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Abstract

Most of the research on quantum error correction studies an error model in which each qubit is
affected by noise, independently of the other qubits. In this paper we study a different noise model – one
in which the noise may be correlated with the qubits it acts upon.

We show both positive and negative results. On the one hand, we show controlled-X errors cannot
be perfectly corrected, yet can be approximately corrected with sub-constant approximation error. On
the other hand, we show that no non-trivial quantum error correcting code can approximately correct
controlled phase error with sub-constant approximation error.

1 Introduction

One of the reasons for studying quantum error-correcting codes (QECCs) is that they serve as build-
ing blocks for fault-tolerant computation, and so might serve one day as central components in an ac-
tual implementation of a quantum computer. Much work was done trying to determine the threshold er-
ror, beyond which independent noise1 can be dealt with by fault-tolerant mechanisms (see the Ph.D. the-
ses [Rei06, Ali07] and references therein).

A few years ago there was some debate whether the independent noise model is indeed a realistic noise
model for quantum computation or not (see, e.g., [ALZ06]). This question should probably be answered
by physicists, and the answer to that is most likely dependent on the actual realization chosen. Yet, while
the physicists try to build actual machines, and the theorists try to deal with higher independent noise, it
also makes sense to try and extend the qualitative types of errors that can be dealt with. The results in this
paper are both optimistic and pessimistic. On the one hand, we show there are noise models that can be
approximately corrected but not perfectly corrected, but on the other hand, there is simple correlated noise
that cannot even be approximately corrected. It might be interesting to reach a better understanding of what
can be approximately corrected. Also, it might be interesting to come up with other relaxations of quantum
error correction that deal better with correlated noise.

1.1 Stochastic vs. Adversarial noise

The basic problem we deal with is that of encoding a message such that it can be recovered after being
transmitted over a noisy channel. Classically, there are two natural error models: Shannon’s independent
noise model and Hamming’s adversarial noise model. For example, a typical noise model that is dealt with
in Shannon’s theory, is one where each bit of the transmitted message is flipped with independent probability
p, whereas a typical noise model in Hamming’s theory is one where the adversary looks at the transmitted
message and chooses at most t bits to flip. We stress that the classical adversarial noise model allows the
adversary to decide which noise operator to apply based on the specific codeword it acts upon.
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Remarkably, there are classical error correcting codes that solve the problem in the adversarial noise
model, which are almost as powerful as the best error correcting codes that solve the problem in the inde-
pendent noise model. For instance, roughly speaking, any code in the independent noise model must satisfy
r ≤ 1 − H(p), where r is the rate of the code, p is the noise rate. In the adversarial noise model, the
Gilbert-Varshamov bound shows there are codes with rate r = 1−H(δ) and relative distance δ, though one
can uniquely correct only up to half the distance.2

1.2 The quantum case

Let us now consider quantum error correcting codes (QECCs). The standard definition of such codes limits
the noise to a linear combination of operators, each acting on at most t qubits. A standard argument then
shows that a noise operator that acts on n qubits, such that it acts independently on each qubit with probabil-
ity p = t/n, is very close to a linear combination of error operators that act on only, roughly, t qubits. Thus,
any quantum error correcting code (QECC) that corrects all errors on at most t qubits, also approximately
corrects independent noise with noise rate about t/n. Therefore, the standard definition of QECCs works
well with independent noise.

As we said before, the classical adversarial noise model allows the adversary to decide which noise
operator to apply based on the specific codeword it acts upon. In the quantum model this amounts to, say,
applying a single bit-flip operator based on the specific basis element we are given, or, in quantum computing
terminology, applying a controlled bit-flip. Controlled bit-flips are limited (in that they apply only a single
X operator) highly correlated (in that they depend on all the qubits of the input) operators. Can QECC
correct controlled bit-flip errors? Can QECC approximately correct such errors?

