IMPROVING THE ALPHABET-SIZE IN EXPANDER
BASED CODE CONSTRUCTIONS

Abstract

Various code constructions use expander graphs to improve the error
resilience. Often the use of expanding graphs comes at the expense of
the alphabet size. This is the case, e.g., in [1], [9] and [7].

We show that by replacing the balanced expanding graphs used in the
above constructions with unbalanced dispersers or extractors (depend-
ing on the actual construction) the alphabet size can be dramatically
improved.

CONTENTS

1. Introduction 1
1.1. Previous Work and Our Improvement 2
1.2. On the Dispersers and Extractors that We Use 3
2. The Improvement in Specific Applications 4
2.1. Error Correcting Codes 4
2.2. Error Correcting Codes with Explicit Decoding Procedure 7
2.3. High Noise List Decodable Codes 8
2.4. Summary and the Rest of This Work 8
3. Preliminaries 9
3.1. Codes 9
3.2. Justesen Code 11
3.3. A General Decoding Scheme 12
3.4. Expanding Graphs 13

3.5. Extractors and List Recoverability from Arbitrary Size 17

3.6. The Dispersers and Extractors Parameters 18
4. Comparing The List Decodability Variants 23
5. The Internal Structure of the Different Constructions 24
5.1. Taking C to be a Linear Code 24
5.2. Taking C to be a List Decodable Code 25
5.3. Taking C to be a List Recoverable Code 26
5.4. Taking C to be a List Recoverable Code from Arbitrary

Size 27
6. Asymptotically Good Error Correcting Codes Over Large

Alphabets 28

6.1. Improving the Alphabet Size (Theorem 1) 28
6.2. Approaching the Singleton Bound (Theorems 2, 3) 29
6.3. Beating The Zyablov Bound (Theorem 4) 31
6.4. Concatenation With Codes of Fixed Alphabet Size

(Theorem 6) 32
7. Appendix 33
7.1. Theorem 7, Asymptotically Good Error Correcting Codes

with Explicit Decoding Procedure 33
7.2. List Decodable Codes with Optimal Rate 35
7.3. List Decodable Codes with Optimal List Size 37
7.4. Almost Optimal Rate List Decodable Codes 38

References 40

IMPROVING THE ALPHABET-SIZE 1

1. INTRODUCTION

A powerful technique for constructing high noise resilient codes uses
a combination of codes with expanding graphs. The technique was first
introduced by [1], and further developed in [9], [6] and [7]. The combi-
nation between a code and a bipartite expanding graph can be thought
of as a concatenation with a repetition code, followed by mixing and
regrouping the codes’ coordinates. This composition can be formalized
as follows:

Definition 1. (graph encoding) Let G = ([N],[L], E) be a regular
bipartite graph, with regular right degree T'. Let ¥ be an alphabet.
We define a function G : ¥V — (1)L as follows: Given © € BV,
we let G(x) = G(x)1,...,G(x)L, where G(x);, = (x,...,2,), and
li,...,lp € [N] are the neighbors of | € [L] in G.

Figure 1 illustrates this graph encoding.

[N] (L]

? GX)=(% 10X)ES T

Bipartite graph
G=([N][L]E)
with regular right degree T

G(X)=G(x),,...,G(X).

FIGURE 1. Graph encoding. xi,...,xny € X on the
left are "put” along the graph’s left side [N], defining for
each 1 € [L] an ordered vector of its neighbors: G(x), =
(z11,...,27) € BT, where xy, is the symbol that was
matched to the t neighbor of I € [L] in [N]. G(z) is
defined to be G(x)q,...,G(2)L.

Definition 2. (composition) Let C' C Fyn. Let G be as above. We
define the composition code G o C' = {G(c)|c € C}

A trivial fact about the composition described above is that if C' is
linear then so is G o C.

2 IMPROVING THE ALPHABET-SIZE

To achieve the high error resilience, or large relative distance, G' must
have the following property: any small subset of [L], say of size €L, sees
almost all vertices in [N], say at least (1 — §)N. This property is the
property of a disperser. Dispersers, extractors, error correcting codes,
list decodable codes and other definitions needed for our purpose are
fully detailed in section 3.

