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Abstract: We define quantum expanders in a natural way and give two constructions of
quantum expanders, both based on classical expander constructions. The first construction
is algebraic, and is based on the construction of Cayley Ramanujan graphs over the group
PGL(2,q) given by Lubotzky, Philips and Sarnak [28]. The second construction is combi-
natorial, and is based on a quantum variant of the Zig-Zag product introduced by Reingold,
Vadhan and Wigderson [36]. Both constructions are of constant degree, and the second one
is explicit.

Using another construction of quantum expanders by Ambainis and Smith [6], we char-
acterize the complexity of comparing and estimating quantum entropies. Specifically, we
consider the following task: given two mixed states, each given by a quantum circuit
generating it, decide which mixed state has more entropy. We show that this problem is
QSZK–complete (where QSZK is the class of languages having a zero-knowledge quan-
tum interactive protocol). This problem is very well motivated from a physical point of
view. Our proof follows the classical proof structure that the entropy difference problem is
SZK–complete, but crucially depends on the use of quantum expanders.
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1 Introduction

Expander graphs are graphs of low degree and high connectivity. There are several ways to measure the
quality of expansion in a graph. One such way measures set expansion: given a not-too-large subset S of
the vertices, it measures the size of the set Γ(S) of neighbors of S, relative to the size of S. Another way
is (Rényi) entropic expansion: given a distribution π on the vertices of the graph, it measures the amount
of (Rényi) entropy added in π ′ = Gπ . This is closely related to measuring the algebraic expansion given
by the spectral gap of the adjacency matrix of the graph. See [22] for an excellent survey on the subject.

Pinsker [34] was the first to observe that constant degree random graphs have almost-optimal set
expansion. Explicitly finding such a graph turned out to be a major challenge. One line of research
focused on the algebraic measure of expansion, and this led to a series of explicit constructions based on
algebraic structures, e. g., [29, 14, 23]. This line of research culminated in the works of Lubotzky, Philips
and Sarnak [28], Margulis [30] and Morgenstern [31] who explicitly constructed Ramanujan graphs, i. e.,
D–regular graphs achieving spectral gap of 1−2

√
D−1/D. Friedman [13] showed that random graphs

are “almost Ramanujan” and Alon and Boppana (see [33]) showed Ramanujan graphs have almost the
best possible algebraic expansion. Several works [12, 3, 2, 24] showed intimate connections between
set expansion and algebraic expansion. We refer the reader, again, to the survey paper [22].

The algebraic definition of expansion views a regular graph G = (V,E) as a linear operator on a
Hilbert space V of dimension |V |. In this view an element v ∈V is identified with a basis vector |v〉 ∈ V,
and a distribution π on V corresponds to the vector |π〉 = ∑v∈V π(v) |v〉. The action of G on V is the
action of the normalized adjacency matrix A : V→ V, where the normalization factor is the degree of G,
and therefore A maps probability distributions to probability distributions. This mapping corresponds
to taking a random walk on G. Specifically, if one takes a random walk on G starting at time 0 with
the distribution π0 on, then the distribution on the vertices at time k is Ak |π0〉. Viewing G as a linear
operator allows one to consider the action of A on arbitrary vectors in V, not necessarily corresponding
to distributions over V . While such vectors have no combinatorial interpretation, they are crucial for
understanding the spectrum of A; none of the non-trivial eigenvectors of A correspond to probability
distributions. To summarize: a D-regular expander G = (V,E) is a linear transformation A : V→ V that
can be implemented by a classical circuit and maps probability distributions to probability distributions.
It is a good expander if it has a large spectral gap and a small degree.

We now want to extend the definition of D-regular expanders to linear operators that map quantum
states to quantum states. A general quantum state is a density matrix, which is a trace 1, positive
semidefinite operator, i. e., an operator of the form ρ = ∑ pv |ψv〉〈ψv|, where 0≤ pv ≤ 1, ∑ pv = 1, and
{ψv} is an orthonormal basis of V. Notice that ρ ∈ L(V) , Hom(V,V).

Among the set of admissible quantum transformations E : L(V)→ L(V), which are those imple-
mentable by quantum circuits (allowing both unitary operations and measurements), are those given by
the following definition.

Definition 1.1. A superoperator E : L(V)→ L(V) is a D–regular admissible superoperator if

E =
1
D

D

∑
d=1

Ed ,

where, for each d ∈ [D], Ed(X) = UdXU†
d for some unitary transformation Ud over V.
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Note that this definition generalizes the classical one: any D–regular graph can be viewed as a sum
of D permutations, each corresponding to a unitary transformation. In fact many classical expander
constructions explicitly use this property [36, 9]. The definition is also intuitive in a more basic sense.
Unitary transformations (or permutations in the classical setting) are those transformations that do not
change the entropy of a state. An operator has small degree if it can never add much entropy to the state
it acts upon. Specifically, a degree D operator can never add more than log(D) entropy. Such a view is
almost explicit in the work of Capalbo et al. [9], where they view expanders as entropy conductors.

It is clear that all of the singular values of a D-regular admissible super-operator E : L(V)→ L(V)
are at most 1, and that the completely mixed state Ĩ = I/|V | is an eigenvector of any such E, with corre-
sponding eigenvalue 1. We say that such a super-operator E has a 1−λ spectral gap if all the remaining
singular values of E are smaller than λ . This is analogous to the way regular, directed expanders are
defined, where the regularity implies that the largest eigenvalue is 1, and furthermore this eigenvalue is
obtained with the normalized all-ones vector (that corresponds to the uniform distribution). The spectral
gap requires that all other singular values are bounded by λ .

Definition 1.2. A D-regular admissible superoperator E : L(V)→ L(V) is λ–expanding if:

• The eigenspace of E corresponding to the eigenvalue 1 is the one-dimensional space spanned by Ĩ.

• For any B ∈ L(V) orthogonal to Ĩ, it holds that ‖E(B)‖2 ≤ λ ‖B‖2.

We also say that a superoperator E : L(V)→ L(V) is a (dim(V),D,λ ) quantum expander if it is D–
regular and λ–expanding, and that it is explicit if it can be implemented by a quantum circuit of size
polynomial in log(dim(V)). We sometimes omit the dimension and say that E is a (D,λ ) quantum
expander.

The orthogonality in the above definition is with respect to the Hilbert-Schmidt inner product, de-
fined as 〈A,B〉= Tr(A†B), and the norm is the one induced by this inner product: ‖B‖2 =

√
〈B,B〉.

Definition 1.2 implies that D–regular quantum expanders can never add more than log(D) entropy to
the state they act on, but always add entropy to states that are far away from the completely-mixed state.
This definition can be generalized to the more general class of superoperators that can be expressed as
the sum of D Kraus operators, but for simplicity we work only with D-regular admissible superoperators.
A similar definition was independently given by Hastings [19].

1.1 Quantum expander constructions

In this paper we give two quantum expander constructions. We give a brief review of all the currently
known constructions in the order in which they appeared. All of the constructions are essentially based
on classical expanders, with a twist allowing them to work in the quantum setting as well.

The first construction was already implicit in the work of Ambainis and Smith [6] on state random-
ization:

Theorem 1.3 ([6]). For every λ > 0, there exists an explicit (N,O
(

log2 N

λ
2

)
,λ ) quantum expander.
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Their quantum expander is based on a Cayley expander over the Abelian group Zn
2. The main draw-

back of Cayley graphs over Abelian groups is that [26, 4] showed that such an approach cannot yield
constant degree expanders. Indeed, this is reflected in the log2 N term in Theorem 1.3. There are con-
stant degree, Ramanujan Cayley graphs, i. e., Cayley graphs that achieve the best possible relationship
between the degree and the spectral gap, and in fact the construction in [28] is such, but they are built
over non-Abelian groups.

In order to work with general groups, we describe (in Section 3.2) a natural way to lift a Cayley
graph G = (V,E) into a corresponding quantum superoperator T . However, the analysis shows that
the spectral gap of T is 0, and more specifically, T has |V | eigenspaces each of dimension |V |, with
eigenvalues~λ = (λ1 = 1, . . . ,λ|V |), where~λ is the spectrum of the Cayley graph.

Our first construction starts with the constant degree Ramanujan expander presented in [28]. This
expander is a Cayley graph over the non-Abelian group PGL(2,q). We build from it a quantum expander
as follows: we take two steps on the classical expander graph (by applying the superoperator T twice),
with a basis change between the two steps. The basis change is a carefully chosen refinement of the
Fourier transform that maps the standard basis |g〉 to the basis of the irreducible, invariant subspaces
of PGL(2,q). Intuitively, in the Abelian case this basis change corresponds to dealing with both the
bit and the phase degrees of freedom, and is similar to the construction of quantum error correcting
codes by first applying a classical code in the standard basis and then in the Fourier basis. However, this
intuition is not as clear in the non-Abelian case. Furthermore, in the non-Abelian case not every Fourier
transform ensures that the construction works. In this work we single out a natural algebraic property
we need from the underlying group that is sufficient for the existence of a good basis change, and we
prove that PGL(2,q) has this property. This results in a construction of a (D = O(1/λ

4
),λ ) quantum

expander. We describe this construction in detail in Section 3.
This construction is not explicit in the sense that it uses the Fourier transform over PGL(2,q), which

is not known to have an efficient implementation. (See [27] for a non-trivial, but still not fast enough,
algorithm.) We mention that there are also explicit, constant degree (non-Ramanujan) Cayley expanders
over the symmetric group Sn and the alternating group An [25]. Also, there is an efficient implementa-
tion of the Fourier transform over Sn [7]. We do not know, however, whether Sn (or An) respects our
additional property.