1.3 Correcting controlled bit flip errors

Before we proceed, let us first see that a QECC that corrects one qubit error in the standard sense may
fail for controlled bit flip errors. Assume we have a quantum code of dimension |C| that is spanned by
|C| orthogonal codewords {φi}, and can correct any noise operator from E that is applied on any vector
φ ∈ {φi}. Specifically, for any noise operator E ∈ E , the quantum decoding algorithm maps a noisy
word φ′i = Eφi to a product state φi ⊗ |synd(E)〉, where synd(E) is the error-syndrome associated with
E. Notice that synd(E) depends on E alone and not on φi. Then, we can correct errors applied on any
state in the vector space spanned by the basis vectors {φi}. To see that, notice that if we start with some
linear combination

∑k
i=1 αiφi and we apply the error E on it, then the corrupted word is

∑k
i=1 αiEφi,

and applying the decoding procedure we get the state (
∑k

i=1 αiφi)⊗ |synd(E)〉. Tracing out the syndrome
register we recover the original state. This property, however, breaks down for controlled bit flip errors,
where the error may depend on the specific codeword φi. In that case the corrupted word is

∑k
i=1 αiEiφi.

If we use the same decoding procedure, and the decoded word is
∑k

i=1 αiφi ⊗ |synd(Ei)〉 and if we trace
out the syndrome register we end up with a state different then the original state.

The above argument shows that if we allow controlled bit-flip errors, then the environment may get
information about the codeword, and thus corrupt it. This, by itself, is not yet an impossibility proof, as
it is possible that one can find a code that is immune to controlled bit-flip errors. Unfortunately, an easy
argument shows that there is no non-trivial QECC that perfectly corrects such errors (see Theorem 3.1).
Therefore, while there are asymptotically good QECC in the standard error model, there are no non-trivial
QECC correcting controlled single bit-flip errors.

1.4 Approximate error-correction

Summarizing the discussion above, we saw that no QECC can perfectly correct controlled bit-flip errors.
We now ask whether this also holds when we relax the perfect decoding requirement and only require

2If we allow list-decoding, then almost up to 1− r noise rate can be corrected.
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approximate decoding. Namely, suppose we only require that for any codeword φ and any allowed error E,
decoding Eφ results in a state close to φ. Can we then correct controlled bit-flip errors?

Somewhat surprisingly we show a positive answer to this question. That is, we show a QECC of arbi-
trarily high dimension, that can correct any controlled bit-flip error with sub-constant approximation-error
(see Theorem 4.2 for a formal statement). This, in particular, shows that there are error models that cannot
be perfectly decoded, yet can be approximately decoded. For the proof, we find a large dimension vector
space containing only low-sensitive functions.

Having that we increase our expectations and ask whether one can approximately correct, say, any con-
trolled single-qubit error. However, here we show a negative result. We show that no non-trivial QECC can
correct controlled phase-errors with only sub-constant approximation error (see Theorem 5.1 for a formal
statement). Namely, no non-trivial QECC can handle, even approximately, correlated noise, if the control is
in the standard basis and the error is in the phase.

2 Preliminaries

2.1 Quantum error-correcting codes

Let N denote the Hilbert space of dimension 2n. M is a [n, k] quantum error correcting code (QECC) if it
is a subspace of N of dimension K ≥ 2k. We call n the length of code, and K the dimension of the code.
For two Hilbert spaces N ,N ′, L(N ,N ′) denotes the set of linear operators from N to N ′.

Definition 2.1. A code M corrects E ⊂ L(N ,N ′) if for any two operators X, Y ∈ E and any two code-
words φ1, φ2 ∈M, if φ∗1φ2 = 0 then (Xφ1)∗(Y φ2) = 0.

Fact 2.1 ([KSV02, Section 15.5]). A code M corrects E if for any X, Y ∈ E , defining E = X∗Y , there
exists a constant c(E) ∈ C, such that for any two codewords φ1, φ2 ∈M,

φ∗1Eφ2 = c(E) · φ∗1φ2.

A QECC M corrects t errors if it corrects all linear operators that correlate the environment with at
most t qubits. There are asymptotically good QECCs, i.e., [n, k] QECCs that correct t = Ω(n) errors with
n = O(k) [ALT01].