As we show next, this disperser’s property assures that if C' has
relative distance 0, then G o C' has relative distance (1 — €).

We now define the entropy loss of a disperser, which plays a major
role in our analysis. Having regular right degree T implies that any
set of size €L on the right can see at most eLT vertices on the left.
The disperser’s expansion property assures that the set sees almost
all vertices of [N], and so eLT must be 2(N). However, it can be
much larger. Thus, a measurement for the quality of the expansion is
Ag = ef\,T, called the entropy loss of the disperser.

The following lemma demonstrates how the composition above in-
creases error resilience, and summarizes the parameters of the code
composition GG o C' as a function of the parameters of C' and G.

Lemma 1. If G : [L] X [T] — [N] is a (eL,d)- disperser with entropy
loss A, and if C is a [N,rN,dN], code then GoC' is a [L, 5L, (1—¢)L]

code

qT

We give the proof in section 5.1. This property translates the small
relative distance § to large relative distance (1 — €), while increasing
the alphabet size.

1.1. Previous Work and Our Improvement. [1] take the graph
G to be a balanced expander (L = N), and use the fact that it is a
good disperser. As we saw this suffices for the error amplification. The
cost of this, however, is enlarging the alphabet from ¥ to 7. Recall
that the expansion property required is that any €N vertices on the
left will see an least (1 —40)N > %N vertices on the right. This implies
eNT > ;N, yielding a degree T of order (2).

However, if we take an unbalanced disperser we can achieve the same
error with a much smaller degree (T = logo(l)(%)), yielding a much
smaller alphabet size. One can worry what happens to the rate when
taking an unbalanced disperser. However, as we saw before the new
rate is };—; Thus, by taking a disperser with optimal entropy loss, we
don’t lose on the rate, while dramatically improve the alphabet size.

We apply this improvement to the constructions of [1], [9] and [7].

All these constructions are of the form G o C, and differ in the actual

IMPROVING THE ALPHABET-SIZE 3

code C' used, and the actual properties required from the expanding
graph G used.

1.2. On the Dispersers and Extractors that We Use. We now
survey the actual dispersers/extractors’ G that we use in the various
G o C' constructions. As suggested above we are looking for dispersers
with optimal entropy loss and small degree. The first disperser we
consider, denoted, G, has the best entropy loss and degree possible as
follows from a lower bound and a matching upper bound for dispersers
shown by [11]. This disperser, however, is only shown to exist using
the probabilistic method, and there is no known explicit construction
for it.

Lemma 1 implies that in order to achieve relative distance (1 —¢) for
GoC, we need a disperser which expands every set of constant fraction
e. In terms of expanding graphs we need a disperser/extaractor for the
high min—entropy range. The recent extractor analogue of the zig-zag
product due, to [13] gives good constructions for the high min—entropy
range. We consider three constructions based on the zig-zag scheme.
The first one is a disperser, denoted Gp,,,. Gp,, has an optimal en-
tropy loss and near optimal degree. This construction uses two optimal
sub components which need to be found by an exhaustive search, which
takes 2¢ polylog(N) time, where € and N are the error and input length
of the disperser Gp,,,. The second zig-zag based construction we use,
denoted, Gg,, is an extractor with optimal entropy loss and near op-
timal degree. As with Gp,, the construction uses two optimal sub

components which need to be found in time Z%polylog(N). Gg,, and
Gp,,, are referred to semi-explicit for the exudative search they require.
The last zig-zag based construction we use, denoted Gegpiicit, has op-
timal entropy loss but a bigger degree, however it is explicit and uses
the extractors of [12] as sub components.

Finally, we consider Gpuanced, the balanced disperser that appears
in [1], [7], and in some of the constructions in [9]. This disperser,
which is based on Ramanujan graphs has relatively large degree and
sub optimal entropy loss. The exact parameters of these dispersers
including construction times and computation times are given in section
3.6.

