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Abstract. A fundamental goal of computational complexity (and foun-
dations of cryptography) is to find a polynomial-time samplable distribu-
tion (e.g., the uniform distribution) and a language in NTIME(f(n)) for
some polynomial function f , such that the language is hard on the av-
erage with respect to this distribution, given that NP is worst-case hard
(i.e. NP 6= P, or NP 6⊆ BPP). Currently, no such result is known even
if we relax the language to be in nondeterministic sub-exponential time.
There has been a long line of research trying to explain our failure in prov-
ing such worst-case/average-case connections [FF93,Vio03,BT03,AGGM06].
The bottom line of this research is essentially that (under plausible as-
sumptions) non-adaptive Turing reductions cannot prove such results.
In this paper we revisit the problem. Our first observation is that the
above mentioned negative arguments extend to a non-standard notion
of average-case complexity, in which the distribution on the inputs with
respect to which we measure the average-case complexity of the language,
is only samplable in super-polynomial time. The significance of this result
stems from the fact that in this non-standard setting, [GSTS05] did show
a worst-case/average-case connection. In other words, their techniques
give a way to bypass the impossibility arguments. By taking a closer
look at the proof of [GSTS05], we discover that the worst-case/average-
case connection is proven by a reduction that ”almost” falls under the
category ruled out by the negative result. This gives rise to an intriguing
new notion of (almost black-box) reductions.
After extending the negative results to the non-standard average-case
setting of [GSTS05], we ask whether their positive result can be extended
to the standard setting, to prove some new worst-case/average-case con-
nections. While we can not do that unconditionally, we are able to show
that under a mild derandomization assumption, the worst-case hardness
of NP implies the average-case hardness of NTIME(f(n)) (under the
uniform distribution) where f is computable in quasi-polynomial time.

1 Introduction

Proving that the worst-case hardness of NP implies the average-case hardness
of NP, is a fundamental open problem in the fields of computational complex-



ity and foundations of cryptography (as it is a necessary step towards basing
the existence of one-way functions on worst-case NP hardness). Bogdanov and
Trevisan [BT03] (building on Feigenbaum and Fortnow [FF93]), show that ”it
is impossible (using non-adaptive reductions) to base the average-case hardness
of a problem in NP or the security of a one-way function on the worst-case
complexity of an NP complete problem (unless the polynomial hierarchy col-
lapses)”. This result is taken as demonstrating a major obstacle for showing a
worst-case/average-case equivalence within NP.

Our first observation is that the arguments of [BT03] can be extended to a
non-standard notion of average-case complexity, in which hardness is measured
with respect to distributions that are samplable in super-polynomial time (rather
than in fixed polynomial time):

Theorem 1. Suppose that there is a language L ∈ NP and a distribution D
samplable in time nlog n such that there is a non-adaptive reduction from solving
SAT on the worst-case to solving L on the average with respect to D. Then
every language in coNP can be computed by a family of nondeterministic Boolean
circuits of size npolylog(n).

Similar to the original result of [BT03], this should be taken as demonstrat-
ing a major obstacle for showing a worst-case/average-case equivalence within
NP, even for this non-standard notion of average-case complexity. Neverthe-
less, Gutfreund, Shaltiel and Ta-Shma [GSTS05] do prove exactly the worst-
case/average-case connection ruled out in Theorem 1 (by virtue of non-adaptive
reductions).

Theorem 2. [GSTS05] There exists a distribution D samplable in time nlog n,
such that if there exists a BPP algorithm solving SAT on the average with respect
to D, then there exists a BPP algorithm solving SAT on the worst-case.

This surprising state of affairs gives rise to two questions. First, what can
we learn from the proof of [GSTS05] about worst-case to average-case reduc-
tions, given that their technique bypasses the limitations imposed by Theorem
1? Second, after showing that the negative arguments can be extended to the
non-standard notion of [GSTS05], can we turn the argument around and show
that their positive result be extended and serve as a basis to prove new worst-
case/average-case connections under the standard notion of average-case com-
plexity?

