 1
2 +α with some codeword C = C(λ). We

are also given some j ∈ [n]. Our goal is to recover (with a good probability) λj . A first attempt
at local decoding is restricting the code to a random line `v,uj in direction uj . Intuitively, this
is a good step because we restrict the global code to a small fragment of constant size m, while
still keeping information about λj . Specifically, by Lemma 5, C|`v,uj

is a linear code with
a large distance, and by Corollary 6, a codeword z = C(λ)|`v,uj

∈ C|`v,uj
corresponds to a

polynomial with 2k monomials, where the free coefficient is λjγ
〈uj ,v〉.
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As C(λ) has 1
2 +α agreement with w, when we pick a random line in direction uj , the expected

agreement between w|`v,uj
and C(λ)|`v,uj

is 1
2 + α. The problem is that it may still happen

that with high probability the agreement between w|`v,uj
and C(λ)|`v,uj

is less then 1
2 and we

will decode a wrong value. In order to overcome this problem we sample K = O(
log( 1

ε )
α2 )

independent lines. Then with high probability the agreement between w and C(λ) is at least
1
2 + α

2 on the sampled lines. Note that the code C(λ) restricted to the union of independent
lines in direction uj may not have a good distance, as two different codewords may coincide
on a restriction to a line. However, for any two codewords C(λ) and C(λ̃), where λj 6= λ̃j , the
distance between the restrictions of these two codewords on each line must be large because of
Corollary 6.

Let α ≥ 2(1−δ) (where δ is the distance of the code, and by Lemma 5 is at least 1−∑
i

1
pi

).
The unique decoding algorithm for 1

2 + α agreement is as follows:

Input:

• w ∈ FG that has agreement 1
2 + α with some codeword C,

• j ∈ [n],

• ε > 0

Randomness: A set of K = Θ(
log( 1

ε )
α2 ) random elements in G, v = (v1, . . . , vK) ∈ G.

Queries: For each k ∈ [K], the algorithm queries all points on the line `vk,uj .

Algorithm: For every k ∈ [K] and for every symbol σ ∈ F, the algorithm computes

weightk(σ) = max
{

Ag(w, z) : z ∈ C|`vk,uj
, Dvk,j(z) = σ

}
.

The algorithm then computes weight(σ) = 1
K

∑K
k=1 weightk(σ). The output of the

algorithm is the symbol σ with the highest weight.

Theorem 9. Assume α ≥ 2(1 − δ). For every λ ∈ Fn, w ∈ FG with Ag(w, C(λ)) ≥ 1
2 + α

and every j ∈ [n],
Pr
v

[The algorithm outputs λj ] ≥ 1− ε.

The algorithm uses Θ(
log( 1

ε )
α2 ·m) queries.

Proof: Suppose that C(λ) is a codeword which has 1
2 + α agreement with the received word

w. Then
Ev∈G

[
Ag(w|`v,uj

, C(λ)|`v,uj
)
]

=
1
2

+ α.

We say v = (v1, . . . , vk) is good, if

1
K

K∑

k=1

[
Ag(w|`vk,uj

, C(λ)|`vk,uj
)
]
≥ 1 + α

2
.

By a standard application of the Chernoff Bound,

Pr
v

[v is not good] ≤ 2−Ω(α2K) = ε.

10



We now prove that if v is good the algorithm outputs the correct answer.
Denote agk = Ag(w|`vk,uj

, C(λ)|`vk,uj
). Then,

• For every k, weightk(λj) ≥ Ag(w|`v,uj
, C(λ)|`v,uj

) ≥ agk and so weight(λj) ≥
Ek[agk] ≥ 1+α

2 .

• Fix any σ 6= λj and k ∈ [K]. Let z ∈ C|`vk,uj
be such that Dvk,j(z) = σ. Then, by the

triangle inequality,

δ ≤ ∆(z, C(λ)|`vk,uj
) ≤ ∆(C(λ)|`vk,uj

, w|`vk,uj
) + ∆(w|`vk,uj

, z).

Thus, ∆(w|`vk,uj
, z) ≥ δ + agk − 1, and weightk(σ) ≤ 1− agk + 1− δ. In particular,

weight(σ) ≤ 1− δ + Ek[1− agk] ≤ 1
2

+ 1− δ − α

2
≤ 1

2
.