Following the publication of this construction (given in [8]), Hastings [20] showed, using elegant
techniques, that quantum expanders cannot be better than Ramanujan, i. e., cannot have spectral gap
better than 1− 2

√
D−1/D. Hastings also showed that taking D random unitaries gives an almost-

Ramanujan expander. This settles the parameters that can be achieved with a non-explicit construction.
However, Hastings’ work does not give an explicit construction, because a random unitary is a highly
non-explicit object.

The second construction presented in this paper adapts the classical Zig-Zag construction [36] to the
quantum world. The construction is iterative, starts with a good quantum expander of constant size (that
is found with a brute force search), and then builds quantum expanders for larger spaces by repeatedly
applying tensoring (which makes the space larger at the expense of the spectral gap), squaring (that
improves the spectral gap at the expense of the degree) and a Zig-Zag operation that reduces the degree
back to that of the constant-size expander. We again work by lifting the classical operators working over
V to quantum operators working over L(V), and we adapt the analysis along similar lines. The main
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issue is generalizing and analyzing the Zig-Zag product. Remarkably, this translation works smoothly
and gives the desired quantum expanders with almost the same proof applied over L(V) rather than V.
The construction gives explicit, constant degree quantum expanders with a constant spectral gap. We
describe this construction in detail in Section 4.

Two other explicit constructions of quantum expanders were published in [18] and [16] shortly after
our work first appeared. In [16] it was shown how the expander of Margulis [29] can be twisted to
the quantum setting, and in [18] it was shown how any classical Cayley expander can be converted to
a quantum expander, provided the underlying group has an efficient quantum Fourier transform and a
large irreducible representation. Applying this recipe to the Cayley expanders over Sn of [25] results
in another construction of explicit, constant degree quantum expanders. One advantage of our explicit
construction is that it achieves a much better relation between the spectral gap and the degree compared
to that of the other explicit constructions [29, 18].

The Zig-Zag construction we describe in this paper gives a natural, iterative quantum expander with
parameters that are as good as our first construction. However, the Zig-Zag construction is explicit
whereas the first construction is not yet explicit (because we do not have an efficient implementation
for the Fourier transform of PGL(2,q)). We nevertheless decided to include the first construction in
the paper. First, we believe it describes a natural approach, and this can be seen from the various other
quantum expander constructions that are based on Cayley graphs. Also, the first construction is appeal-
ing in that it has only two stages, and each stage naturally corresponds to a well-known Cayley graph.
Finally, and more importantly, in the classical setting there are algebraic constructions of Ramanujan
expanders (as opposed to combinatorial constructions). Therefore, we believe our first construction has
the potential of being improved to a construction of a quantum Ramanujan expander.

1.2 Applications of quantum expanders

Classical expanders have become well-known and fundamental objects in mathematics and computer
science. This is due to the many applications these objects have found and to the intimate relations they
have with other central notions in computational complexity. We refer the reader (again) to the survey
paper of [22] for a partial list of applications.

While quantum expanders are a natural generalization of classical expanders, they have only recently
been defined and it is yet to be seen whether they will be as useful as their classical counterparts. Thus
far, the following short list of applications has been identified.

• Quantum one-time pads. Ambainis and Smith [6] implicitly used quantum expanders to construct
short quantum one-time pads. Loosely speaking, they showed how two parties sharing a random
bit string of length n + O(logn) can communicate an n qubit state such that any eavesdropper
cannot learn much about the transmitted state. A subsequent work [11] showed how to remove
the O(logn) term.

• Hastings [19] gave an application from physics. Using quantum expanders, he showed that there
exist gapped one-dimensional systems for which the entropy between a given subvolume and the
rest of the system is exponential in the correlation length.
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• Recently, Hastings and Harrow [21] used specialized quantum expanders (called tensor product
expanders) to approximate t-designs as well as to attack a certain open question regarding the
Solovay-Kitaev gate approximation.

• In this work we use the quantum expanders constructed by Ambainis and Smith [6] in order to
show the problem Quantum Entropy Difference problem (QED) is QSZK-complete.

Let us now elaborate on the last application.
Watrous [42] defined the complexity class of quantum statistical zero knowledge languages (QSZK).

QSZK is the class of all languages that have a quantum interactive proof system, along with an efficient
simulator. The simulator produces transcripts that, for inputs in the language, are statistically close to the
correct ones (for the precise details see [42, 43]). Watrous defined the Quantum State Distinguishability
promise problem (QSDα,β ):

Input: Quantum circuits Q0,Q1.
Accept: If ‖τQ0− τQ1 ‖tr ≥ β .
Reject: If ‖τQ0− τQ1 ‖tr ≤ α .

Here, the notation τQ denotes the mixed state obtained by running the quantum circuit Q on the initial
state |0n〉 and tracing out the non-output qubits,1 and ‖A‖tr = Tr |A| is the quantum analogue of the
classical `1-norm (and so in particular ‖ρ1−ρ2 ‖tr is the quantum analogue of the classical variational
distance of two probability distributions).

In [42], Watrous showed QSDα,β is complete for honest-verifier-QSZK (QSZKHV) when 0 ≤ α <
β 2 ≤ 1. He further showed that QSZKHV is closed under complement, that any problem in QSZKHV has
a 2-message proof system and a 3-message public-coin proof system, and also that QSZK ⊆ PSPACE.
Subsequently, in [43], he showed that QSZKHV = QSZK.

The above results have classical analogues. However, in the classical setting there is another canon-
ical complete promise problem, the Entropy Difference problem (ED). There is a natural quantum
analogue to ED, the Quantum Entropy Difference problem (QED), that we now define:

Input: Quantum circuits Q0,Q1.
Accept: If S(τQ0)−S(τQ1)≥ 1

2 .
Reject: If S(τQ1)−S(τQ0)≥ 1

2 .

Here, S(ρ) is the von Neumann entropy of the mixed state ρ (see Section 2). The problem QED is very
natural from a physical point of view. It corresponds to the following task: we are given two mixed
states, each given by a quantum circuit generating it, and we are asked to decide which mixed state has
more entropy. This problem is, in particular, as hard2 as approximating the amount of entropy in a given
mixed state (when again the mixed state is given by a circuit generating it).

We prove that QED is QSZK–complete. The proof follows the classical intuition, which uses clas-
sical expanders to convert high entropy states to the completely mixed state, while keeping low-entropy
states entropy-deficient. Indeed, our proof is an adaptation of the classical proof to quantum entropies,

1Here we assume that a quantum circuit also designates a set of output qubits.
2Under Turing reductions.
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but it crucially depends on the use of quantum expanders replacing the classical expanders used in the
classical proof.

The proof requires an explicit quantum expander with a near-optimal entropy loss (see Section 5.1).
As it turns out, the only expander that we currently know of that satisfies this property is the Ambainis-
Smith expander. (Indeed it is of non-constant degree but this turns out to be irrelevant in this case.)
Using it we obtain that QED is QSZK–complete.

This result implies that it is not likely that one can estimate quantum entropies in BQP. Furthermore,
a common way of measuring the amount of entanglement between registers A and B in a pure state ψ

is by the von Neumann entropy of TrB(|ψ〉〈ψ|) [35]. Now suppose we are given two circuits Q1 and
Q2, both acting on the same initial pure-state |0n〉, and we want to know which circuit produces more
entanglement between A and B. Our result shows that this problem is QSZK–complete. As before, this
also shows that the problem of estimating the amount of entanglement between two registers in a given
pure-state is QSZK–hard under Turing reductions and hence unlikely to be in BQP.

The remainder of this paper is organized as follows. After the preliminaries (Section 2), we give
our first construction and its analysis in Section 3. In Section 4 we describe the Zig-Zag construction.
Finally, Section 5 is devoted to proving the completeness of QED in QSZK.

2 Preliminaries

For any finite-dimensional Hilbert space V, we write L(V) to denote the set of linear operators over V.
The set L(V) is also a Hilbert space, equipped with the inner-product 〈A,B〉 = Tr(A†B) and the norm
‖A‖2 =

√
〈A,A〉.

Let P = (p1, . . . , pm) be a vector with real values pi ≥ 0.

• The Shannon entropy is H(P) = ∑
m
i=1 pi log 1

pi
.

• The min-entropy is H∞(P) = mini log 1
pi

.

• The Rényi entropy is H2(P) = log 1
Col(P) , where Col(P) = ∑ p2

i is the collision probability of the
distribution defined by Col(P) = Prx,y[x = y] when x,y are sampled independently from P.

(We write log(·) to denote the base 2 logarithm, and ln(·) to denote the natural logarithm.)
We have analogous definitions for density matrices. For a density matrix ρ , let α = (α1, . . . ,αN) be

its set of eigenvalues. Since ρ is a density matrix, all these eigenvalues are non-negative and their sum
is 1. Thus we can view α as a classical probability distribution.

• The von Neumann entropy of ρ is S(ρ) = H(α).

• The min-entropy of ρ is H∞(ρ) = H∞(α).

• The Rényi entropy of ρ is H2(ρ) = H2(α). The analogue of the collision probability is simply
Tr(ρ2) = ∑i α2

i = ||ρ||22.
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We remark that for any ρ , H∞(ρ)≤ H2(ρ)≤ S(ρ).
The statistical difference between two classical distributions P = (p1, . . . , pm) and Q = (q1, . . . ,qm) is

SD(P,Q) =
1
2

m

∑
i=1
|pi−qi| ,

i. e., half the `1 norm of P−Q. This is generalized to the quantum setting by defining the trace-norm of a
matrix X ∈ L(V) to be ‖X ‖tr = Tr(|X |), where |X |=

√
X†X , and by defining the trace distance between

density matrices ρ and σ to be 1
2 ‖ρ−σ ‖tr.