Let us start with the first question. Looking at the proof of [GSTS05], we
observe that it follows by constructing a distribution D as in the statement, and
a fixed polynomial time machine R, s.t. for every probabilistic polynomial-time
machine A solving SAT well on the average with respect to D, the machine RA

(i.e. R with oracle access to A) solves SAT well in the worst case. In fact, the
machine R is easy to describe, and unexpectedly turns out to be the familiar
search-to-decision reduction for SAT.1 I.e., given a SAT formula φ, RA runs a
1 A search to decision reduction for SAT uses an oracle that decides SAT to find a

satisfying assignment for a given formula if such an assignment exist. The known
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search to decision reduction on φ, where for each SAT query in the reduction it
queries A. At the end RA holds an assignment, and it accepts φ iff the assign-
ment satisfies φ. Since the proof works with any search to decision reduction,
we can use the non-adaptive search-to-decision reduction of [BDCGL90], and
obtain what seems to be a non-adaptive worst-case to average-case reduction
that by Theorem 1 implies that every language in coNP can be computed by a
family of nondeterministic Boolean circuits of size npolylog(n). So did we prove
an unexpected collapse?

The answer is of course no. Instead we showed a way to bypass the limitation
imposed by Theorem 1. But to understand how, we need to give a careful look
at the seemingly innocent term ”reduction”.

1.1 What is a Reduction?

The term ”reduction” (or more precisely ”Turing reduction”) used in [BT03],
and many other papers, is defined as follows. Suppose P and P ′ are two com-
putational tasks. E.g., P might be solving SAT on the worst case, and P ′ might
be solving SAT on the average with respect to the distribution D. We say that
P reduces to P ′ if there exists a probabilistic polynomial-time oracle machine R
such that for every oracle A that solves P ′, RA solves P . So in our example, P
reduces to P ′ if there exists one fixed polynomial time machine R s.t. for every
A solving SAT well on the average with respect to D, the machine RA solves
SAT well in the worst case. From such a reduction, one in particular can deduce
that if P ′ is easy (e.g., for BPP) then so does P . Reversing it, one may conclude
that if P is hard then so does P ′.

So does the proof of [GSTS05] uses a reduction? On the one hand, R is indeed
a probabilistic, polynomial time oracle machine. However, the proof shows some-
thing weaker than a reduction regarding R: for every probabilistic, polynomial-
time oracle machine A that solves P ′, RA solves P . Namely, instead of showing
that for every A that solves P ′, RA solves P , it is only shown that for every
efficient A this is the case. Thus, the argument of [GSTS05] is not a reduction.
Nevertheless, it is still useful. That is, we can still conclude that if efficient ma-
chines cannot solve SAT on the worst-case then efficient machines cannot solve
SAT on the average with respect to D. The fact that we restrict the proof of
correctness only to apply to efficient machines, does not make a difference since
efficient machines is all that we care about!

We believe that this state of affairs calls for some new notation. First, to make
matters more precise, we believe what we simply called ”a reduction” should be
called ”a black-box reduction”. This is because the key property captured in the
definition is the black-box use of A by R (i.e., the reduction is oblivious to the
actual solution of P ′) and the black-box use of A in the correctness proof (i.e.,
RA is correct whenever A is correct, regardless of what A is). We then suggest
a new kind of reduction:

reductions are either sequential and deterministic or parallel, non-adaptive and ran-
domized [BDCGL90].
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Definition 1 (Class-specific black-box reductions). Let P, P ′ be two com-
putational problems, and C a class of functions. We say that R is a C-black-box
reduction from P to P ′, if R is a probabilistic polynomial-time oracle machine
such that for every oracle A ∈ C that solves P ′, RA solves P .

If R queries A non-adaptively, we say that the reduction is non-adaptive. If
C is the class of all functions, we simply say that R is a black-box reduction.

Later we will also consider reductions that run in super-polynomial time, and
we will state the running time explicitly when this is the case. If we do not state
the running time then it is polynomial. Also, unless stated otherwise, whenever
we say reduction, we mean black-box reduction.

Note that Definition 1 is only meaningful when the class C is more powerful
than R. Otherwise R can run the oracle by itself. This is indeed the case in
[GSTS05] where R runs in linear time and A runs in arbitrary polynomial time.

In Definition 1 the reduction R is still black-box in A, but now the correctness
proof is not black-box in A, and works only when A comes from a bounded
class. As we said before, normally a reduction is used to prove that if some
task P ′ is easy then so does P (or the contra-positive: if P is hard then so
does P ′). Notice that for this purpose class black-box reductions are as useful as
general reductions, because the argument is that if an efficient A solves P ′, then
an efficient algorithm RA solves P . The big advantage is that class black-box
reductions are more flexible, and as Theorems 1 and 2 show, we can construct a
class black-box reduction that is impossible to achieve with a general reduction
(assuming the hierarchy does not collapse).