Thus, whenever v is good the algorithm outputs λj .

We are now ready to prove Theorem 1.

Proof of Theorem 1: The code C has distance at least δ = 1 − O( k
m1/k ) and the code length

is
exp(exp(O( k

√
log n(log log n)k−1))).

We take m to be a product of m almost equal primes. From Theorem 9, for every α ≥
2(1 − δ) = O( k

m1/k ), the code is (1
2 + α, q, ε) locally decodable with q = Θ(

log( 1
ε )

α2 · m)
queries. We think of k as a constant, and m as depending on α, growing to accommodate the
required error rate. Thus α = 2(1− δ) ≈ 2k

m1/k , or equivalently, m ≈ (2k
α )k. Thus, the number

of queries is Θ(
m log( 1

ε )
α2 ) = Θ(kk · α−(k+2) · log

(
1
ε

)
). For k = 2 the number of queries is

Θ(α−4 · log
(

1
ε

)
).

6 Local list-decoding with probabilistic reconstruction

We first remind the reader of the setting. A probabilistic algorithm A has to produce L prob-
abilistic circuits M1, . . . , ML that (α, L, q, ε) local list-decode C. A uses its internal random
coins to sample a random subset Λ ⊆ G of cardinality Θ( log n

ε
α ). Notice that |Λ| is super-

constant. The list size L is
∣∣FΛ

∣∣ and corresponds to all possible values a codeword may take
on Λ. We identify an index of a machine i ∈ [L] with a function ad : Λ 7→ F of values of a
codeword on the set Λ. The machine Mw

ad locally outputs a message λ such that C(λ) has α
agreement with w and ad = C(λ)|Λ, if such a λ exists.

Given a corrupted word w ∈ FG and a value j ∈ [n], Mad’s goal is to find (the hopefully
unique) codeword c ∈ C that is α close to w, and that is consistent with the given advice
ad ∈ FΛ. To do so, Mad does the following: Mad picks K (and K will turn out to be constant
even though |Λ| is not a constant) random lines in direction uj that pass through some point in
Λ. For each such line, Mad queries w on the line, and finds all the restricted codewords that
are close to the given w (on the line). We say that a line is good if among all those codewords,
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exactly one matches the value ad gives on the point from Λ. For each good line, Mad extracts
from this unique codeword the value λj and adds it to the candidate list. The output of Mad is
the most common value in the candidate list. More formally, the algorithm Mad is defined as
follows:

A’s random coins: A random subset Λ of cardinality Θ( log n
ε

α ).

Advice: Values of some codeword c on Λ.

Input: w ∈ FG, j ∈ [n].

M ’s randomness: A random subset {s1, . . . , sK} of Λ of cardinality K = Θ(
log( 1

ε )
α ).

Queries: For each k ∈ [K], M queries the values of w on the K lines `sk,uj .

Algorithm: For every k, the algorithm goes over all codewords of C′ = C|`sk,uj
. For every

such k, if there exists exactly one codeword z of C′ with:

• Ag(z, w|`sk,uj
) ≥ α

2 , and,

• z(sk) = ad(sk)

then the algorithm adds the value Dvk,j(z) to the candidates list.

Output: The most common value in the candidates list.

Theorem 10. For any α ≥ 8
√

1− δ, ε > 0 and L =
∣∣FΛ

∣∣ = qO(
log n

ε
α

), q = Km =

O(
m log( 1

ε )
α ) = O(log

(
1
ε

)
). The above algorithm is a probabilistic polynomial-time (α,L, q, ε)

local list-decoding algorithm.

Theorem 2 follows immediately from Theorem 10.

Proof of Theorem 2: We take m a product of k distinct almost equal primes. From Theo-
rem 10 we know that for any α > 8

√
1− δ = O(

√
k

2k√m
) the code is (α, L, q, ε) local list-

decodable with q = O(
m log( 1

ε )
α ). Therefore, m = O( kk

α2k ) and q = O(kk ·α−(2k+1) · log
(

1
ε

)
)

with a codeword length:

exp(exp(O( k

√
log n(log log n)k−1)))

We are left to prove Theorem 10.
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6.1 Proof of correctness

We need to show that for every received word w, with high probability over the choice of the
set Λ, for every codeword c = C(λ) that has α agreement with w, when the advice is ad = c|Λ,
it holds that for every j ∈ [n], Pr[Mw

ad(j) = λj ] ≥ 1 − ε, where the probability is over the
randomness of M .