3 Quantum expanders from non-Abelian Cayley graphs

The construction we present in this section constructs a quantum expander by first taking a step on a
non-Abelian Cayley expander followed by a Fourier transform and another step on the non-Abelian
Cayley expander. It is similar in spirit to the construction of good quantum error correcting codes given
by first encoding the input word with a good classical code, then applying a Fourier transform and then
encoding it again with a classical code. Technically the analysis here is more complicated because we
use a Fourier transform over a non-Abelian group.

We begin this section with some necessary representation theory background. We then describe the
construction and we conclude with its analysis.

3.1 Representation theory background

We survey some basic elements of representation theory. For complete accounts, consult the books of
Serre [40] or Fulton and Harris [17].

A representation ρ of a finite group G is a homomorphism ρ : G→ GL(V), where V is a (finite-
dimensional) vector space over C and GL(V) denotes the group of invertible linear operators on V.
Fixing a basis for V, each ρ(g) may be realized as a d× d matrix over C, where d is the dimension
of V. As ρ is a homomorphism, for any g,h ∈ G, ρ(gh) = ρ(g)ρ(h) (the second product being matrix
multiplication). The dimension dρ of the representation ρ is d, the dimension of V.

We say that two representations ρ1 : G→GL(V) and ρ2 : G→GL(W) of a group G are isomorphic
when there is a linear isomorphism of the two vector spaces φ : V→W so that for all g ∈ G, φρ1(g) =
ρ2(g)φ . In this case, we write ρ1 ∼= ρ2.

We say that a subspace W ⊆ V is an invariant subspace of a representation ρ : G → GL(V) if
ρ(g)W ⊆W for all g ∈ G. The zero subspace and the subspace V are always invariant. If no nonzero
proper subspaces are invariant, the representation is said to be irreducible. Up to isomorphism, a finite
group has a finite number of irreducible representations; we let Ĝ denote this collection of representa-
tions.

If ρ : G→ GL(V) is a representation, V = V1⊕V2, and each Vi is an invariant subspace of ρ , then
ρ(g) defines two linear representations ρi : G→ GL(Vi) such that ρ(g) = ρ1(g)+ρ2(g). We then write
ρ = ρ1⊕ρ2. Any representation ρ can be written as ρ = ρ1⊕ρ2⊕·· ·⊕ρk, where each ρi is irreducible.
In particular, there is a basis in which every matrix ρ(g) is block diagonal, the ith block corresponding
to the ith representation in the decomposition. While this decomposition is not, in general, unique, the
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number of times a given irreducible representation appears in this decomposition (up to isomorphism)
depends only on the original representation ρ .

The group algebra C[G] of a group G is a vector space of dimension |G| over C, with an orthonormal
basis {|g〉 | g ∈ G} and multiplication

∑ag |g〉 ·∑bg′
∣∣g′〉= ∑

g,g′
agbg′

∣∣g ·g′〉 .

This algebra is in bijection with the set { f : G→ C} with the bijection being f →∑g f (g) |g〉. The inner
product in C[G] translates to the familiar inner product 〈 f ,h〉= ∑g f (g)h(g). The regular representation
ρreg : G→GL(C[G]) is defined by ρreg(s) : |g〉 7→ |sg〉, for any g∈G. Notice that ρreg(s) is a permutation
matrix for any s ∈ G.

An interesting fact about the regular representation is that it contains every irreducible representation
of G. In particular, if ρ1, . . . ,ρk are the irreducible representations of G with dimensions dρ1 , . . . ,dρk , then

ρreg = dρ1ρ1⊕·· ·⊕dρk ρk,

that is, the regular representation contains each irreducible representation ρ exactly dρ times.
The Fourier transform over G is the unitary transformation F defined by:

F |g〉 = ∑
ρ∈Ĝ

∑
1≤i, j≤dρ

√
dρ

|G|
ρi, j(g) |ρ, i, j〉 ,

where ρi, j(g) is the (i, j)-th entry of ρ(g) in some predefined basis. In general one has freedom in
choosing a basis for each invariant subspace. In this paper we choose an arbitrary basis, and later fix
this choice by using special properties of the group G.

Fact 3.1. The Fourier transform block-diagonalizes the regular representation, i. e.,

Fρreg(g)F† = ∑
ρ∈Ĝ

∑
1≤i,i′, j≤dρ

ρi,i′(g) |ρ, i, j〉
〈
ρ, i′, j

∣∣ .
This means that when we represent ρreg(g) in the basis given by F , we get a block diagonal matrix,

with an invariant subspace of dimension dρ for each ρ ∈ Ĝ, and with ρ(g) as the values of that block.

3.2 The construction

Fix an arbitrary (Abelian or non-Abelian) group G of order N, and a subset Γ of group elements closed
under inversion. The Cayley graph C(G,Γ) associated with Γ is a graph over N vertices, each corre-
sponding to an element of G. This graph contains an edge (g1,g2) if and only if g1 = g2γ for some
γ ∈ Γ. The graph C(G,Γ) is a regular undirected graph of degree |Γ|.
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We associate with the graph C(G,Γ) the linear operator M over C[G] whose matrix representation
agrees with the normalized adjacency matrix of C(G,Γ), i.e.,

M =
1
|Γ| ∑

γ∈Γ,x∈G
|xγ〉〈x| .3

(The normalization is such that the operator norm is 1.)
Notice that M is a real and symmetric operator, and therefore diagonalizes with real eigenvalues. We

denote by λ1 ≥ ·· · ≥ λN the eigenvalues of M with orthonormal eigenvectors v1, . . . ,vN . As C(G,Γ) is
regular, we have λ1 = 1 and λ = maxi>1 |λi| ≤ 1.

We define the superoperator T : L(C[G])→ L(C[G]) that corresponds to randomly taking one step on
the Cayley graph C(G,Γ). More precisely, this superoperator describes the process whereby a register
R of dimension |Γ| is initialized to

∣∣0〉 and the following steps are taken. First, a transformation H is
performed on R that maps |0〉 to

1√
|Γ| ∑γ∈Γ

|γ〉 ,

yielding, for an input state ρ , the state

1
|Γ|

ρ⊗ ∑
γ,γ ′∈Γ

|γ〉
〈
γ
′∣∣ .

Then, the unitary transformation Z : |g,γ〉 → |gγ,γ〉 is applied, and finally the register R is discarded. In
more algebraic terms,

T (ρ) = TrR[ Z(I⊗H)(ρ⊗
∣∣0〉〈0∣∣)(I⊗H)Z† ] .

We note that the transformation Z is a permutation over the standard basis, and is classically easy to
compute in both directions, and therefore has an efficient quantum circuit.

We also need the notion of a good basis change. We say a unitary transformation U is a good basis
change if for any g1 6= e (where e denotes the identity element of G) and any g2 it holds that

Tr(Uρreg(g1)U†
ρreg(g2)) = 0. (3.1)

The quantum expander is then defined as

E(ρ) = T (UT (ρ)U†) .

Lemma 3.2. If U is a good basis change then E is a (|Γ|2,λ ) quantum expander for λ as defined as
above.

3In our definition the generators act from the right. Sometimes the Cayley graph is defined with left action, i. e., g1 is
connected to g2 if and only if g1 = γg2. However, note that if we define the invertible linear transformation P that maps the
basis vector |g〉 to the basis vector

∣∣g−1〉, then PMP−1 = PMP maps x to 1
|Γ| ∑γ

∣∣(x−1γ)−1〉= 1
|Γ| ∑γ

∣∣γ−1x
〉

= 1
|Γ| ∑γ |γx〉 and

so the right action is M and the left action is PMP−1, and therefore they are similar and in particular have the same spectrum.
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The fact that E is |Γ|2–regular is immediate and the rest of this section is devoted to proving the claimed
spectral gap.

Lubotzky et al. [28] described a constant degree Ramanujan Cayley graph over PGL(2,q), with
degree |Γ| and second-largest eigenvalue λ satisfying λ

2 ≤ 4/|Γ|. In Section 3.5 we show how to
modify the Fourier transform for PGL(2,q) to obtain a good basis change, and by plugging this basis
change into Lemma 3.2 we obtain a (16/λ

4
,λ ) quantum expander. The construction is not explicit as it

is yet unknown how to efficiently implement the quantum Fourier transform for PGL(2,q).

3.3 The analysis

First, we fully identify the spectrum of T . We view any eigenvector vi ∈CN (of M) as an element of C[G],
|vi〉= ∑g vi(g) |g〉. We also define a linear transformation Diag : C[G]→ L(C[G]) by Diag |g〉= |g〉〈g|.
Denote

µi,g = ρreg(g)(Diag |vi〉) = ∑
x∈G

vi(x) |gx〉〈x| .

Then it is easy to see that these matrices form a set of eigenvectors of T .

Lemma 3.3. The vectors {µi,g | i = 1, . . . ,N,g ∈ G} form an orthonormal basis of L(C[G]), and µi,g is
an eigenvector of T with eigenvalue λi.

Proof. Notice that T (|g1〉〈g2|) = TrR[ 1
|Γ| ∑γ1,γ2 Z |g1,γ1〉〈g2,γ2|Z†] = 1

|Γ| ∑γ |g1γ〉〈g2γ|. Now,

T (µi,g) =
1
|Γ|∑x,γ

vi(x) |gxγ〉〈xγ|= ρreg(g)
1
|Γ|∑x,γ

vi(x) |xγ〉〈xγ|

= ρreg(g)Diag(∑
x

vi(x)M |x〉) = ρreg(g)Diag(M |vi〉) = λiρreg(g)Diag(|vi〉) = λiµi,g.

To verify orthonormality, notice that Tr(µi,g1 µ
†
i′,g2

) = 0 for every choice of g1 6= g2, as each entry

(k, `) must be zero for at least one of the matrices. If g1 = g2 = g then Tr(µi,gµ
†
i′,g) = 〈vi′ |vi〉= δi,i′ . As

the number of vectors {µi,g} is N2, they form an orthonormal basis for L(C[G]).