1.2 Back to Average-Case Complexity

We now turn to the second question we raised, whether we can leverage the result
(or the proof) of [GSTS05] to prove a new worst-case/average-case connection
under the standard notion of average-case complexity. Indeed we are able to
show such a result but only assuming an unproven derandomization assumption.
Before we state and discuss our result, some background is needed.

Most cryptographic primitives require at least the existence of One-Way
Functions (OWFs) [IL89]. A function f : {0, 1}∗ → {0, 1}∗ is one-way if f is com-
putable in a fixed polynomial time, and, for every constant c > 0, for every poly-
nomial time algorithm A, for all large enough input lengths, Pry∈f(Un) [ A(y) ∈
f−1(y) ] < 1

nc . In words, f can be computed by an algorithm that runs in some
fixed polynomial time, while f−1 is hard (on the average) for all polynomial-time
algorithms.

It is a common belief that OWFs exist, and a standard assumption in cryp-
tography. The question whether it can be based on the worst-case hardness of
NP is a major open problem. There are several relevant notions of hardness
involved, and we identify the following hierarchy of conjectures:

– (Worst-case) Some function in NP is worst-case hard for a class of adversaries
(usually BPP).

4



– (Average-case) Some function in NP is average-case hard for a class of ad-
versaries (usually BPP).

– (One-way) Some function in P is hard to invert on average by a class of
adversaries (usually BPP).

– (Pseudo-randomness) Some function in P generates distributions of low en-
tropy that are indistinguishable from uniform by a class of adversaries (usu-
ally BPP).

The only non-trivial relation among these assumptions that is known to-
day is that the one-wayness assumption is equivalent to the pseudo-randomness
assumption when the class of adversaries is BPP [HILL99].

In all the above assumptions we assume that some function ”fools” some
class of adversaries, where the meaning of ”fooling” varies (being worst-case
hardness, average-case hardness, one-wayness or pseudo-randomness). The usual
choice in cryptography is that the function lies in P or NP (according to the
assumption we work with), while the class of adversaries is BPP (or sometimes
even BPTIME(t(n)) for some super-polynomial t(n)). Thus, while the function
is computable in a fixed polynomial time, the adversary may run in unbounded
polynomial time, and so has more resources than the algorithm for the function
itself. We therefore call this setting the ”weak-fooling-strong” setting.

Another setting that often arises in complexity, is almost identical to the
above except that the class of adversaries is weaker than the class it tries to
fool. E.g., a key observation of Nisan and Wigderson [NW94] is that generators
that are used to derandomize probabilistic complexity classes, can run in time
nc while fooling algorithms running in time nb for some b ¿ c. We call this the
”strong-fooling-weak” setting.

This difference is a crucial (though subtle) dividing line. The canonic example
for this distinction is the Blum-Micali-Yao PRG v.s. the Nisan-Wigderson PRG.
This distinction applies not only to PRGs, and in particular we believe it is
a central issue when discussing worst-case to average-case reductions for NP.
Indeed the techniques that we use, apply to the strong-fooling-weak setting, but
not to the weak-fooling-strong setting.

So now we focus on the strong-fooling-weak setting, and review previous
work on the problem. We begin by listing the exponential-time analogues of the
assumptions we listed above:

– (Worst-case hardness in EXP) Some function in EXP is worst-case hard for
BPP.

– (Average-case hardness in EXP) Some function in EXP is average-case hard
for BPP.

– (Exponential-time pseudo-random generators) For every constant ε > 0,
there exists a pseudorandom generator G : nε → n fooling BPP, and the
generator is computable in time 2nε

(i.e. exponential in the seed length).

Note that each of the above statements is implied by the corresponding state-
ment in the weak-fooling-strong setting. Impagliazzo and Wigderson [IW98] (see
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also [TV02]), building on a long line of works such as [NW94,BFNW93,IW97],
show that all three assumptions are equivalent. Their work was done in the
context of understanding the power of randomness in computation, and indeed
the equivalence above easily extends to include the following statement about
the ability to reduce the amount of randomness used by efficient probabilistic
algorithms.

– (Subexponential-time derandomization) For every probabilistic polynomial-
time TM A (that outputs one bit), and a constant ε > 0, there exists another
probabilistic TM Aε, that runs in time 2nε

, uses at most nε random coins,
and behaves essentially the same as A.2

These beautiful and clean connections shed light on some of the fundamen-
tal questions in complexity theory regarding randomness and computational
hardness of functions. Unfortunately, no such connections are known below the
exponential level. As an example consider the following question that lies in the
strong-fooling-weak setting, yet in the sub-exponential regime.