In all of our improvements we improve on a construction which uses
either Gygianceqd Or @ balanced extractor. Whenever Gpgianceq 1 used, we
examine what improvement we get replacing it with G, Gp,,,, and
Geaplicit- Although Gegpiicir is an extractor, having stronger properties

IThe exact definition of extractros is given in section 3.4

4 IMPROVING THE ALPHABET-SIZE

than a disperser and thus larger degree and entropy loss, it is explicit
and in most cases still achieves major improvement. Whenever a bal-
anced extractor is used we find what happens when replacing it with
GEopt? and with Gezplicit~

2. THE IMPROVEMENT IN SPECIFIC APPLICATIONS

Our improvement can be demonstrated in the following construc-
tions:

(1) The construction of [1] which composes Justesen code with a
balanced disperserto give the first explicit constant rate code
with arbitrarily large relative distance. [1] were also the first to
define the composition of the form G o C.

(2) The construction of [1] leaves open the problem of decoding the
code. [9] presents an error correcting code G o C' with explicit
unique decoding, by taking C' to be a list decodable code.

(3) List decodable codes with various range of parameters. We
consider three constructions of list decodable codes with various
parameters’ tradeoffs.

2.1. Error Correcting Codes. We begin with the construction of
asymptotically good error correcting codes of [1]. The construction
of error correcting codes has the two combinatorially conflicting goals
of simultaneously increasing the rate and the relative distance. A ba-
sic lower bound, known as the singleton bound, states that if C' is a
(N,7N,é6N), code then:

1
1 <1-0+—
(1) r < + N
The only codes achieving the singleton bound are Reed-Solomon codes
having:
(2) r(d)>1-9§
However, the alphabet size of these codes is at least the block length

of the code. A probabilistic argument shows that for any alphabet size
prime power ¢, there exist linear codes having:

(3) r(6) =1 — Hy(d)

This bound is known as the Gilbert-Varshamov bound. Thus, it is
natural to concatenate Reed-Solomon codes with a code achieving the
Gilbert-Varshamov bound, which as an inner code can be found in an
exhaustive search in polynomial time. This gives the Zyablov bound:

(4) Rzyavion(0,9) = matse,<i—1(1 = Hy(p))(1 = 0/p)

IMPROVING THE ALPHABET-SIZE 5

Although polynomial, the time needed for the exhaustive search above

is of the form N/ where N is the concatenated code length and

lim, ., 1f(n) = oo. Thus, the construction time of the above code
q

is dependant on 4. [15] give a code with construction time which is
independent of §. The rate function of [15] satisfies:

(5) Rsxun(6) > max&iuélfé(l — Hy(w) (1 B % <1 +1n %>)

[1] shows how to construct a code with arbitrarily large relative dis-

tance 0, rate (1 — ¢) and alphabet of size 20(:5) This construction
is demonstrated in the following ways:

(1) Approaching the singleton bound. When ¢ tends to infinity,
the rate function of [1] has the form of r(d) > 7o(1 — d). This
resembles the singleton bound except the v, factor.

(2) Beating the Zyablov bound for large alphabet size. It turns out
that the rate function of [1] beats the Zyablov bound for large
alphabets.

(3) Concatenation with codes of fixed alphabet size. When con-
catenating the construction of [1] with a code having some fixed
alphabet size, the over all rate beats the rate function of the
construction of [15] for very small rates.

We next show how replacing the balanced disperser with an unbalanced
2 1

disperser can improve the alphabet size above to 2000g™(1=5)) We also

show how this improvement implies an improvement on the above three

issues.

2.1.1. Improving the Alphabet Size. [1] give a construction of asymp-
totically good error correcting codes over large alphabets. We show
how replacing the balanced expander used in their construction can be
improved by using an unbalanced disperser:

Theorem 1. For every relative distance 6 < 1, there exists an explicitly
constructible family of codes of rate Q(1 — §) over alphabet of size:

° 20(1?15)’ when USan Gbalanaid as in [1]
. 20(10g(ﬁ))7 when usmg Gopt'
o 20008 (%) yhen using G Doy -

polyloglog(liié) .
e 22 , when using Gegplicit

6 IMPROVING THE ALPHABET-SIZE

2.1.2. Approaching the singleton bound. The construction of [1] con-
struction is of the form G o Cj,,, where Cj,, is a Justesen code? and
G is the balanced disperser, Gyaiancea @above. They show:

Theorem 2. There exists positive constants vy, 1, such that for every
d > Omin(0), there exists qumin(9), such that for every q > quin the rate
function of the construction satisfies:

(6) R(50) > 20(1 = 0) = o

We show that by using an unbalanced disperser we get:

Theorem 3. There exists a positive constant vy, such that for every
v > 0, there is Spin(y1) such that for every § > Omin, there exists
Umin(0), such that for every q > quin the rate function of the construc-
tion satisfies (6)

For large alphabets, the rate function (6) resembles the singleton
bound
R(6) < (1-9)
but with o in front of (1 —0) instead of 1. We show that the constant
Y0, can be improved when using an unbalanced disperser as shown
below. Another difference relates to v;. While in theorem 3, 7; can be

arbitrarily small, in the original construction it is a constant greater
than 0.

Disperser used Yo "
Gbalanced [1] ~ 0.021 | > 0.58
Gopt ~ 0.0605 | o(1)
G, ~ 0.0427 | o(1)

Thus, we achieve rate which doubles or triples the rate achieved in [1].

2.1.3. Beating the Zyablov bound for large alphabets. [1] show that for
large alphabet size (6) lies above the Zyablov bound (4). We show:

Theorem 4. The rate function Rgoc,,.(d,q) lies above the Zyablov
bound for alphabet size q of:

o 2°05) | when using Gyatanced ([1).

. poly(ﬁ), when using Gop.
1

o 20008°(i55)) when using G Doy -

° pfl;;](l—id), when using Gezplicit, where ﬁ\o/g(:c) — arotuteatoa(®)

Thus, we beat the Zyablov bound for much smaller alphabet size.

2We elaborate on Justesen code in section 3.2

IMPROVING THE ALPHABET-SIZE 7

2.1.4. Concatenation With Codes of Fized Alphabet Size. [1] show that
concatenating GoC' with an inner code having fixed alphabet size, they
get:

Theorem 5. There exist constant vy, and min(Y0) such that for every
0 > Omin, and prime power q, there is an explicitly constructible family
of codes, with rate function satisfying:

7) REG,q)> max ol — Hy(m)(1 -)

s<p<1-1 I
We show that using an unbalanced disperser we have:

Theorem 6. There exists constant vy such that for every 0 < § < 1,
and prime power q, there is a code family with rate function satisfying

(7).

Using an unbalanced disperser improves on the 7, constant as shown
below:

Disperser used |

Gbalanced [1] 0.0225
Gopt 0.0759
Gp,,, 0.0585

2.2. Error Correcting Codes with Explicit Decoding Proce-
dure. The construction G o C above of [1] gives codes with arbitrarily
large relative distance d, having rate (1 — 0) for large alphabets. It is
not clear, however, how to decode such codes. Denoting e = 1 — ¢, [9]
give an efficient decoding procedure for an error correcting code G o C'
of relative distance 1 — ¢, having rate Q(¢). The decoding is achieved
by taking C' to be a list decodable code, and G to be a balanced ex-
panding graph with strong mixing property. We show that replacing
the balanced graph with an unbalanced extractor the alphabet size be
improved. Specifically, we have:

Theorem 7. For any % > ¢ > (0 there is an explicitly specified code
family with rate Q(€), relative distance at least (1 —€) and alphabet size
12| given by:

Eaxtractor Used |2 Ref

Balanced Ramanujan Graph| 200 |[9] Theorem 8
GE, 20008*(2)) | Section 7.1

G eaplicit plog(%) | Section 7.1

Thus, we dramatically decrease the alphabet size with respect to [9].
We remark that if one could explicitly construct an optimal extractor

8 IMPROVING THE ALPHABET-SIZE

the alphabet size could be improved to (2)°)). The full details of the
proof, including encoding, decoding and construction times are given
in the appendix (section 7.1).

2.3. High Noise List Decodable Codes. [9] and [7] give three dif-
ferent constructions of high noise list decodable codes with varying
trade-off between rate and decoding list size, as described in table 1.
All constructions are of the form G o C, differing only in the code C
used.