2.2 Boolean functions

The influence of a variable xi on a boolean function f : {0, 1}n → {0, 1} is defined to be

Pr
x∈{0,1}n

[f(x) 6= f(x⊕ ei)],

where ei ∈ Rn is the i’th vector in the standard basis. The influence of a function is the maximum influence
of its variables. Ben-Or and Linial [BL85] showed that there exists a balanced function Tribes : {0, 1}n →
{0, 1} with influence as small as O( log n

n ), and Kahn, Kalai and Linial [KKL88] showed that this bound is
tight for balanced functions. We extend this notion to complex valued functions. For g : {0, 1}n → C let

Ii(g) = Ex∈{0,1}n |g(x)− g(x⊕ ei)|2

and I(g) = maxi∈[n] Ii(g).
We identify a function g : {0, 1}n → C with the vector

∑
x∈{0,1}n g(x) |x〉. When we write g we refer

to it as a vector in N . When we write g(x) we refer to g as a function g : {0, 1}n → C and g(x) ∈ C.
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3 No QECC can perfectly correct controlled bit flips

We now concentrate on the error model that allows any controlled bit flip error. Formally, for i ∈ [n] and
S ⊆ {0, 1}n−1 let Ei,S be the operator that applies X on the i’th qubit conditioned on the other qubits being
in S. More precisely, we define the operator Ei,S on the basis {|x〉 |x ∈ {0, 1}n} and extend it linearly. For
x ∈ {0, 1}n define x̂i = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ {0, 1}n−1. Also, let Xi ∈ L(N ,N ) denote the
operator that flips the i’th qubit, i.e., Xi = I⊗(i−1) ⊗X ⊗ I⊗(n−i). Then

Ei,S |x〉 =
{

Xi |x〉 if x̂i ∈ S
|x〉 otherwise.

Let
Ecbit

def=
{

Ei,S | i ∈ [n], S ⊆ {0, 1}n−1
}

.

We also define a tiny subset Esingeltons of Ecbit by

Esingeltons
def=

{
Ei,{j} | i ∈ [n], j ∈ {0, 1}n−1

}
.

We claim that even this set of errors cannot be corrected.

Theorem 3.1. There is no QECC with dimension bigger than one that can correct Esingeltons.

Proof: Suppose there exists a [n, k] code with k ≥ 1 that corrects Esingeltons. Let φ =
∑

i∈{0,1}n φ(i) |i〉
and ψ =

∑
i∈{0,1}n ψ(i) |i〉 be two orthonormal codewords. We will prove that:

Claim. For every i ∈ [n] and every q ∈ {0, 1}n it holds that φ(q) = φ(q ⊕ ei).

In particular, it follows that φ = α ·∑i∈{0,1}n |i〉 for some 0 6= α ∈ C. Similarly, ψ = α′ ·∑i∈{0,1}n |i〉
for some 0 6= α′ ∈ C. Therefore, φ∗ψ = 2nα∗α′ 6= 0. A contradiction.

We now prove the claim. Fix i ∈ [n] and q ∈ {0, 1}n. Denote E = Ei,{q} and q′ = q ⊕ ei. It can be
verified that

φ∗Eφ = φ∗φ− |φ(q)− φ(q′)|2 = 1− |φ(q)− φ(q′)|2
ψ∗Eψ = ψ∗ψ − |ψ(q)− ψ(q′)|2 = 1− |ψ(q)− ψ(q′)|2
ψ∗Eφ = −(φ(q)− φ(q′))∗(ψ(q)− ψ(q′))

As φ∗ψ = 0, by the QECC definition, ψ∗Eφ = 0 and so (φ(q) − φ(q′))∗(ψ(q) − ψ(q′)) = 0. If
φ(q) 6= φ(q′) we conclude that ψ(q) = ψ(q′). But then, φ∗Eφ < 1 while ψ∗Eψ = 1, which contradicts
Fact 2.1. Therefore, φ(q) = φ(q′).