Open Problem 1. Does NP 6⊆ BPP imply the existence of a language L in
ÑP = NTIME(nO(log n)) such that L is hard on average for BPP with respect to
the uniform distribution?

We believe that solving Open Problem 1 will be a major breakthrough. Here
we give an affirmative answer under a weak derandomization assumption. We
begin with the derandomization assumption. Following Kabanets [Kab01], we
say that two probabilistic TM’s are δ-indistinguishable if no samplable distri-
bution can output with δ probability an instance on which the answers of the
machines differ significantly (the acceptance probabilities, averaging over their
randomness, differ by at least δ). See Definition 3 for a formal definition. We can
now formalize the derandomization hypothesis:

Hypothesis 1. For every probabilistic polynomial-time decision algorithm A
(that outputs one bit), and every constant ε > 0, there exists another proba-
bilistic polynomial-time algorithm Aε that on inputs of length n, tosses at most
nε coins, and A,Aε are 1

100 -indistinguishable.

We then prove:

Theorem 3. (Informal) If NP is worst-case hard and weak derandomization of
BPP is possible (i.e. Hypothesis 1 is true) then there exists a language in ÑP
that is hard on average for BPP.3

2 Here we mean that Aε maintains the functionality of A on the average in the sense
of Kabanets [Kab01] (see Definition 3 and Hypothesis 1). This notion of derandom-
ization is standard when working with hardness against uniform TM’s (rather than
circuits) and with generators that fool TM’s (rather than circuits).

3 Our result is actually slightly stronger than the one stated here. It gives a hard
on average language in the class NTIME(nω(1)) with the additional constraint that
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The formal statement is given in Section 4 (Theorem 7). The weak derandom-
ization assumption is the precise (polynomial-time) analogue of the subexponential-
time derandomization assumption stated above. That is, in both assumptions,
Aε reduces the randomness of A by a polynomial factor, and the result is indis-
tinguishable to polynomial time adversaries (see Definition 3). However, in the
latter we let Aε run in subexponential-time, while in Theorem 3 we demand it
runs in polynomial time.

We remark that there is an almost trivial proof of the theorem if we replace
the weak derandomization assumption by a strong derandomization assumption,
namely that BPP = P. In our notation, this is like assuming that Aε can replace
the poly(n) random coins of A by logarithmically many random coins. This as-
sumption is much stronger than the assumption in Theorem 3, where we assume
Aε reduces the number of coins just by a polynomial factor. Indeed, under the
strong assumption, we can apply standard hierarchy theorems to separate ÑP
from BPP (which is now P) even under average-case complexity measure. Note
however, that our weak derandomization does not imply that BPP is (strictly)
contained in ÑP and therefore we cannot apply hierarchy theorems.

Another strong assumption that implies the average-case hardness in our
conclusion, is the existence of ceratin pseudo-random generators. Again, our
assumption is much weaker than that since it only states that derandomization
is possible (not necessarily via a construction of pseudo-random generators).

We therefore believe that the relationship that we obtain between worst-case
hardness, average-case hardness and derandomization, is intriguing as it shows
that highly non-trivial connections between these notions do exist below the
exponential level.

2 Preliminaries

BPTIME(t(n), c(n)) is the class of languages that can be decided by randomized
Turing machines that run in time t(n) and use c(n) random coins. NTIME(t(n), w(n))
is the class of languages that can be decided by nondeterministic Turing machines
that run in time t(n), and take witnesses of length w(n). BPTIME(t(n)) and
NTIME(t(n)) stand for BPTIME(t(n), t(n)) and NTIME(t(n), t(n)) respectively.
PPM denotes the class of probabilistic polynomial-time TM’s.

An ensemble of distributions D is an infinite set of distributions {Dn}n∈N ,
where Dn is a distribution over {0, 1}n. We denote by U the uniform distribution.
Let A(·; ·) be a probabilistic TM, using m(n) bits of randomness on inputs of
length n. We say that A is a sampler for the distribution D = {Dn}n∈N , if for
every n, the random variable A(1n, y) is distributed identically to Dn, where
the distribution is over the random string y ∈R {0, 1}m(n). In particular, A

membership witnesses are of polynomial length, i.e. only the verification takes super-
polynomial time, making it closer to NP. In particular, this class is contained in EXP.
Also, standard separation techniques (such as the nondeterministic time hierarchy)
can not separate this class from NP.
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always outputs strings of length n on input 1n. If A runs in polynomial time we
simply say D is samplable. A distributional problem is a pair (L,D), where L is
a language and D is an ensemble of distributions.