We decompose the space L(C[G]) into three perpendicular spaces:

Span{µ1,e} ,
W = Span{µ1,g | g ∈ G,g 6= e} ,and
µ⊥ = Span{µi,g | i 6= 1,g ∈ G} .

We also denote µ || = Span{µ1,e}+W = Span{µ1,g | g ∈ G}. Notice that T (µ ||) = µ || and T (µ⊥) = µ⊥.

Claim 3.4. If ρ ∈W and U is a good basis change then UρU† ∈ µ⊥.

Proof. The set
{

ρreg(g) | g ∈ G
}

is an orthonormal basis for µ || and hence
{

ρreg(g) | g ∈ G, g 6= e
}

is
an orthonormal basis for W . Therefore, it is enough to verify that Tr(Uρreg(g1)U†ρreg(g2)†) = 0 for any
g1 6= e and for any g2. Given that ρreg(g2)† = ρreg(g−1

2 ), this follows directly from (3.1).
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Thus, intuitively speaking, we have a win-win situation when E is applied to ρ . If ρ is in µ⊥, then
the first application of T shrinks its norm, while if ρ is in W , then the first application of T keeps it
unchanged, the basis change maps it to µ⊥, and the last T application shrinks its norm. Indeed, we are
now ready to prove Lemma 3.2, namely, that if U is a good basis change then E is a (|Γ|2,λ ) quantum
expander.

Proof of Lemma 3.2. The regularity of E is clear from its definition. Fix any X ∈ L(C[G]) that is per-
pendicular to Ĩ = µ1,e, and write X = X ||+X⊥ for X || ∈W and X⊥ ∈ µ⊥. We have

E(X) = T (σ ||+σ
⊥) ,

where σ || = UT (X ||)U† and σ⊥ = UT (X⊥)U†. Observe the following. First, T (X ||) ∈ W , so by
Claim 3.4, σ ||⊥µ ||. Also, T (X ||)⊥T (X⊥) (as T preserves both µ || and µ⊥), and therefore σ ||⊥σ⊥.
Moreover, by Lemma 3.3 we know T is normal.

By Lemma 3.5 (stated and proved below) we see that

||E(X)||22 = ||T (σ ||+σ
⊥)||22 ≤ λ

2||σ ||||22 + ||σ⊥||22
= λ

2||T (X ||)||22 + ||T (X⊥)||22 ≤ λ
2||X ||||22 +λ

2||X⊥||22 = λ
2||X ||22

as required.

We are left to prove the following lemma.

Lemma 3.5. Let T be a normal linear operator with eigenspaces V1, . . . ,Vn and corresponding eigen-
values λ1, . . . ,λn in descending absolute value. Suppose u and w are vectors such that

u ∈ Span{V2, . . . ,Vn}

and w⊥ u (and where w does not necessarily belong to V1). Then

||T (u+w)||22 ≤ |λ2|2||u||22 + |λ1|2||w||22 .

Proof. Let
{

v j
}

be an eigenvector basis for T with eigenvalues δ j (from the set {λ1, . . . ,λn}). Writing
u = ∑ j α jv j and w = βv+∑ j β jv j with v j ∈ Span{V2, . . . ,Vn} and v ∈ V1, we get:

||T (u+w)||22 = ||λ1βv+∑
j

δ j(α j +β j)v j||22 ≤ |λ1|2|β |2 + |λ2|2 ∑
j
|α j +β j|2

= |λ1|2|β |2 + |λ2|2(∑
j
|α j|2 +∑

j
|β j|2 + 〈u|w〉+ 〈w|u〉)≤ |λ2|2||u||22 + |λ1|2||w||22.
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3.4 A sufficient condition that guarantees a good basis change

So far we have reduced the problem of constructing a quantum expander to that of finding a Cayley
graph C(G,Γ) and a good basis change for G. We now concentrate on the problem of finding a good
basis change for a given group G, and show that if G respects some general condition then one can
efficiently construct a good basis change from G from its Fourier transform.

A basic fact of representation theory states that ∑
ρ∈Ĝ d2

ρ = |G|. Equivalently, for any group G there
is a bijection between {

(ρ, i, j) ρ ∈ Ĝ,1≤ i, j ≤ dρ

}
and G. Finding such a natural bijection is a fundamental problem both in mathematics (where it is equiv-
alent to describing the invariant subspaces of the regular representation of G) and in computer science
(where it is a main step towards implementing a fast Fourier transform). Indeed, this question was ex-
tensively studied. For example, the “Robinson-Schensted” algorithm [37, 39] is a mapping from pairs
(P,T ) of standard shapes (a shape corresponds to an irreducible representation of Sn, and its dimension
is the number of valid fillings of that shape) to Sn.

Here we require more from such a mapping.

Definition 3.6. Let f be a bijection from
{
(ρ, i, j) | ρ ∈ Ĝ,1≤ i, j≤ dρ

}
to G. We say that f is a product

mapping if, for every ρ ∈ Ĝ,

f (ρ, i, j) = f1(ρ, i) · f2(ρ, j) (3.2)

for some choice of functions f1(ρ, ·), f2(ρ, ·) : [dρ ]→ G.

The Robinson-Schensted mapping is not a product mapping. However, Sn has a product mapping
for n ≤ 6, and we think it is a natural question whether product mappings for Sn exist for all n. For
some groups it is easy to find a product mapping. For example, in any Abelian group all irreducible
representations are of dimension one and so we can define f1(ρ, i) = e and f2(ρ, j) = f (ρ,1,1).

Another easy example is the dihedral group Dm of rotations and reflections of a regular polygon
with m sides. Its generators are r, the rotation element, and s, the reflection element. This group has 2m
elements and the defining relations are s2 = 1 and srs = r−1. We shall argue this group has a product
mapping for odd m (although it is true for even m as well). The dihedral group has (m−1)/2 represen-
tations {ρ`} of dimension two and two representations {τ1,τ2} of dimension one (see [40, Section 5.3]).
A product mapping in this case can be given by defining f (ρ, i, j) as follows:

f (ρ, i, j) =


1 if ρ = τ1, i = j = 1,
s if ρ = τ2, i = j = 1,
r2(`−1)+is j if ρ = ρ`.

(3.3)

We now show that if G has a product mapping then G has a good basis change:

Lemma 3.7. Let G be a group that has a product mapping f , and let F be the Fourier transform over
G, that is

F |g〉= ∑
ρ∈Ĝ

∑
1≤i, j≤dρ

√
dρ

|G|
ρi, j(g) |ρ, i, j〉 .
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Define the unitary mapping

S : |ρ, i, j〉 7→ ω
i j
dρ
| f (ρ, i, j)〉 ,

where ωdρ
is a primitive root of unity of order dρ , and set U to be the unitary transformation U = SF.

Then U is a good basis change.

Proof. Fix g1 6= e and g2. If g2 = e then

Tr
(
Uρreg(g1)U†

ρreg(g2)
)

= Tr
(
Uρreg(g1)U†)= Tr

(
ρreg(g1)

)
= 0 ,

where the last equality follows from the assumption that g1 6= e.
We are left with the case g2 6= e. By Fact 3.1, it holds that

Tr
(
SFρreg(g1)F†S†

ρreg(g2)
)

= ∑
ρ∈Ĝ

∑
1≤i,i′≤dρ

ρi,i′(g1)Tr

(
dρ

∑
j=1

S |ρ, i, j〉
〈
ρ, i′, j

∣∣S†
∑
x
|g2x〉〈x|

)
.

Therefore, it suffices to show that for any ρ, i, i′ we have

Tr

(
dρ

∑
j=1

S |ρ, i, j〉
〈
ρ, i′, j

∣∣S†
∑
x
|g2x〉〈x|

)
= 0 .

Fix ρ ∈ Ĝ and i, i′ ∈
{

1, . . . ,dρ

}
. Because f is a product mapping, f (ρ, i, j) = f1(ρ, i) · f2(ρ, j) for some

choice of functions f1, f2. Denote hi = f1(ρ, i) and t j = f2(ρ, j). The sum we need to calculate can be
written as:

dρ

∑
j=1

∑
x

ω
i j−i′ j
dρ

Tr
(∣∣hit j

〉〈
hi′t j |g2x

〉
〈x|
)

=
dρ

∑
j=1

ω
i j−i′ j
dρ

∑
x

〈
x |hit j

〉〈
hi′t j |g2x

〉
=

dρ

∑
j=1

ω
(i−i′) j
dρ

〈
g2 |hi′h−1

i

〉
,

where the last equality follows from the observation that the sum over x yields a non-zero value if and
only if x = hit j and hi′t j = g2x. This happens if and only if hit j = g−1

2 hi′t j, or equivalently g2 = hi′h−1
i .

However, when g2 = hi′h−1
i , we obtain the sum ∑

dρ

j=1 ω
(i−i′) j
dρ

, and because g2 6= e it follows that i 6= i′.
Hence the expression is zero, as required.

3.5 PGL(2,q) has a product bijection

The group PGL(2,q) is the group of all 2×2 invertible matrices over Fq modulo the group center. This
group has (q−3)/2 irreducible representations of dimension q+1, (q−1)/2 irreducible representations
of dimension q− 1, 2 irreducible representations of dimension q and 2 irreducible representations of
dimension 1 (see [17, Section 5.2] and [1]). We let ρd

x denote the x-th irreducible representation of
dimension d.
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We look for a bijection from G to the irreducible representations of G. Our approach is to use a
tower of subgroups,

G3 = G > G2 = D2q > G1 = Zq > G0 = {e} ,
with G2 and G1 defined as follows. The group G2 is generated by the equivalence classes of(

1 0
0 −1

)
and of

(
1 1
0 1

)
.