In high noise list decoding we let the relative number of errors be (1—
€), where € > 0 is arbitrarily small, and present the other parameters:
rate, alphabet size and decoding list size as a function of € and the
block length of the code N. Recall that for high noise list decodable
codes 7 = O(e), L =Q(1), and ¢ = Q(2).

The first variant we consider has optimal rate of 2(¢), but suffers a
sub exponential decoding list size. This construction is from [9] and
takes C' to be a list recoverable code with constant rate and sub expo-
nential decoding list size. The exact parameters, including encoding,
decoding and construction times are given in the appendix (section 7.2,
theorem 11).

The second variant from [7], which takes C' to be a list recoverable
code from arbitrary size, has an almost optimal rate of Q(W)

and still suffers sub exponential decoding list size. However, this con-
struction shows that if one could construct better extractors for low
min—entropies (or list recoverable codes from arbitrary size with short
decoding lists), then one could get an almost optimal rate with small
decoding list size. The exact parameters including construction times
are given in the appendix (section 7.4, theorem 13).

The third variant has sub optimal rate, but has the merit of optimal
decoding list size. In this construction from [9], C' is taken to be a
list recoverable code with rate Q(¢) and O(%) decoding list size, trad-
ing a shorter decoding list with a worse rate. The exact parameters,
including encoding, decoding and construction times are given in the
appendix (section 7.3, theorem 12).

In all cases, we show how replacing the balanced expander with var-
ious unbalanced dispersers improve on the alphabet size of these con-
structions, as shown in table 1.

2.4. Summary and the Rest of This Work. Amplification using
expanding graphs is a widely used technique in both coding and com-
plexity theory. Our technical contribution is noting that for the case
of error amplification of codes the expanding graph needed is actually

IMPROVING THE ALPHABET-SIZE 9

an unbalanced disperser and that its entropy loss is a key parameter
in analyzing such codes constructions. The results above show that
when using such unbalanced dispersers with optimal entropy loss, the
resulting alphabet size, and sometimes the rate can be improved.

In section 3 we give the necessary coding and expanding graphs back-
ground, elaborating on the Zig-Zag graph construction, which we use
for constructing good dispersers. In section 4 we explain the inherent
loss in the rate of the almost optimal rate construction from table 1.
We show that this loss with respect to the optimal rate construction
stems from the fact that each construction uses a different flavor of a
list recoverable code. In section 5 we give the general structure of the
various GG o C' constructions, and in sections 6, 7 we give the detailed
parameter analysis of each construction.

3. PRELIMINARIES

We give the necessary background on codes and expanding graphs
we use.

3.1. Codes. Error correcting codes were built to deal with the task
of correcting errors in transmission over noisy channels. Formally, an
(N,n,d), error correcting code over alphabet X, where |X| = ¢, is
a subset C' C YV of cardinality ¢” in which every two elements are
distinct in at least d coordinates. n is called the dimension of the code,
N the block length of the code, and d the distance of the code. If C'is a
linear subspace of [F |, where ¥ is associated with some finite field F,
we say that C' is a linear code, and denote it [N, n,d], code. From the
definition we see that one can uniquely identify a codeword in which
at most % errors occurred during transmission. Moreover, since two
codewords from ¥V can differ in at most N coordinates, the largest
number of errors from which unique decoding is possible is N/2.

This motivates the list decoding problem, first defined in [4]. In list
decoding we give up unique decoding, allowing potentially more than
N/2 errors, and require that there are only few possible codewords
having some modest agreement with any received word. Formally, we
say that an (N, n), code C'is (p, K)-list decodable, if for every r € XV,
{c € C|A(r,c) < pN}| < K, where A(x,y) is the number of coordi-
nates in which x and y differ. That is, the number of codewords which
agree with r on at least (1 — p)IN coordinates is smaller than K. We
call the ratio n/N the rate of the code, and p the error rate.