Definition 2 (Average BPP). Let (L,D) be a distributional problem, and
s(n) a function from N to [0, 1]. We say that (L,D) can be efficiently decided on
average with success s(n), and denote it by (L,D) ∈ Avgs(n)BPP, if there is an
algorithm A ∈ PPM such that for every large enough n, Pr[A(x) = L(x)] ≥ s(n),
where the probability is over an instance x ∈ {0, 1}n sampled from Dn and the
internal coin tosses of A.

We mention that the average-case definition that we give here is from [Imp95]
(there it is denoted Heur-BPP). It differs from the original definition of Levin
[Lev86]. Generally speaking, all previous works about hardness amplification and
worst-case to average-case reductions, and in particular those that we use here
(e.g. [BT03,IL90,GSTS05]), hold under Definition 2.

We denote the computational problem of deciding (L,D) on average with
success s by (L,D)s. For a language L defined by a binary relation R ⊆ {0, 1}∗×
{0, 1}∗ (i.e. L = {x : ∃y s.t. (x, y) ∈ R}), the search problem associated with L
is given x find y such (x, y) ∈ R if such a y exist (i.e. if x ∈ L) and output ’no’
otherwise. The average-case analogue of solving the search problem of (L,D)
with success s, is to solve the search problem of L with probability at least s,
over an instance of L drawn from D (and the internal coins of the search process).
We denote this computational problem by (L,D)search,s.

We need to define a non-standard (and weaker) solution to search problems,
by letting the searching procedure output a list of candidate witnesses rather
than one, and not requiring that the algorithm recognize ’no’ instances.4 For
a langauge L defined by a binary relation R, the list-search problem associated
with L is given x find a list y1, . . . , ym (where m = poly(|x|)) such that ∃i ∈ [m]
for which (x, yi) ∈ R, if x ∈ L. Note that for x 6∈ L we are not required to answer
’no’. We denote by (L,D)list−search,s the average-case analogue.

Indistinguishability. Following Kabanets [Kab01], we say that two probabilis-
tic TM’s are indistinguishable if no samplable distribution can output with high
probability an instance on which the answers of the machines differ significantly
(averaging over their randomness). Below is the formal definition.

Definition 3. Let A1 and A2 be two probabilistic TM’s outputting 0/1, such
that on inputs of length n A1 uses m1(n) random coins and A2 uses m2(n)
random coins. For ε, δ > 0, we say that A1 and A2 are (ε, δ)-indistinguishable,

4 The reason we need this is that we are going to apply search procedures on languages
in NTIME(nω(1), poly(n)). In this case an efficient procedure cannot check whether
a candidate witness is a satisfying one. We therefore cannot amplify the success
probability of such procedures. On the other hand, when we only require a list that
contains a witness we can apply standard amplification techniques.
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if for every samplable distribution D = {Dn}n∈N and every n ∈ N ,

Pr
x∈Dn

[∣∣∣∣∣ Pr
r∈R{0,1}m1(n)

[A1(x, r) = 1]− Pr
r′∈R{0,1}m2(n)

[A2(x, r′) = 1]

∣∣∣∣∣ > ε

]
≤ δ

To save on parameters, we will sometimes take ε to be equal to δ and then we
will say that A1, A2 are δ-indistinguishable (meaning (δ, δ)-indistinguishable).

3 Impossibility Results and How to Bypass Them

We begin with showing that under standard assumptions, the [GSTS05] result
cannot be proven via black-box and non-adaptive reductions. We then take a
closer look at the reduction of [GSTS05], in order to understand what enables
it to bypass the impossibility result.

The following statement can be obtained by generalizing the proof of [BT03]
to arbitrary time bounds.

Theorem 4 (Implicit in [BT03]). Suppose that there is a language L ∈
NTIME(nO(log n)) and a reduction R from solving SAT on the worst-case, to
solving (L,U) on the average with success 1 − 1/nO(log n). Further suppose that
R is non-adaptive and black-box, and is computable in time npolylog(n). Then
every language in coNP can be computed by a family of nondeterministic Boolean
circuits of size npolylog(n).

From that we can conclude Theorem 1, which we now re-state more formally
(the proof is omitted due to space limitation).