This group is a dihedral subgroup of G with 2q elements, i. e., Dq. The first matrix is the reflection,
denoted by s, and the second is the rotation, denoted by r. This group has a cyclic subgroup G1 ∼= Zq

(the group generated by r).
Let T2 = {t1, . . . , t`} be a transversal for G2 with

` =
|G|
|G2|

=
(q−1)(q+1)

2
.

For each ρ ∈ Ĝ we let f1(ρ, i) ∈ {t1, . . . , t`} define a coset of G2, and let f2(ρ, j) ∈G2 define an element
in G2 as follows. The representations of dimension q+1 take the first (q−3)(q+1)/2 cosets:

f1(ρq+1
x , i) =

{
ri−1 if i = 1, . . . ,q,
s if i = q+1,

f2(ρq+1
x , j) = t(x−1)(q+1)+ j,

for all x = 1, . . . , q−1
2 −1 and i, j = 1, . . . ,q+1. We match them with representations of dimension q−1:

f1(ρq−1
x , i) = sri,

f2(ρq−1
x , j) = t(x−1)(q−1)+ j,

for all x = 1, . . . , q−1
2 and i, j = 1, . . . ,q−1. Notice that so far we have covered the first (q−3)(q+1)/2 =

[(q−1)(q−1)/2]−2 cosets without repetitions. Two cosets are partially covered with dimension q−1
representations (in each coset q−1 elements are covered). We put the dimension 1 representation into
these cosets:

f1(ρ1
x ,1) = s,

f2(ρ1
x ,1) = t (q−3)(q+1)

2 +x,

for x = 1,2. Finally, we fill all the remaining gaps with dimension q representations. The first two fill the
partially full cosets, and the rest fill each coset in pairs. Notice that here we use the fact that G1 < G2.
The function f2 returns an element in the traversal set of G1 and f1 returns an element of G1:

f1(ρq
x , i) = ri,

f2(ρq
x , j) =

t (q−3)(q+1)
2 +x if j = q,

sx−1t (q−1)(q−1)
2 + j otherwise,

for x = 1,2. One can verify that this product mapping is a bijection as desired.
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4 The Zig-Zag construction

We now present our second construction of quantum expanders, following the iterative construction of
Reingold et al. [36]. Their starting point is a good expander of constant size, which can be found by an
exhaustive search. Then, they construct a series of expanders with an increasing number of vertices by
applying a sequence of three basic transformations: tensoring (that squares the number of vertices at the
expense of a worse ratio between the spectral gap and the degree), squaring (that improves the spectral
gap) and the Zig-Zag product (that reduces the degree to its original size). These three transformations
are repeated iteratively, resulting in a good constant-degree expander over many vertices.

The first two transformations have natural counterparts in the quantum setting. For ease of notation,
we denote by T (V) the set of superoperators on L(V) (that is, T (V) = L(L(V))). We also denote by
U(V) the set of unitary operators in L(V).

• Squaring: For a superoperator G ∈ T (V) we denote by G2 the superoperator given by G2(X) =
G(G(X)) for any X ∈ L(V).

• Tensoring: For superoperators G1 ∈ T (V1) and G2 ∈ T (V2) we denote by G1⊗G2 the superop-
erator given by (G1⊗G2)(X⊗Y ) = G1(X)⊗G2(Y ) for any X ∈ L(V1),Y ∈ L(V2).

In order to define the quantum Zig-Zag product we first recall the classical Zig-Zag product. We
have two graphs G1 and G2. The graph G1 is a D1–regular graph over N1 vertices and the graph G2 is
a D2–regular graph over N2 = D1 vertices. We first define the replacement product graph, which has
V1×V2 as its set of vertices. We refer to the set of vertices {v}×V2 as the cloud of v. The replacement
product has a copy of G2 on each cloud, and also inter-cloud edges between (v, i) and (w, j) if the i-th
neighbor of v is w and the j-th neighbor of w is v in G1. Thus, the replacement product has the same
connected components as the original graph but a much lower degree (D2 + 1 instead of D1). The Zig-
Zag product graph G1 z©G2 has the same set of vertices as the replacement product, but has an edge
between x = (v,a) and x′ = (v′,a′) if and only if in the replacement product graph there is a three step
walk from x to x′ that first takes a cloud edge, then an inter-cloud edge, and then again a cloud edge.
Thus, the graph G1 z©G2 is D2

2–regular.
We now define the quantum Zig-Zag transformation. Let G1 ∈ T (HN1) be an N2–regular operator

and G2 ∈ T (HN2), where HN denotes the Hilbert space of dimension N. As G1 is D1–regular, it can be
expressed as

G1(X) =
1

D1
∑
d

UdXU†
d

for some unitaries Ud ∈ U(HN1). We lift the ensemble {Ud} to a superoperator U̇ ∈ L(HN1 ⊗HD1)
defined by U̇(|a〉⊗ |b〉) = Ub |a〉⊗ |b〉. We also define Ġ1 ∈ T (HN1 ⊗HD1) by Ġ1(X) = U̇XU̇†. The
superoperator Ġ1 corresponds to the inter-cloud edges in the replacement product. We are now ready to
define the quantum Zig-Zag product.

Definition 4.1. Let G1,G2 be as above. The Zig-Zag product of G1 and G2, denoted by G1 z©G2 ∈
T (HN1⊗HD1), is defined to be (G1 z©G2)X = (I⊗G†

2)Ġ1(I⊗G2)X .

Remark 4.2. Notice that formally G1 z©G2 depends on the Kraus decomposition of G1 and the notation
should have reflected this. However, we fix this decomposition once and use this simpler notation.
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Finally we explain how to find a base quantum operator H that is a (D8,D,λ ) quantum expander. Its
existence follows from the following result of Hastings [20].

Theorem 4.3. There exists an integer D0 such that for every D > D0 there exists a (D8,D,λ ) quantum
expander for λ = 4

√
D−1/D.

Remark 4.4. Hastings actually shows the stronger result that, for any D, there exist a(
D8,D,(1+O(D−16/15 logD))

2
√

D−1
D

)
quantum expander.

We use an exhaustive search over a net S ⊂ U(HD8) of unitary matrices to find such a quantum
expander. The set S has the property that for any unitary matrix U ∈U(HD8) there exists some VU ∈ S
such that

sup
‖X ‖=1

∥∥∥UXU†−VU XV †
U

∥∥∥≤ λ .

It is not hard to verify that indeed such S exists, with size depending only on D and λ . Moreover, we
can find such a set in time depending only on D and λ .4 Suppose that

G(X) =
1
D

D

∑
i=1

UiXU†
i .

is a (D8,D,λ ) quantum expander, and denote by G′ the superoperator

G′(X) =
1
D

D

∑
i=1

VUiXV †
Ui

.

For X ∈ L(HD8) orthogonal to Ĩ, it holds that

∥∥G′(X)
∥∥=

∥∥∥∥∥ 1
D

D

∑
i=1

VUiXV †
Ui

∥∥∥∥∥≤ ‖G(X)‖+λ ‖X ‖ ≤ 2λ ‖X ‖ .

Hence, G′ is a (D8,D,8
√

D−1/D) quantum expander. This implies that a brute force search over the
net finds a good base superoperator H in time that depends only on D and λ .

Remark 4.5. We can actually get an eigenvalue bound of (1+ ε)2
√

D−1/D for an arbitrary small ε at
the expense of increasing D0, using the better bound in Remark 4.4.

4One way to see this is using the Solovay-Kitaev theorem (see, e. g., [10]). The theorem assures us that, for example, the
set of all the quantum circuits of length O(log4

ε−1) generated only by Hadamard and Tofolli gates gives an ε-net of unitaries.
The accuracy of the net is measured differently in the Solovay-Kitaev theorem, but it can be verified that the accuracy measure
we use here is roughly equivalent.
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Given all these ingredients we define an iterative process as in [36], composed of a series of super-
operators. The first two superoperators are G1 = H2 and G2 = H⊗H. For every t > 2 we define

Gt =
(

Gd t−1
2 e
⊗Gb t−1

2 c

)2
z©H.

Theorem 4.6. For every t > 0, Gt is an explicit (D8t ,D2,λt) quantum expander with λt = λ + O(λ 2),
where the constant in the O notation is an absolute constant.

Thus, Gt is a constant degree, constant gap quantum expander, as desired.

4.1 The analysis

Tensoring and squaring are easy to analyze, and the following proposition is immediate from the defini-
tions of these operations.

Proposition 4.7. If G is a (N,D,λ ) quantum expander then G2 is a (N,D2,λ 2) quantum expander. If
G1 is a (N1,D1,λ1) quantum expander and G2 is a (N2,D2,λ2) quantum expander then G1⊗G2 is a
(N1 ·N2,D1 ·D2,max(λ1,λ2)) quantum expander.

We are left to analyze is the quantum Zig-Zag product.

Theorem 4.8. If G1 is a (N1,D1,λ1) quantum expander and G2 is a (D1,D2,λ2) quantum expander then
G1 z©G2 is a (N1 ·D1,D2

2,λ1 +λ2 +λ 2
2 ) quantum expander.

With the above two claims, the proof of Theorem 4.6 is identical to the one in [36] and is omitted. In
order to prove Theorem 4.8 we claim the following.

Proposition 4.9. For any X ,Y ∈ L(HN1 ⊗HD1) such that X is orthogonal to the identity operator we
have ∣∣〈(G1 z©G2)X ,Y 〉

∣∣≤ f (λ1,λ2)‖X ‖ · ‖Y ‖ ,

where f (λ1,λ2) = λ1 +λ2 +λ 2
2 .