The argument above shows that for any w, w′ ∈ {0, 1}n and any codeword φ, φ(w) = φ(w′), by
employing a sequence of small changes, and showing that φ is invariant under these small changes. However,
if we replace the stringent notion perfect decoding with the more relaxed notion of approximate decoding,
then at least theoretically it is possible that under this weaker notion, controlled bit flips can be corrected.
Somewhat surprisingly, this is indeed the case.

4 An approximate QECC for controlled bit flips

We first define a relaxed notion of error-detection. We say a code separates E if for any two allowed errors
X, Y ∈ E and any two orthogonal codewords φ, ψ, Xφ and Y ψ are far away from each other. Formally,

Definition 4.1. Let M ⊆ N be an [n, k] QECC and E ⊂ L(N ,N ′). We say M separates E with at
most α error, if for any two operators X,Y ∈ E and any two unit vectors φ1, φ2 ∈ M, if φ∗1φ2 = 0 then
|φ∗1X∗Y φ2| ≤ α.
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We say a code M approximately corrects E if there exists a POVM on N ′ such that for any operator
X ∈ E , and any codeword φ ∈ M, when we apply the POVM on Xφ, the resulting mixed state is close to
the pure state φ. A very special case of the above is when the decoding procedure is the identity function. In
this case we say M is (E , ε) immune. Formally,

Definition 4.2. Let M ⊆ N be an [n, k] QECC and E ⊂ L(N ,N ′). We say M is (E , ε) immune if for
every X ∈ E and every φ ∈M, |φ∗Xφ| ≥ (1− ε)|φ∗φ|. We call ε the approximation error.

We saw before that there is no non-trivial QECC that perfectly corrects Ecbit. In contrast, we will now
construct a large QECC that is immune against Ecbit, with sub-constant approximation error.

4.1 The construction

The calculations done in Section 3 can be generalized to show that if we want φ to be ε-immune for bit flip
errors, then φ(x) must have low influence. However, we also want the QECC to have a large dimension,
and so we want many orthogonal such vectors. The idea is to work with a function f of low influence, and
combine it on many independent blocks.

Pick an integer B such that 2B divides n, and define n′ = n
2B . Fix a balanced function f : {0, 1}n′ →{±1

2

}
with low influence, i.e., I(f) ≤ s = s(n′). We remind the reader that this means that for all j in [n′],

Ij(f) = E
x∈{0,1}n′ |f(x)− f(x⊕ ej)|2 ≤ s (see Section 2). Notice that this implies that for all j ∈ [n′],

Pr
w∈{0,1}n′

[f(w) 6= f(w ⊕ ej)] ≤ s. (1)

We use the low-influence function f as a building block.
Now partition [n] into 2B blocks of equal length n′. For x ∈ {0, 1}n, i ∈ {1, . . . , B} and b ∈ {0, 1},

let xi,b ∈ {0, 1}n′ denote the value of x restricted to the (2i − 1 + b)’th block, i.e., the string x is the
concatenation of the blocks x1,0, x1,1, x2,0, x2,1, x3,0, . . . , xB,0, xB,1. For z = (z1, . . . , zB) ∈ {0, 1}B we
define a function fz : {0, 1}n → C that apply f on the blocks corresponding to z. That is,

fz(x) = f(x1,z1) · . . . · f(xB,zB
),

as shown in Figure 1.

Figure 1: The input is B pairs
of blocks, each block is of length
n′. The values z1, . . . , zB ∈
{0, 1}B determine on which
block in each pair f is applied.
In the example, z1 = 0 while
zB = 1. The output is the prod-
uct of the B values.

As usual we look at fz as a vector in N . We let W = Span
{

fz : z ∈ {0, 1}B
}

. We claim:

Theorem 4.1. W is an [n,B] QECC that is (Ecbit, 2s(n′)) immune.

In particular, taking f(w) = 1
2 when Tribes(w) = 1 and f(w) = −1

2 when Tribes(w) = 0, we get:
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Theorem 4.2. For every 0 < B = B(n) < n there exists an [n,B] QECC that is (Ecbit, ε = O(B log n
n ))

immune.

In particular, there exists QECCs of length n and dimension 2
√

n that approximately corrects all controlled-
X errors with an O( log(n)√

n
) approximation error.