Theorem 5. Suppose there is a language L ∈ NP and a distribution D sam-
plable in time nlog n, such that there is a black-box and non-adaptive reduction
from solving SAT on the worst-case, to solving (L,D) on the average with suc-
cess 1−1/n. Then every language in coNP can be computed by nondeterministic
Boolean circuits of size npolylog(n).

3.1 A Closer Look at the Reduction of [GSTS05]

There are two steps in the argument of [GSTS05]. First it is shown that assuming
NP 6⊆ BPP, any probabilistic, polynomial-time algorithm BSAT for SAT has
a hard polynomial-time samplable distribution DBSAT, and then they show
one quasi-polynomial time distribution D that is hard for all polynomial-time,
probabilistic algorithms.

We now recall how the first step is achieved. Given BSAT we define the
probabilistic polynomial time algorithm SSAT that tries to solve the search
problem of SAT using oracle calls to BSAT (via the downwards self-reducibility
property of SAT), and answers ”yes” if and only if it finds a satisfying assignment.
We then define the SAT formula:

∃x∈{0,1}n [ SAT(x) = 1 and SSAT(x) 6= ’yes’ ] (1)
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The assumption NP 6⊆ BPP implies that SSAT does not solve SAT and the
sentence is true. We now ask SSAT to find a satisfying assignment to it. If
it fails doing so, then BSAT is wrong on one of the queries made along the
way. Otherwise, the search algorithm finds a SAT sentence x on which SSAT is
wrong. This means that BSAT is wrong on one of the queries SSAT makes on
input x. Things are somewhat more complicated because SSAT is a probabilistic
algorithm and not a deterministic one, and so the above sentence is not really a
SAT formula, but we avoid these technical details and refer the interested reader
to [GSTS05]. In any case, we produce a small set of queries such that on at least
one of the sentences in the set, BSAT is wrong, i.e., we get a polynomial-time
samplable distribution on which BSAT has a non-negligible error probability.

To implement the second step, [GSTS05] define the distribution D that on
input 1n picks at random a machine from the set of probabilistic machines with
description size at most, say, log n and runs it up to, say, nlog n time. We know
that for any probabilistic polynomial-time algorithm BSAT there is a hard dis-
tribution DBSAT, and this distribution is sampled by some polynomial-time
algorithm with a fixed description size. Thus, for n large enough, we pick this
machine with probability at least 1/n (because its description size is smaller
than log n) and then we output a bad input for BSAT with probability 1/n. The
sampling time for D is nlog n (or, in fact, any super-polynomial function).

We now ask: Can we interpret the [GSTS05] result as a worst-case to average-
case reduction?

Indeed, given an algorithm BSAT for solving (SAT,D), we define the algo-
rithm RBSAT = SSAT, where R is a search-to-decision reduction. The analysis
shows that if BSAT indeed solves SAT well on the average with respect to D,
then it also solves it well on the average with respect to DBSAT. This implies
that necessarily the sentence in Eq (1) is true, i.e., SSAT solves SAT in the
worst-case. In other words, the standard search to decision reduction for SAT is
also a worst-case to average-case reduction!

Another question is now in place: is the reduction black-box?
Looking at Definition 1 we see that a reduction is black-box if it has the

following two properties:

1. (Property 1) R makes a black-box use of the adversary A (in our case BSAT).
I.e., R may call A on inputs but is not allowed to look into the code of A.

2. (Property 2) The reduction is correct for any A that solves the problem (in
our case SAT), putting no limitations on the nature of A. E.g. A may even
be undecidable.

We see that in the reduction of [GSTS05], the first condition is satisfied.
R is merely the standard search-to-decision reduction for SAT which queries
the decision oracle on formulas along a path of the search tree. We can replace
the standard search-to-decision reduction with the one by Ben-David et. al.
[BDCGL90]. The latter makes only non-adaptive queries to the decision oracle.
Thus we get a non-adaptive reduction. However, the second condition is violated.
Indeed, the key point in the analysis of [GSTS05] is that it works only for efficient

10



oracles BSAT. This is so because the analysis encodes the failure of RBSAT as an
NP statement. Here the analysis crucially uses the fact that BSAT (and therefore
RBSAT) is in BPP, and therefore its computation has a short description as a
Boolean formula.

So let us now summarize this surprising situation: from the reduction R’s
point of view, it is black-box, i.e. Property 1 holds (R does not rely on the inner
working of the oracle BSAT or its complexity), but for the analysis to work, the
oracle BSAT has to be efficient, i.e. Property 2 is violated.5 This motivates the
definition of class-specific black-box reductions that we gave in the introduction.