Theorem 4.8 follows from this proposition: for a given X orthogonal to Ĩ we let Y = (G1 z©G2)X and
plug X and Y into the proposition. We see that ‖(G1 z©G2)X ‖ ≤ f (λ1,λ2)‖X ‖ as required.

The proof of Proposition 4.9 is an adaptation of the proof in [36]. The main difference is that the
classical proof works over the Hilbert space V whereas the quantum proof works over L(V). Remarkably,
the same intuition works in both cases.

Proof of Proposition 4.9. We first decompose the space L(HN1⊗HD1) into

W || = Span
{

σ ⊗ Ĩ | σ ∈ L(HN1)
}

and

W⊥ = Span
{

σ ⊗ τ | σ ∈ L(HN1) , τ ∈ L(HD1) , 〈τ, Ĩ〉= 0
}

.

Next, we write X as X = X ||+ X⊥, where X || ∈W || and X⊥ ∈W⊥, and similarly Y = Y ||+Y⊥. By
definition,

|〈(G1 z©G2)X ,Y 〉|= |〈Ġ1(I⊗G2)(X ||+X⊥),(I⊗G2)(Y ||+Y⊥)〉| .
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Using linearity and the triangle inequality (and the fact that I⊗G2 acts trivially on W ||), we get

|〈(G1 z©G2)X ,Y 〉| ≤ |〈Ġ1X ||,Y ||〉|+ |〈Ġ1X ||,(I⊗G2)Y⊥〉|+
|〈Ġ1(I⊗G2)X⊥,Y ||〉|+ |〈Ġ1(I⊗G2)X⊥,(I⊗G2)Y⊥〉| .

In the last three terms we have I⊗G2 acting on an operator from W⊥. As expected, when this happens
the quantum expander G2 shrinks the norm of the operator.

Claim 4.10. For any Z ∈W⊥ it holds that ‖(I⊗G2)Z ‖ ≤ λ2 ‖Z ‖.

Proof. The matrix Z can be written as Z = ∑i σi⊗ τi, where each τi is perpendicular to Ĩ and {σi} is an
orthogonal set. Hence,

‖(I⊗G2)Z ‖2 =
∥∥∥∑

i
σi⊗G2(τi)

∥∥∥2
= ∑

i
‖σi⊗G2(τi)‖2 ≤∑

i
λ

2
2 ‖σi⊗ τi ‖2 = λ

2
2 ‖Z ‖2 .

To bound the first term, we observe that on inputs from W || the operator Ġ1 mimics the operation of
G1 with a random seed.

Claim 4.11. For any A,B ∈W || such that 〈A, Ĩ〉= 0, it holds that |〈Ġ1(A),B〉| ≤ λ1 ‖A‖ · ‖B‖ .

Proof. Any choice of A,B ∈W || may be written as

A = σ ⊗ Ĩ =
1

D1
∑

i
σ ⊗|i〉〈i| ,

B = η⊗ Ĩ =
1

D1
∑

i
η⊗|i〉〈i| .

Moreover, as A is perpendicular to the identity operator, it follows that σ is perpendicular to the identity
operator on the space L(HN1). This means that applying G1 on σ will shrinks its norm by at a factor of
least λ1.
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Considering the inner product

| 〈Ġ1A,B〉|= 1
D2

1

∣∣∣∣∣∑i, j
Tr
((

(UiσU†
i )⊗|i〉〈i|

)
(η⊗| j〉〈 j|)†

)∣∣∣∣∣
=

1
D2

1

∣∣∣∣∣∑i, j
Tr
(
(UiσU†

i η
†)⊗|i〉〈i | j〉〈 j|

)∣∣∣∣∣
=

1
D2

1

∣∣∣∣∣∑i
Tr
(
(UiσU†

i η
†)⊗|i〉〈i|

)∣∣∣∣∣
=

1
D2

1

∣∣∣∣∣∑i
Tr
(

UiσU†
i η

†
)∣∣∣∣∣

=
1

D1

∣∣∣∣∣Tr

((
1

D1
∑

i
UiσU†

i

)
η

†

)∣∣∣∣∣
=

1
D1
|〈G1(σ),η〉| ≤ λ1

D1
‖σ ‖ · ‖η ‖= λ1 ‖A‖ · ‖B‖ ,

where the inequality follows from the expansion property of G1 (and Cauchy-Schwartz).

With the above claims in hand we see that

|〈(G1 z©G2)X ,Y 〉| ≤ (pX pY λ1 + pX qY λ2 + pY qX λ2 +qX qY λ
2
2 )‖X ‖ · ‖Y ‖ , (4.1)

where

pX =

∥∥X ||
∥∥

‖X ‖
and qX =

∥∥X⊥
∥∥

‖X ‖
,

and similarly

pY =

∥∥Y ||
∥∥

‖Y ‖
and qY =

∥∥X⊥
∥∥

‖Y ‖
.

Notice that p2
X + q2

X = p2
Y + q2

Y = 1. It is easy to see that pX pY ,qX qY ≤ 1. Also, by Cauchy-Schwartz,
pX qY + pY qX ≤ 1. Therefore, the right hand side of Equation (4.1) is upper bounded by the quantity
f (λ1,λ2)‖X ‖ · ‖Y ‖.

4.2 Explicitness

Recall that a D–regular superoperator

E(X) =
1
D ∑

i
UiXU†

i

is said to be explicit if it can be implemented by an efficient quantum circuit. Now we need a slight
refinement of this definition: we say that E is label-explicit if each Ui has an efficient implementation. It
can be checked that the squaring, tensoring and Zig-Zag operations map label-explicit transformations
to label-explicit transformations. Also, our base superoperator is label-explicit (since it is defined over a
constant size space). Therefore, the construction is label-explicit (and therefore explicit).
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5 The complexity of estimating entropy

In this section we show that the language QED is QSZK–complete. The proof that QSD ≤ QED is
standard, and is described in Subsection 5.4.

The more challenging direction is the proof that QED is in QSZK, or equivalently that QED ≤
QSD. In the classical setting this reduction is proved using extractors. Some parts of our proof of this
reduction, for the quantum setting, are also standard. We define the problem QEA (Quantum Entropy
Approximation) as follows:

Input: Quantum circuit Q, t ≥ 0.
Accept: If S(τQ)≥ t + 1

2 .
Reject: If S(τQ)≤ t− 1

2 .

QEA is the problem of comparing the entropy of a given quantum circuit to some known threshold t
(whereas QED compares two quantum circuits with unknown entropies). One immediately sees that

QED(Q0,Q1) =
max{out1,out2}∨

t=1

[((Q0, t) ∈ QEAY )∧ ((Q1, t) ∈ QEAN)] ,

where outi is the number of output qubits of Qi.
A standard classical reduction can be easily adapted to the quantum setting to show that QEA ∈

QSZK implies that QED ∈ QSZK. We describe this part in Section 6. Thus, it is sufficient to prove that
QEA ∈ QSZK. We now focus on this part and the use of quantum expanders in the proof.

The classical reduction from EA to SD (where EA is like QEA but with the input being a classical
circuit) uses extractors. An extractor is a function of the form E : {0,1}n×{0,1}d → {0,1}m, and we
say that such a function is a (k,ε) extractor if, for every distribution X on {0,1}n that has min-entropy
k, the distribution E(X ,Ud) obtained by sampling x ∈ X , y ∈ {0,1}d and outputting E(x,y) is ε–close to
uniform.

We begin with the classical intuition why EA reduces to SD. We are given a classical circuit C and
we want to distinguish between the cases where the distribution it defines has substantially more than
t entropy or substantially less than t entropy. First assume that the distribution is flat, i. e., all elements
that have a non-zero probability in the distribution have equal probability. In such a case we can apply an
extractor to the n output bits of C, hashing it to about t output bits. If the distribution C defines has high
entropy, it also has high min-entropy (because for flat distributions entropy is the same as min-entropy)
and therefore the output of the extractor is close to uniform. If, on the other hand, the entropy is less
than t− d− 1, where d is the extractor’s seed length, then even after applying the extractor the output
distribution has at most t−1 bits of entropy, and therefore it must be “far away” from uniform. Hence,
we get a reduction to SD.

There are, of course, a few gaps to fill in. First, the distribution C defines is not necessarily flat.
This is solved in the classical case by taking many independent copies of the circuit C, which makes
the output distribution “close” to “nearly-flat.” A simple analysis shows that this flattening works also
in the quantum setting (this is Lemma 5.6). Also, we need to amplify the gap we have between t +1/2
and t−1/2 to a gap larger than d (the seed length). This, again, is solved by taking many independent
copies of C, given that S(C⊗q) = qS(C).
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This section is organized as follows. We first discuss quantum extractors. We then prove the quantum
flattening lemma, and prove that QEA≤QSD through the use of quantum extractors. Together with the
closure of QSZK under Boolean formulas, which is proved in Section 6, we have that QED∈QSZK. We
conclude this section with a proof that QSD≤ QED, using a simple quantum adaptation of the classical
proof.

5.1 Quantum extractors

Definition 5.1. A superoperator T : L(HN)→ L(HN) is a (k,d,ε) quantum extractor if:

• The superoperator T is 2d–regular.

• For every density matrix ρ ∈ L(HN) with H∞(ρ)≥ k, it holds that
∥∥T (ρ)− Ĩ

∥∥
tr ≤ ε .

We say T is explicit if T can be implemented by a quantum circuit of size polynomial in log(N). The
entropy loss of T is k +d− log(N).

In the classical world balanced extractors are closely related to expanders (see, e. g., [15]). This
generalizes to the quantum setting, as we now prove.

Lemma 5.2. Suppose T : L(HN) → L(HN) is a (N = 2n,D = 2d ,λ ) quantum expander. Then for
every t > 0, T is also a (k = n− t,d,ε) quantum extractor with ε = 2t/2 ·λ . The entropy loss of T is
k +d−n = d− t.