4.2 The analysis

We first show that dimW = B. This immediately follows from:

Claim. {fz}z∈{0,1}B is an orthogonal set.

Proof: We will show that for z 6= z′, f∗z fz′ = 0. For that, it is enough to show that {(fz(x), fz′(x))}x∈{0,1}n

is uniform over
{±2−B

}× {±2−B
}

.
To see that, first notice that f(x1,i1) is balanced over

{±1
2

}
. Hence, {fz(x)}x∈{0,1}n is uniform over{±2−B

}
. Also, as z 6= z′ there exists some k such that zk 6= z′k. Notice that f(xk,zk

) depends on bits
that do not influence fz′(x), hence it is independent of fz′(x). It is also uniform on

{±1
2

}
. Hence the pair

(fz(x), fz′(x)) is uniform over (±2−B,±2−B) as desired.

We now analyze the approximation error. We will use the following lemmas:

Lemma 4.3. For every φ ∈ N and every i ∈ [n], S ⊆ {0, 1}n−1,

|φ∗Ei,Sφ− φ∗φ| ≤ 2n−1Ii(φ).

Lemma 4.4. For every φ ∈ W ,
2n−1I(φ) ≤ 2s · |φ∗φ|.

These lemmas together imply Theorem 4.1. Notice that in Lemma 4.4 we had to prove the claim for
every φ ∈ W and not just for some basis of W (see the discussion in the introduction).

Proof of Lemma 4.3: For every g, h : {0, 1}n → C and every i ∈ [n], S ⊆ {0, 1}n−1,

h∗Ei,Sg =
∑

x:x̂i 6∈S

h(x)∗g(x) +
∑

x:x̂i∈S

h(x)∗g(x⊕ ei)

=
∑

x∈{0,1}n

h(x)∗g(x) +
∑

x:x̂i∈S

[h(x)∗g(x⊕ ei)− h(x)∗g(x)].

Now, fix i. For y ∈ {0, 1}n−1 and b ∈ {0, 1} let (y, b) denote the string x ∈ {0, 1}n such that x̂i = y
and xi = b. Then,

|h∗Ei,Sg − h∗g| =

∣∣∣∣∣∣
∑

y∈S

(h(y, 0)∗ − h(y, 1)∗)(g(y, 0)− g(y, 1))

∣∣∣∣∣∣

≤
√∑

y∈S

|h(y, 0)∗ − h(y, 1)∗|2
√∑

y∈S

|g(y, 0)− g(y, 1)|2

≤
√ ∑

y∈{0,1}n−1

|h(y, 0)∗ − h(y, 1)∗|2
√ ∑

y∈{0,1}n−1

|g(y, 0)− g(y, 1)|2

=
√

2n−1Ii(h)
√

2n−1Ii(g)

6



We now turn to Lemma 4.4. One can check that all elements in {fz} have low influence. However, this
by itself does not imply that all elements in W are so. So we verify this directly.

Proof of Lemma 4.4: We want to show that any φ ∈ W has low influence. Fix i ∈ [n] and suppose that i
corresponds the j’th variable in the (k, b)’th block. For x ∈ {0, 1}n let x = (x(1), x(2)) where x(2) = xk,b

and x(1) ∈ {0, 1}n−n′ is the rest of x. Let f̂z : {0, 1}n → C be

f̂z(x) = f(x1,z1) · . . . f(xk−1,zk−1
) · f(xk+1,zk+1

) · . . . f(xB,zB
).

Notice that f̂z(x(1), x(2)) depends only on x(1). For that reason we also write it as f̂z(x(1)).
We are given φ ∈ W and express it as φ =

∑
z αzfz . We want to bound

Ii(φ) = Ex∈{0,1}n |φ(x)− φ(x⊕ ei)|2

= Ex∈{0,1}n

∣∣∣∣∣
∑

z

αz(fz(x)− fz(x⊕ ei))

∣∣∣∣∣
2

.