In the high noise regime we let p = 1 — ¢, for € > 0 being very small.
A simple probabilistic argument shows that (1—e¢, O(¢))-list decodable

10 IMPROVING THE ALPHABET-SIZE

rate \ Decoding list size \ alphabet size \ Ref
Lower bound
€ ‘ I I ‘

Optimal rate list deecodable coedes

9¢~Tog(¢)

9]
0o2(L .
¢ 9N log() 2! gs(;) Sec‘qon 7.2
2l08” () Section 7.2
plf)g@ Section 7.2
Almost optimal rate list decodable codes - Using explicit extractors
9¢ ! log(1) [7]
log2 (2 :
€ 9 g(e)-Nlog(g(e)-N) 2 gg(;) Sectpn 7.4
log@M (L) 9log” () Section 7.4
plog(%) Section 7.4
Almost optimal rate list decodable codes - Assuming optimal extractors
9¢ Mlog(¢) 7]
e 1 2108"(2) Section 7.4
log(1) € olog®(7) Section 7.4
plog(%) Section 7.4
Sub optimal rate list decodable codes
g¢Tlog(¢) 9]
) 1 9log” (%) Section 7.3
€ ¢ olog®(7) Section 7.3
plog(%) Section 7.3
TABLE 1. The list decoding parameters and the alphabet

size improvements. For each construction we list the im-
provements achieved whe using Gop, Gp,,, and Gegplicit-

O

), Q) notations were omitted for readability. All

codes have (1 — €) relative fraction of errors. N is the
block length of the code and g(€) is a function dependent

only on €. The value v is in the interval (0, 1]. [;l\o/g(x)

sta

polyloglog(x)
nds for 2° .

codes with rate = Q(e), and || = O(%) exist. Also the rate must be

O(e), and

%] = Q(3).

The notion of list decodable codes can be generalized to that of list
recoverable codes, where for each coordinate ¢ € [N] there is some

subset of

|| of possibilities for explaining the received symbol in the

IMPROVING THE ALPHABET-SIZE 11

i" coordinate. Formally, we say that a code C' C [Z]V, is (4, a|X]|, L)-

list recoverable if for every Sy, ..., Sy C X of size a|X| each, there are
at most L codewords w € C, having at least 0N coordinates w; € S;.
List decoding is list recovering having a|>| = 1.

After discussing extractors in section 3.4 we will further generalize
the notion of list recovering to that of list recovering from arbitrary
size. As we will see this notion is equivalent to extractors.

List decodable codes, list recoverable codes and list recoverable codes
from arbitrary size (defined in section 3.5) are used as the code C'in the
constructions GoC of error correcting codes with efficient list decoding,
and of list decodable codes with various ranges of parameters.

Finally, we say that a code is explicit if a codeword of the code can
be computed in time polynomial in the code length.

3.2. Justesen Code. The construction GoC of [1] uses Justesen code
as the code C. A Justesen code has the advantage of a good relation-
ship between relative distance and rate, while still being explicit. This
is achieved by concatenating Reed-Solomon of appropriate rate with a
Wozencraft ensemble of codes. Before stating the parameters of Juste-
sen code we need the definition of the entropy function:

Definition 3. For every 0 < x < 1, the binary entropy function,
denoted Hy(x), is defined as:

1 1
() = rloga(1) + (1~ 1) logy(——)
Moreover, Hy(0), Ho(1) are defined to be O at these points aslim, o Ha(x) =
lim, .1 Hy(z) =0. For every 0 <z <1-— i, we define:

(8) Hyfw) = wlog,(-) + (1 - 2)log,(;——) +log, (g — 1)

Again, lim,_o H,(z) = 0, and so we define H,(0) = 0. It can be easily
verified that Hq(l—%) =1, and is concave and monotonically increasing
in [0,1— .

Theorem 8. For every §y < %, and alphabet size qq, large enough such

that Hq_l(%) > o, there exists an explicit family of codes with relative
distance 0y over alphabet of size qq, and rate:

9) R yus(60, q0) = % (1 - %)

For further analysis we get rid of the inverse entropy function ap-
pearing in the rate above. We begin by bounding the inverse entropy
function H_*(3):

12 IMPROVING THE ALPHABET-SIZE

Claim 1.