Proof. The superoperator T has a one-dimensional eigenspace W1 with eigenvalue 1, spanned by the
unit eigenvector v1 = 1√

N
I. Our input ρ is a density matrix, and therefore

〈ρ,v1〉=
1√
N

Tr(ρ) =
1√
N

.

In particular, ρ− Ĩ = ρ− 1√
N

v1 is perpendicular to W1. It follows that

||T (ρ)− Ĩ||22 = ||T (ρ− Ĩ)||22 ≤ λ
2||ρ− Ĩ||22 ≤ λ

2||ρ||22 ,

where we have used

||ρ− Ĩ||22 = ||ρ||22−2Tr(Ĩρ)+ ||Ĩ||22 = ||ρ||22−
1
N
≤ ||ρ||22 .

Given that H2(ρ) ≥ H∞(ρ) ≥ k = n− t we see that ||T (ρ)− Ĩ||22 ≤ λ
2
2−(n−t). By the Cauchy-

Schwartz inequality, it follows that∥∥T (ρ)− Ĩ
∥∥

tr ≤
√

N||T (ρ)− Ĩ||2 ≤ ε ,

which completes the proof.
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Corollary 5.3. For every n, t,ε ≥ 0 there exists an explicit (n− t,d,ε) quantum extractor T : L(H2n)→
L(H2n), where

1. d = 2(t +2log
( 1

ε

)
)+O(1) and the entropy loss is t +4log

( 1
ε

)
+O(1), or

2. d = t +2log
( 1

ε

)
+2log(n)+O(1) and the entropy loss is 2log(n)+2log

( 1
ε

)
+O(1).

The first bound on d is achieved using the Zig-Zag quantum expander of Theorem 4.6, and the second
bound is achieved using the explicit construction of Ambainis and Smith [6] cited in Theorem 1.3.

One natural generalization of Definition 5.1 is to superoperators of the form T : L(HN)→ L(HM)
where N = 2n is not necessarily equal to M = 2m. That is, such a superoperator T may map a large
Hilbert space HN to a much smaller Hilbert space HM. In the classical case this corresponds to hashing
a large universe {0,1}n to a much smaller universe {0,1}m. We suspect that unlike the classical case,
no non-trivial unbalanced quantum extractors exist when M < N/2. Specifically, we suspect that all
(k,d,ε) quantum extractors T : L(HN)→ L(HM) with k = n−1 and d < n−1 must have error ε close
to 1.

5.2 A flattening lemma

We first recall the classical flattening lemma that appears, e. g., in [41, Section 3.4.3].

Lemma 5.4. Let λ = (λ1, . . . ,λM) be a distribution, let q be a positive integer, and let ⊗qλ denote the
distribution composed of q independent copies of λ . Suppose that λi ≥ ∆ for all i. Then for every ε > 0,
the distribution ⊗qλ is ε-close to some distribution σ such that

H∞(σ)≥ qH(λ )−O

(
log
(

1
∆

)√
q log

(
1
ε

))
.

One can prove a similar lemma for density matrices.

Lemma 5.5. Let ρ be a density matrix whose eigenvalues are λ = (λ1, . . . ,λM) and let q a positive
integer. Suppose that for all i, λi ≥ ∆. Then for every ε > 0, ρ⊗q is ε-close to some density matrix σ

such that

H∞(σ)≥ qS(ρ)−O

(
log
(

1
∆

)√
q log

(
1
ε

))
.

Lemma 5.5 follows directly from Lemma 5.4 because S(ρ) = H(λ ) and the vector of eigenvalues of
ρ⊗q equals ⊗qλ .

We also need a way to deal with density matrices that may have arbitrarily small eigenvalues. This
is really just a technicality as extremely small eigenvalues hardly affect the von Neumann entropy.

Lemma 5.6. Let ρ be a density matrix of rank 2m, let ε > 0 and let q be a positive integer. Then ρ⊗q is
2ε-close to a density matrix σ , such that

H∞(σ)≥ qS(ρ)−O
(

m+ log
(q

ε

))√
q log

(
1
ε

)
.
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To prove this lemma, we will make use of the following fact [32, Box 11.2].

Fact 5.7 (Fannes’ inequality). Suppose ρ and σ are density matrices over a Hilbert space of dimension
d. Suppose further that the trace distance between them satisfies t = ‖ρ−σ ‖tr ≤ 1/e. Then

|S(ρ)−S(σ)| ≤ t(lnd− ln t) .

Proof of Lemma 5.6. Let ρ = ∑
2m

i=1 λi |vi〉〈vi| be the spectral decomposition of ρ . Let

A =
{

i λi <
ε

q2m

}
denote the set of indices of “light” eigenvalues and define ρ0 = ∑i 6∈A λi |vi〉〈vi|. Observe that∥∥∥∥ρ− ρ0

Tr(ρ0)

∥∥∥∥
tr
≤ ε

q
.

The eigenvalues of the density matrix ρ0/Tr(ρ0) are all at least ε

q2m . Hence, by Lemma 5.5, it holds that
(ρ0/Tr(ρ0))⊗q is ε-close to a density matrix σ such that

H∞(σ)≥ q ·S((ρ0/Tr(ρ0)))−O
(

m+ log
(q

ε

))√
q log

(
1
ε

)
.

Notice that ∥∥∥∥∥ρ
⊗q−

(
ρ0

Tr(ρ0)

)⊗q
∥∥∥∥∥

tr

≤ q
∥∥∥∥ρ− ρ0

Tr(ρ0)

∥∥∥∥
tr
≤ ε,

and therefore ‖ρ⊗q−σ ‖tr ≤ 2ε . By Fact 5.7,∣∣∣∣S( ρ0

Tr(ρ0)

)
−S(ρ)

∣∣∣∣≤ ε

q

(
m+ log

(q
ε

))
.

Thus,

H∞(σ)≥ q ·S(ρ)−O
(

m+ log
(q

ε

))√
q log

(
1
ε

)
,

which completes the proof.

5.3 QEA≤QSD

We follow the outline of the classical reduction described at the beginning of the section. Let (Q, t) be
an input to QEA, where Q is a quantum circuit with n input qubits and m output qubits. We consider the
circuit Q⊗q for q = poly(n) to be specified later, and we let E be a (qt,d,ε) quantum extractor operating
on qm qubits, where

d = q(m− t)+2log(1/ε)+ log(qm)+O(1),
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and where ε = 1/poly(n) is to be specified later. Such an extractor E exists by Corollary 5.3. We then
let ξ = E(τ⊗q

Q ) and Ĩ = 2−qmI, and take the output of the reduction to be (ξ , Ĩ).
To prove the correctness of the reduction, consider first a NO-instance (Q, t) ∈ QEAN . This implies

S(ξ )≤ S(τ⊗q
Q )+d ≤ q(t−0.5)+d .

We fix the parameters such that

q
2
≥ 2log

(1
ε

)
+ log(qm)+O(1) (5.1)

and then S(ξ )≤ qm−1. However, for any density matrix ρ over n qubits and ε > 0, if S(ρ)≤ (1− ε)n
then ∥∥∥∥ρ− 1

2n I
∥∥∥∥

tr
≥ ε− 1

2n .

It follows that ∥∥ξ − Ĩ
∥∥

tr ≥
1

qm
− 1

2qm , β

as required.
Now assume (Q, t) ∈ QEAY . By Lemma 5.6, τ

⊗q
Q is 2ε-close to a density matrix σ such that

H∞(σ) ≥ qS(ρ)−O
(

m+ log
(q

ε

))√
q log

(
1
ε

)

≥ q(t +
1
2
)−O

(
m+ log

(q
ε

))√
q log

(
1
ε

)
,

and
∥∥ξ − Ĩ

∥∥
tr ≤

∥∥E(σ)− Ĩ
∥∥

tr +2ε . We set the parameters such that H∞(σ) is larger than qt, that is,

q
2
≥ O

(
m+ log

(q
ε

))√
q log(1/ε) . (5.2)

Now, by the quantum extractor property we obtain
∥∥σ − Ĩ

∥∥
tr ≤ ε . Therefore,

∥∥ξ − Ĩ
∥∥

tr ≤ 3ε , α .
We set q and ε−1 large enough (but still polynomial in n, e. g., ε = Θ(m−10) and q = Θ(m4)) such that

the constraints (5.1) and (5.2) are satisfied and also that α ≤ β 2. Watrous [42] showed QSDα,β ∈QSZK
for these values of α,β .

5.4 QSD≤QED

Watrous [42] showed that QSDα,β is QSZK-complete, even with parameters α = w(n) and β = 1−w(n)
where n is the size of the input and w(n) is a function smaller than any inverse polynomial in n. Assume
we are given an input to QSDα,β , namely, two quantum circuits Q0,Q1, and construct quantum circuits
Z0 and Z1 as follows. The circuit Z1 outputs 1

2 |0〉〈0|⊗τQ0 + 1
2 |1〉〈1|⊗τQ1 , and the circuit Z0 is the same

as Z1 except that the first register is traced out. The output of Z0 is therefore 1
2 τQ0 + 1

2 τQ1 .
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First consider the case where τQ0 and τQ1 are α close to each other, i. e., Q0 and Q1 produce almost
the same mixed state. In this case τZ0 ≈ τQ0 whereas τZ1 ≈ 1

2(|0〉〈0|+ |1〉〈1|)⊗τQ0 , and therefore τZ1 has
about one bit of entropy more than τZ0 . On the other hand, when τQ0 and τQ1 are very far from each other,
τZ0 = 1

2 τQ0 + 1
2 τQ1 contains about the same amount of entropy as τZ1 = 1

2 |0〉〈0|⊗ τQ0 + 1
2 |1〉〈1|⊗ τQ1 .