The functions fz for which fz(x) = fz(x ⊕ ei) do not contribute to the sum. We can therefore define
ζ =

∑
z:zk=b αzfz and it follows that Ii(φ) = Ii(ζ). Then,

2n−1Ii(ζ) =
1
2

∑

x∈{0,1}n

∣∣∣∣∣∣
∑

z:zk=b

αz(fz(x)− fz(x⊕ ei))

∣∣∣∣∣∣

2

=
1
2

∑

(x(1),x(2))∈{0,1}n

∣∣∣∣∣∣
∑

z:zk=b

αz f̂z(x(1))(f(x(2))− f(x(2) ⊕ ej))

∣∣∣∣∣∣

2

=
1
2

∑

(x(1),x(2))∈{0,1}n

|f(x(2))− f(x(2) ⊕ ej)|2 ·
∣∣∣∣∣∣

∑

z:zk=b

αz f̂z(x(1))

∣∣∣∣∣∣

2

.

Next, observe that the only terms that contribute non-zero values are those x = (x(1), x(2)) where
f(x(2)) 6= f(x(2) ⊕ ej). There are at most s2n′ such strings x(2) (see Equation (1)). Also, each such term
contributes |∑z:zk=b αz f̂z(x(1))|2. However,

|ζ(x(1), x(2))|2 =
∣∣∣

∑

z:zk=b

αzfz(x(1), x(2))
∣∣∣
2

=
∣∣∣

∑

z:zk=b

αz f̂z(x(1))f(x(2))
∣∣∣
2

=
∣∣f(x(2))

∣∣2 ·
∣∣∣

∑

z:zk=b

αz f̂z(x(1))
∣∣∣
2

=
1
4

∣∣∣
∑

z:zk=b

αz f̂z(x(1))
∣∣∣
2
.

Thus, the term |ζ(x(1), x(2))|2 depends only on x(1) and not on x(2), and we denote it by |ζ(x(1))|2.
Denote ζ̂ =

∑
z:zk=b αz f̂z . Notice that

∑
x(1) |ζ(x(1))|2 = |ζ̂ ∗ζ̂|. Also, because ζ(x(1), x(2)) does not

depend on x(2), |ζ∗ζ| = 2n′ |ζ̂ ∗ζ̂|. Altogether,

2n−1Ii(ζ) =
1
2

∑
x1

s2n′4|ζ(x1)|2 = 2s · 2n′ |ζ̂ ∗ζ̂| = 2s|ζ∗ζ|.

Finally, ζ =
∑

z:zk=b αzfz is a linear combination of orthogonal functions {fz} and |f∗z fz| = 2n−2B .
Thus,

|ζ∗ζ| =
∑

z:zk=b

|αz|22n−2B ≤ 2n−2B
∑

z

|αz|2 = |φ∗φ|,

which completes the proof.
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5 No approximate QECC can correct controlled phase errors

So far we have seen that one can approximately correct controlled-X errors with a sub-constant approxima-
tion error. We now show there is no way to correct controlled-phase errors. The reason is that if φ and ψ
are two orthogonal codewords, then by applying controlled phase errors we can match the phase of φ and
ψ on any basis vector |x〉, and this implies that |φ∗Xψ| is about

∑
x |φ(x)| · |ψ(x)| which leads to a simple

contradiction.
We now formally define our error model. As before, the error operators are linear and hence it is

sufficient to define them on the standard basis {|x〉}x∈{0,1}n . We define the error operators ES,θ, for S ⊆
{0, 1}n and θ ∈ [2π] by:

ES,θ |x〉 =
{

eθi |x〉 if x ∈ S
|x〉 otherwise.

In fact, we do not even need to allow any controlled phase error, and we can be satisfied with θ ∈{
0, π

4 , π
2

}
. Set,

Ecphase =
{

ES,θ | S ⊆ {0, 1}n, θ ∈
{

0,
π

4
,
π

2

}}
.

We now prove that such errors cannot be approximately corrected, even for some fixed constant error.
In fact, we prove that such errors cannot even be separated.

Theorem 5.1. There is no two-dimensional QECC that separates Ecphase with at most α = 1
10 error.

Proof: Assume M be a 2-dimensional QECC that separates Ecphase with at most α error.