Given this definition and the discussion about non-adaptivity above, we can
restate the result of [GSTS05] as follows:

Theorem 6. There exists a distribution D samplable in time nlog n, such that
there is a BPP-black-box and non-adaptive reduction from solving SAT on the
worst-case to solving (L,D) on average with success 1− 1/n.

Theorem 6 is in sharp contrast to Theorem 5. Theorem 5, as well as [FF93,BT03,AGGM06],
say that the requirement in black-box reductions that they succeed whenever
they are given a ”good” oracle, regardless of its complexity, is simply too strong,
i.e. such reductions are unlikely to exist. Theorem 6, on the other hand, says
that weakening the requirement to work only for efficient oracles (i.e. allowing
to violate Property 2, but not property 1) is enough to bypass the limitation.

We mention that there are other cases of non-black-box reductions in com-
plexity theory that bypass black-box limitations. For example, the fact that the
polynomial-time hierarchy collapses under the assumption NP = P is proven
via a non-black-box reduction from solving SAT efficiently to solving QSAT 2

efficiently (QSAT 2 is the canonic Σ2-complete problem of deciding the valid-
ity of a Boolean first-order formula with two quantifier alternations). Indeed if
a black-box reduction between these tasks exists then the hierarchy collapses
unconditionally. It is interesting, however, that in this argument both the re-
duction and the proof of correctness are non-black-box, because the reduction
queries the NP-oracle on statements that are encodings of the computation of
the oracle itself (assuming that this oracle can be realized efficiently). I.e. both
Properties 1 and 2 are violated. Examples from the field of cryptography can be
found in the work of Barak [Bar01] (and some following papers that use similar
ideas). Again his proof (when considered as a reduction) violates both properties
of black-boxness.

The only other BPP-black-box reduction that we are aware of appears in the
work of Imapgliazzo and Wigderson [IW98].6 Their proof shows that given an

5 We mention that recently, Atserias [Ats06] gave an alternative proof to [GSTS05]
where he shows that even the analysis can be done almost black-box. That is, it does
not need to use the description of BSAT, it only needs to know the running time of
BSAT. In contrast, the analysis in [GSTS05] does use the description of BSAT.

6 Although some proofs of security in cryptography appear to use the fact that the
adversary is efficient (e.g. in zero-knowledge proofs with black-box simulation), when
written as reductions they are in fact black-box in the standard sense. That is, it is
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efficient oracle that breaks a ceratin pseudo-random generator, one can use it to
compute an EXP-complete language. We do not know if this reduction can be
done in a black-box way, nor do we have evidence that it cannot.

Finally, we want to mention that one should not confuse black-box limitations
with non-relativizing arguments. The proof of [GSTS05] (as well as the collapse
of the polynomial-time hierarchy) can be done in a relativizing way.

4 Top-Down Overview of Theorem 3

We re-state Theorem 3 in a formal way.

Theorem 7. If Hypothesis 1 is true and SAT 6∈ RP then there exists a language
L ∈ NTIME(t(n), poly(n)), such that, (L,U) 6∈ Avg1/2+1/ logα nBPP, where t(n) =
nω(1) is an arbitrary time-constructible super-polynomial function, and α > 0 is
a universal constant.

We now explain the intuition and give a top-down overview of the proof. The
full proof is omitted due to space limitations and will appear in the final version
of the paper.

Our starting point is Theorem 2, which says that if SAT is worst-case hard,
then there exist a single distribution on SAT instances, Dhard, on which every
probabilistic polynomial-time algorithm errs with relatively high probability, but
the distribution is only samplable in quasi-polynomial-time (for this reason we
denote it by Dhard). Our goal is to somehow extract from Dhard a simple distri-
bution on which the same holds. Ideally, the uniform distribution will be good
enough. The key tool that we use is a reduction given by Impagliazzo and Levin
[IL90] that shows that if there exists a polynomial-time samplable distribution
D that is hard on average for some language L ∈ NP, then there exists another
language L′ ∈ NP for which the uniform distribution U is hard on average. We
would like to apply this reduction on SAT and the distribution Dhard.

However we immediately run into a problem because Dhard is samplable in
super-polynomial time, while the argument of [IL90] only applies to distributions
that are samplable in polynomial time. To understand this, let us elaborate on
how the complexity of the distribution influences the reduction of [IL90]. There
are several different entities to consider in this reduction: The language L, The
distribution Dhard, The language L′ we reduce to, and the reduction R itself
that solves (L,Dhard) on average given an oracle that solves (L′,U) on average.