Formally, to estimate the entropy of τZ1 one can use the joint-entropy theorem (see [32, Theorem
11.8]) to get that S(τZ1) = 1+ 1

2(S(τQ0)+S(τQ1)). When τQ0 and τQ1 are α close to each other, Fannes’
inequality (Fact 5.7) tells us that S(τZ0) is close to 1

2(S(τQ0)+ S(τQ1)) ≤ S(τZ1)− 0.9. When τQ0 and
τQ1 are β far from each other, there exists a measurement that distinguishes the two with probability
(1+β )/2, so by [5, Lemma 3.2] we have

S(τZ0)≥
1
2
[S(τQ0)+S(τQ1)]+

(
1−H

(
1+β

2

))
≥ S(τZ1)−0.1 .

The reduction from QSDα,β to QED is therefore as follows. Given an input (Q0,Q1) to QSDα,β

we reduce it to the pair of circuits (O0 = Z0⊗ Z0⊗C,O1 = Z1⊗ Z1) where C outputs a qubit in the
completely mixed state. If (Q0,Q1) ∈ (QSDα,β )Y then

S(τO0) = S(τZ0⊗Z0⊗C) = 2S(τZ0)+1≤ 2S(τZ1)−0.8 < S(τO1) ,

whereas if (Q0,Q1) ∈ (QSDα,β )N then

S(τO0) = S(τZ0⊗Z0⊗C) = 2S(τZ0)+1≥ 2S(τZ1)+0.8 = S(τO1)+0.8 .

6 Closure under Boolean formulas

We have observed that one can express QED as a formula in QEA, namely,

QED(Q0,Q1) =
max{out1,out2}∨

t=1

[((Q0, t) ∈ QEAY )∧ ((Q1, t) ∈ QEAN)] ,

where outi is the number of output qubits of Qi. In the classical setting it is known that SZK is closed
under Boolean formulas. We now briefly explain why the same holds for QSZK, and refer the reader
to [38] for further details. We first define what closure under Boolean formulas means. For a promise
problem Π, the characteristic function of Π is the map χΠ : {0,1}∗→{0,1,?} given by

χΠ(x) =


1 if x ∈ΠY ,

0 if x ∈ΠN ,

? otherwise.

THEORY OF COMPUTING, Volume 6 (2010), pp. 47–79 72

http://dx.doi.org/10.4086/toc


QUANTUM EXPANDERS: MOTIVATION AND CONSTRUCTIONS

A partial assignment to variables v1, . . . ,vk is a k-tuple a = (a1, . . . ,ak) ∈ {0,1,?}k. For a propositional
formula φ on variables v1, . . . ,vk the evaluation φ(a) is recursively defined as follows:

vi(a) = ai , (¬φ)(a) =


1 if φ(a) = 0,

0 if φ(a) = 1,

? otherwise,

(φ ∧ψ)(a) =


1 if φ(a) = 1 and ψ(a) = 1,

0 if φ(a) = 0 or ψ(a) = 0,

? otherwise,

(φ ∨ψ)(a) =


1 if φ(a) = 1 or ψ(a) = 1,

0 if φ(a) = 0 and ψ(a) = 0,

? otherwise.

Notice that, e. g., 0∧? = 0 even though one of the inputs is “undefined” in Π. This is because one has
the evaluation a∧ 0 = 0, irrespective of the value of a. For any promise problem Π, we define a new
promise problem Φ(Π), with m instances of Π as input, as follows:

Φ(Π)Y = {(φ ,x1, . . . ,xm) | φ(χΠ(x1), . . . ,χΠ(xm)) = 1} ,
Φ(Π)N = {(φ ,x1, . . . ,xm) | φ(χΠ(x1), . . . ,χΠ(xm)) = 0} .

If one can solve Φ(Π) then one can solve any Boolean formula over Π.

Theorem 6.1. For any promise problem Π ∈ QSZK we have Φ(Π) ∈ QSZK.

The proof is identical to the classical proof in [38] except for straightforward adaptations (replacing
the variational distance with the trace distance, using the closure of QSZK under complement, using the
polarization lemma for QSD, etc.) and we sketch it here for completeness.

Proof. As QSD is QSZK-complete, Π reduces to QSD, inducing a reduction from Φ(Π) to Φ(QSD).
Thus, it suffice to show that Φ(QSD) reduces to QSD. Toward this end, let w =(φ ,(X1

0 ,X1
1 ), . . . ,(Xm

0 ,Xm
1 ))

be an instance of Φ(QSD). By applying De Morgan’s Laws, we may assume that the only negations in
φ are applied directly to the variables. (Note that De Morgan’s Laws still hold in our extended Boolean
algebra.) By the polarization lemma [42] and by the closure of QSZK under complementation [42], we
can construct pairs of circuits (Y 1

0 ,Y 1
1 ), . . . ,(Y m

0 ,Y m
1 ) and (Z1

0 ,Z
1
1), . . . ,(Z

m
0 ,Zm

1 ) in polynomial time such
that:

(X i
0,X

i
1) ∈ QSDY ⇒

∥∥∥τY i
0
− τY i

1

∥∥∥
tr
≥ 1− 1

3|φ |
and

∥∥∥τZi
0
− τZi

1

∥∥∥
tr
≤ 1

3|φ |
,

(X i
0,X

i
1) ∈ QSDN ⇒

∥∥∥τY i
0
− τY i

1

∥∥∥
tr
≤ 1

3|φ |
and

∥∥∥τZi
0
− τZi

1

∥∥∥
tr
≥ 1− 1

3|φ |
.

The reduction outputs the pair of circuits (BuildCircuit(φ ,0),BuildCircuit(φ ,1)), where BuildCircuit is
described by the following recursive procedure:
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BuildCircuit(ψ,b)
1. If ψ = vi, output Y i

b.

2. if ψ = ¬vi, output Zi
b.

3. If ψ = ζ ∨µ , output BuildCircuit(ζ ,b)⊗BuildCircuit(µ,b).

4. If ψ = ζ ∧µ , output

1
2
(BuildCircuit(ζ ,0)⊗BuildCircuit(µ,b))+

1
2
(BuildCircuit(ζ ,1)⊗BuildCircuit(µ,1−b)) .

Notice that the number of recursive calls equals the number of sub-formula of φ , and therefore the
procedure runs in time polynomial in |ψ| and |X j

i |, i. e., polynomial in its input length.
We now turn to proving the correctness of this reduction. The correctness will follow from the claim

below, wherein we define

∆(ζ ) =
1
2

∥∥∥(BuildCircuit(ζ ,0)−BuildCircuit(ζ ,1)) |0〉
∥∥∥

tr

for each sub-formula ζ of φ .

Claim 6.2. Let a = (χQSD(X1
0 ,X1

1 ), . . . ,χQSD(Xm
0 ,Xm

1 )). For every sub-formula ψ of φ , we have:

ψ(a) = 1 ⇒ ∆(ψ)≥ 1− |ψ|
3|φ |

,

ψ(a) = 0 ⇒ ∆(ψ)≤ |ψ|
3|φ |

.

Proof. The proof is by induction on the sub-formulas ψ of φ , and we note that it clearly holds for atomic
sub-formulas. The remaining two cases are as follows.

Case 1: ψ = ζ ∨ µ . If ψ(a) = 1 then either ζ (a) = 1 or µ(a) = 1. Without loss of generality assume
ζ (a) = 1. In this case we have for any i∈ {0,1} that BuildCircuit(ζ , i) = E(BuildCircuit(ψ, i)), where E

is the quantum operation tracing out the registers associated with the µ sub-formula. Thus, by induction,

∆(ψ)≥ ∆(ζ )≥ 1− |ζ |
3|φ |

≥ 1− |ψ|
3|φ |

.

If ψ(a) = 0, then both ζ (a) = µ(a) = 0.
Using

‖ρ0⊗ρ1−σ0⊗σ1 ‖tr ≤ ‖ρ0⊗ρ1−σ0⊗ρ1 ‖tr +‖σ0⊗ρ1−σ0⊗σ1 ‖tr

= ‖ρ0−σ0 ‖tr +‖ρ1−σ1 ‖tr ,

we obtain

∆(ψ)≤ ∆(ζ )+∆(µ)≤ |ζ |
3|φ |

+
|µ|
3|φ |

≤ |ψ|
3|φ |

.
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Case 2: ψ = ζ ∧µ . Using

1
2

∥∥∥∥ 1
2
[ρ0⊗σ0 +ρ1⊗σ1]−

1
2
[ρ0⊗σ1 +ρ1⊗σ0]

∥∥∥∥
tr

=
1
4
‖(ρ0−ρ1)⊗ (σ0−σ1)‖tr =

1
4
‖ρ0−ρ1 ‖tr ‖σ0−σ1 ‖tr ,

we obtain ∆(ψ) = ∆(ζ ) ·∆(µ). If ψ(a) = 1, then, by induction,

∆(ψ)≥
(

1− |ζ |
3|φ |

)(
1− |µ|

3|φ |

)
> 1− |ζ |+ |µ|

3|φ |
≥ 1− |ψ|

3|φ |
.

If ψ(a) = 0, then, without loss of generality, we may assume ζ (a) = 0. By induction we have

∆(ψ) = ∆(ζ ) ·∆(µ)≤ ∆(ζ )≤ |ζ |
3|φ |

≤ |ψ|
3|φ |

.

Thus, the claim has been proved.

Let Ab = BuildCircuit(φ ,b). By the above claim, if w ∈ Φ(QSD)Y then ‖τA0− τA1 ‖tr ≥ 2/3 and if
w ∈Φ(QSD)N then ‖τA0− τA1 ‖tr ≤ 1/3. This completes the proof of the theorem.
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