Fix w ∈ FG, a codeword c = C(λ) and j ∈ [n]. For v ∈ G the machine Mad considers the
set

Uj(v) =
{

z ∈ C|`v,uj
: (Ag(z, w|`v,uj

) ≥ α/2) ∧ (z(v) = ad(v))
}

.

In the kth iteration, if Uj(sk) =
{

c|`sk,uj

}
then Mad adds λj to the candidates list.

We say that v is useful if c|`v,uj
∈ Uj(b). Notice that c|`v,uj

(v) = ad(v), hence for v to be
useful we only need a high agreement between v and w on the line `v,uj . We say that v filters

if Uj(v) ⊆
{

c|`v,uj

}
, i.e., for any codeword in the restricted code z ∈ C|`v,uj

such that z 6= c

it holds that z /∈ Uj(v).

Lemma 11. For any α ≥ 8
√

1− δ it holds that

• Prv∼G[v is useful] ≥ α
2

• Prv∼G[v does not filter] ≤ 4
α · (1− δ) ≤ α

16 .

Proof: Since Ev[Ag(w|`v,uj
, c|`v,uj

)] = α, an averaging argument implies that the probability
v ∈ G is useful is at least α/2.

We turn to the second item. A point v does not filler if there is a restricted codeword
z ∈ C|`v,uj

such that z 6= c|`v,uj
and z ∈ Uj(v). A restricted codeword z is in Uj(v) if it is in

the list L(w|`v,uj
, α/2) and z(v) = c(v). One way to choose v uniformly from G is by first

choosing a random line ` in direction uj , and then choosing a random point v on the line. For
any line ` in direction uj , C′ = C|` has distance δ. Therefore, for any z 6= c the probability that
z(v) = c(v) is at most 1 − δ. By the Johnson bound (see Fact 4), the number of codewords
with α/2 agreement with w|` satisfies

∣∣∣L(w|`v,uj
, α/2)

∣∣∣ ≤ α/2− (1− δ)
α2/4− (1− δ)

<
4
α

,

when α ≥ 2
√

2(1− δ). The probability that such a codeword z agrees with c at v is at most
1− δ. The lemma follows from the union bound.

Definition 11. For w ∈ FG, a set Λ ⊆ G is good for w, if for every c ∈ L(w, α/2) and every
j ∈ [n],

• Prv∈Λ[v is useful and filters for (w, c, j)] ≥ α
4 .

• Prv∈Λ[v does not filter (w, c, j)] ≤ α
8 .

Lemma 12. Fix w ∈ FG. Pick a set Λ uniformly at random from G. The probability Λ is not
good for w is at most n

α · 2−Ω(α|Λ|).
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Proof: For any w, j and c ∈ L(w, α), the probability that a single v is useful and filters, by
Lemma 11, is at least α

3 . By the Chernoff bound, the probability we do not have α
4 fraction of

good vectors in the sample set Λ is at most 2−Ω(α|Λ|).
Similarly, by Lemma 11, for any w, j and c ∈ L(w, α), the probability a single v does not

filter (w, c, j), is at most α
16 . By the Chernoff Bound, the probability that we have more than α

8

fraction of vectors that do not filter (w, c, j) in the sample Λ is at most 2−Ω(α|Λ|).
The lemma follows from a union bound over j and c ∈ L(w, α).

Assume Λ is good for w. The probability that at the ith iteration, Mad adds the correct value
λj to the candidates list is at least the probability that v is useful and filters. By Definition 11
this probability is at least α

4 . The probability that Mad adds a wrong value to the candidates
list is bounded by the probability that v does not filter, which is at most α

8 . Therefore, by the

Chernoff bound, it follows that after Θ(
log( 1

ε )
α ) iterations the probability that λj is the most

common value in the candidates list is at least 1 − ε. Theorem 10 follows from the above
lemma, since for every w, Λ is good for w with probability at least ε (by the choice of the
cardinality of Λ).
Acknowledgements. We would like to thank Danny Gutfreund who participated and con-
tributed to this work at its early stages and Rivka Efremenko for editing this article.
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