(10) H'(3) 2 5 -

1
log, q

Proof. (8) can be rewritten as:

Hy(z)
Ha (SL’) 102%2 q
1

log, ¢
we thus have, Hy(z) < 1. Since Hy(z) is mono-

+alog (g —1) <

<

+x
Letting x = % — 10g12q,
tonically increasing the claim follows. We remark that this bound is
tight. It can be easily shown that:

1 1 1
H' () <5 -
€12 2 4log,q

Substituting (10) in (9) we get:

Corollary 1. If Cj,s is a Justesen code over alphabet of size qy, and
relative distance dq, then:

1 260
11 R jus(do, ——0)— ———
(11) Jus(00, Qo) > " o, gy — 2

2
3.3. A General Decoding Scheme. We now give a description of
a decoding procedure for constructions of the form G o C' | which is
common to all the decoding procedures we consider later on. This
decoding procedure was used in the various constructions of [9], [7].
The procedure interprets the 7" symbol of a received word - a symbol
from the alphabet of G o C' - as a list of 'votes’ saying what ¢ thinks
are the symbols from the smaller alphabet of C', in the coordinates
neighboring to ¢ in G.

Formally, let G be an expanding graph G : [L] x [T] — [N] and
C C ¥N. The decoding procedure for G o C takes a word w € (X7)%,
and constructs N subsets of X: Sp,..., Sy in the following way: for
each [€ [L], and each t € [T] we add to Sg(,), the symbol w;;. See
figure 2A. We refer to this procedure as a voting procedure, as every
coordinate of w on the right votes for what it thinks are the symbols
that should be in each of its neighbors on the left. A coordinate i € [N]
having degree D, can get up to D different votes. Had the word w been
a legitimate codeword of G o (', all votes were identical. See figure
2B. Different decoding strategies use the N sets in different ways, as
described in section 5.

IMPROVING THE ALPHABET-SIZE 13

[N] (L]

So={ Wi}
S ={..w,. ..} _
n2 LY —_ T
WI—(lel,...,WI’T) €z
Sn3:{""wlk
A. The Voting Procedure
[N] [L]
W = T
W=(W, 4oy W,) €S
W oW o We < S 'sz(Wb e Wy T) esT
\W = T
W =(Wy 15000 Wy 1) €2

B. Different Votes

FIGURE 2. A. The Voting Procedure. w; € X1, is the
1™ coordinate of some word w € (XT)E. If ny € [N]
is the i neighbor of | € [L], S, contains the symbol
wy;. Similarly, ny, ng are the j, and k™ neighbors of 1,
adding the wotes’ wy j, and wyy to Spa, Sps accordingly.
B. Different Votes. a,b,c € [L] are all neighbors of i,
thus contributing their votes to S;. Had w,, wy, and w,
been coordinates of a legitimate codeword of G o C, the
votes were consistent, meaning Wq; = Wy j, Wej; -

We now analyze the complexity it takes to perform the encoding and
decoding of the amplification procedure. Let G be a [L] x [T] — [N]
disperser. Assume that given = € [L], and y € [T, computing G(z,y)
takes time t. For the encoding procedure, we need to iterate over all
elements in [L] and for each element to find all its [T'] neighbors. Thus,
the encoding time is LT -t. For the decoding procedure described
above, we need again LT -t time. We mention that in order to keep
all sets S1,..., Sy we need also LT log q space, where ¢ is the alphabet
size of the code C, used in G o C'. The exact resources needed for the
various dispersers we use are given below.

3.4. Expanding Graphs. Expanding graphs are highly connected
graphs, but nevertheless sparse. There are two major ways to define the
expansion property of these graphs. The weaker property of expansion
states that every subset of the vertices X is expanded by some factor

14 IMPROVING THE ALPHABET-SIZE

C' > 1, meaning the size of the neighbor set of X is at least C'|X|. This
property assures that if we start with a small subset X then after not
too many expansion steps, we will visit almost all the vertices. This
property is similar® to the property of dispersers defined below. The
stronger property of mixing (see, [2], Chap 9) states that the number
of edges between any two subsets of vertices is close to the relative
number of edges leaving these subsets. This property assures that if
we start with a small subset of vertices X then after not too many
steps where in each step we proceed from X to its neighboring set, not
only we visit almost all vertices, but each vertex is visited more or less
the same number of times. This property is similar to the property of
extractors defined below. Thinking of our graphs as bipartite graphs
with regular left degree, we turn to the weaker definition of dispersers:

Definition 4. (Dispersers) G : [L] x [T] — [N] is a (K, ¢€)-disperser
if for every X C [L], |X| > K we have [Tg(X)| > (1 —€)N. The
entropy loss of the disperser is Ag = % The disperser is explicit if
G(z,y) can be computed in time polynomial in the input length, i.e.,

polynomial in log L + logT'.