Lemma 5.2. LetM⊆ N be a vector space of dimension greater than one. Then there are two orthonormal
vectors φ, ψ ∈M such that

∑
x |φ(x)| · |ψ(x)| ≥ 1

2 .

We postpone the proof for later. Fix φ and ψ as in the lemma. Notice that by ranging over all X, Y ∈
Ecphase, we can implement any operator E that partitions {0, 1}n to four sets, and based on the set does a
phase shift of angle 0, π

4 , π
2 or 3π

4 . More precisely: for a partition S = (S1, . . . , S`) of {0, 1}n and for a
tuple of angles Θ = (θ1, . . . , θ`) ⊆ [2π]` define ES,Θ by ES,Θ |x〉 = eθji |x〉, where j is such that x ∈ Sj .

Let Θk =
(
0, 1

2k π, . . . , (2k−1)
2k π

)
and

Ecphasek =
{

ES,Θk
| S = (S1, . . . , S2k) is a partition of {0, 1}n

}
.

Then, by ranging over all X, Y ∈ Ecphase we range over all E ∈ Ecphase2. We claim:

Lemma 5.3. Let k ≥ 1 and ε = 2−kπ. For every φ, ψ ∈ N there exists E ∈ Ecphasek such that

|φ∗Eψ| ≥ (1− ε)
∑

x

|φ(x)| · |ψ(x)|.

Thus, in particular for the φ and ψ we fixed before (and setting k = 2, ε = π
4 ):

α ≥ |φ∗Xψ| ≥ 1− ε

2
>

1
10

.

We are left to prove the two lemmas:
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Proof of Lemma 5.2: Let φ, ψ ∈ M be arbitrary orthonormal vectors. Let φ′ = 1√
2
(φ + ψ) and ψ′ =

1√
2
(φ− ψ). Then

∑
x

|φ′(x)| · |ψ′(x)| =
1
2

∑
x

|φ(x) + ψ(x)| · |φ(x)− ψ(x)|.

Fix some x ∈ {0, 1}n. Denote a = φ(x), b = ψ(x), a, b ∈ C and assume |a| ≥ |b|. Then,

|(a + b)(a− b)| = |a2 − b2| ≥ |a|2 − |b|2 = (|a| − |b|)(|a|+ |b|)
≥ (|a| − |b|)2 = |a|2 + |b|2 − 2|a| · |b|.

Therefore,

∑
x

|φ′(x)| · |ψ′(x)| ≥ 1
2

∑
x

(|φ(x)|2 + |ψ(x)|2)−
∑

x

|φ(x)| · |ψ(x)| = 1−
∑

x

|φ(x)| · |ψ(x)|.

Thus, either
∑

x |φ(x)| · |ψ(x)| or
∑

x |φ′(x)| · |ψ′(x)| is at least half.

Proof of Lemma 5.3: Express φ(x) = rx · eθxi with rx = |φ(x)| ∈ R+ and θx ∈ [2π]. Similarly,
ψ(x) = r′x · eθ′xi. The partition S = (S1, . . . , S2k) is defined as follows. For every x we look at
minj {|θ′x + θj − θx|}. Any x is chosen to be in Sj′ according to the j′ that minimizes the above expression
for that x. Note that the above expression is always bounded by 2−kπ.

Denote E = ES,Θk
. Then,

|φ∗Eψ| =
∣∣∣∣∣
∑

x

rxr′xeζxi

∣∣∣∣∣ ,

where |ζx| ≤ 2−kπ. Let ux = 1− eζxi and notice that

|ux|2 = 2(1− cos(ζx)) ≤ ζ2
x ≤ 2−2kπ2

and |ux| ≤ 2−kπ = ε. Thus,

|φ∗Eψ| =

∣∣∣∣∣
∑

x

rxr′x(1− ux)

∣∣∣∣∣ ≥
∑

x

rxr′x −
∣∣∣∣∣
∑

x

rxr′xux

∣∣∣∣∣
≥ (1−max

x
|ux|)

∑
x

rxr′x ≥ (1− ε)
∑

x

rxr′x,

as desired.
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