We can expect that both the complexity of L′ as well as the complexity
of the reduction R depend on Dhard. Indeed, using the [IL90] reduction, the

shown that any adversary that breaks the cryptographic primitive, implies breaking
the security assumption (e.g. bit-commitments in the case of zero-knowledge). Of
course, the contradiction with the security assumption is only true when the ad-
versary is efficient. However, this is an artifact of the security assumption, not the
way the proof is derived (or in other words, if we change the security assumption
to hold against say, sub-exponential-time adversaries rather than polynomial-time
adversaries, the same proof of security holds).

12



nondeterministic procedure for the language L′ involves checking membership
in the language L as well as running the sampler for Dhard. In our case, since
Dhard is samplable in super-polynomial-time, this results in L′ having a super-
polynomial non-deterministic complexity (and so puts us in the strong-fooling-
weak setting).

It seems that the same should hold for the reduction R. Indeed the reduction
of [IL90] is from search problems to search problems, which means that R must
handle the membership witnesses for the language L′. As we said above, this
involves computing Dhard and in particular, the complexity of R is at least that
of Dhard. This however means that we can not deduce from the hardness on
average of (L,Dhard) the hardness on average of (L′,U), because the hardness
of (L,Dhard) is only against algorithms with complexity smaller than that of
Dhard, and the reduction’s complexity is at least that of Dhard. This makes the
reduction of [IL90] useless for us (at least a direct use of it).

The surprising thing, and the main observation here, is that in the Impagliazzo-
Levin argument the running time of the reduction does not depend on the time
complexity of Dhard ! It only depends on the number of random coins the sampler
for Dhard uses: while the reduction R does look at the membership witnesses for
L′, the size of these witnesses is only a function of the number of random coins
the sampler uses. Furthermore, during this process, R is never required to verify
the witnesses and therefore does not need to run the sampler. We formalize this
observation in the following lemma.

Lemma 1. For every Distribution D samplable in BPTIME(t(n), c(n)), a lan-
guage L ∈ NTIME(tL(n), cL(n)) and 0 < δ(n) < 1, there exists L′ ∈ NTIME(t(n)+
tL(n)+poly(n, c(n)), c(n)+cL(n)) such that there is a probabilistic non-adaptive
reduction, R, from (L,D)search,1−O(δ(n)·c2(n)) to (L′,U)list−search,1−δ(n).
Furthermore, the running time of R is poly(n, c(n), tL(n)), and note that it is
independent of t(n).

The conclusion of the Lemma is that in order to keep the reduction efficient,
we need to reduce the randomness complexity of the sampler for Dhard to a fixed
polynomial, but we do not need to reduce its time complexity. This is fortunate
because while in general there is no reason to believe that we can reduce the
running time of algorithms, it is widely believed that randomness can be reduced
without paying much penalty in running time. To that end we use Hypothesis
1, and prove:

Lemma 2. Assume Hypothesis 1 is true. Let t(n) be an arbitrary super-polynomial
function. There is a distribution D samplable in BPTIME(O(t(n), O(n3)) such
that, (SAT,D) ∈ Avg1−1/nBPP ⇒ SAT ∈ RP.

Note that Hypothesis 1 does not seem to derandomize general distributions
that are samplable in super-polynomial-time. First, Hypothesis 1 only deran-
domizes polynomial-time algorithms and only by polynomial factors (while here
we want to derandomize a sampler that runs in super-polynomial time and uses
a super-polynomial number of coins). And second, Hypothesis 1 only applies
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to decision algorithms.7 We show, however, that the specific distribution Dhard

from [GSTS05] can be derandomized under Hypothesis 1. The proof is quite
technical and involves getting into the details of [GSTS05].

The above two lemmas give us 1 − 1/poly(n) hardness on the average for
the list-search version of the problem (given the worst-case hardness and the de-
randomization assumptions). To get 1/2 + 1/ logα n hardness on the average for
the decision problem, we use generalizations of known techniques in average-case
complexity [BDCGL90,Tre05]. The tricky part is doing the hardness amplifica-
tion using a reduction whose running time is poly(n, c(n)) and, in particular,
independent of t(n). By using careful generalizations of [BDCGL90], Trevisan’s
amplification technique [Tre05] goes through, and we obtain Theorem 7.
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