Thus, the disperser assures that each small subset of [L] sees almost
all [N]. K is referred to as the min—entropy for which the disperser
assures the required expansion. K vertices have at most KT neighbors,
while the expansion property assures almost N neighbors. Thus, the
entropy loss Ag = % gives some measurement of the quality of the
disperser’s expansion. It is useful to note that the expansion property
of dispersers works for both sides, as demonstrated in the following
lemma:

Lemma 2. (Reverse expansion) If G : [L] x [T] — [N] is a (K, ¢)-
disperser then for any subset Y C [N], |Y| > eN, we have |[I'g(Y)| >
L—-K.

Proof. Any X C [L], |X| > K has [I'¢(X)| > (1 — €)N. This implies
that for any subset Y € [N], |Y| > €N there can be a set of size at
most K in [L] missed by Y. Thus, [I'¢(Y)| > L — K O

For the stronger definition of extractors, we need the following: A
probability distribution D on € is a function D : Q — [0, 1], satisfying
YeeaD(x) = 1. For an integer M we define Uy as the uniform distribu-
tion over [M], meaning Uy (z) = ; for every « € [M]. The statistical

3Expanders assure the expansion of every small enough set whereas dispersers
assure the expansion every large enough set.

IMPROVING THE ALPHABET-SIZE 15

distance between two distributions Dy, Dy, denoted |D; — Ds| is:

1
§Eer|D1(m) — Dy()| = max |D1(S) — D2(5)]

We say that D; and Dy are e-close if |D; — Ds| < €. We are now ready
for the extractor definition:

Definition 5. (Ezxtractors) E : [L] x [T] — [N] is a (K, €)-extractor
if for every X C [L], |X| > K, the distribution of E(z,y), is e-close
to Uy, where x is taken uniformly at random from X and y is taken
uniformly at random from [T]. The entropy loss of the extractor is %
€ is called the extractor error. An extractor is explicit if E(x,y) can
be computed in time polynomial in the input length, i.e., polynomaial in

log L + logT'.

As opposed to the definition of dispersers the condition E(z,y) is
e-close to Uy states that not only every element in [M] is sampled, but
all elements in [M] are sampled about the same number of times. Thus,
any extractor is also a disperser having the exact same parameters. K
is called the min—entropy of the extractor. A stronger definition of
extractors demands that the output distribution stays close to uniform
even if the random value of y is revealed.

Definition 6. (Strong Extractors) E : [L|x[T] — [N] is a (K, €)-strong
extractor if for every X C [L], |X| > K, the distribution y o E(z,y)
is e-close to Uyryx|n), where x is taken uniformly at random from X
and y is taken uniformly at random from [T'|. The entropy loss of the

strong extractor is &. The strong extractor is explicit if E(x,y) can

N
be computed in time polynomial in the input length, i.e., polynomial in

log L +logT.

As mentioned before the property of extractors is closely related to
that of mixing. It is immediate from the definition of extractors that:

Fact 1. (Eztractors mizing property) If E : [L] x [T] — [N] is a (K, ¢€)-
extractor, then for every S C [N], and every X C [L], |X| > K, we
have:

Te(X)nsS] S|

X|T N
where
Ip(X)={E(x,i)|z e X,ie[T]}

If E above is strong we get for every S C [T] x [N], and every X C [L],
| X| > K

Ip(X
LeCons_ s

| X|T T-N

16 IMPROVING THE ALPHABET-SIZE

where
Ip(X)={(G,E(z,i)|z e X,ic[T]}

Another way to write the mixzing property of strong extractors is: For
every S C [T] x [N], there are at most K elements x € [L], for which:

Ce(@)ns] 15
(12) T ™| €

Just as with the reverse expansion of dispersers, extractors have
reverse mixing, as demonstrated in the next lemma:

Lemma 3. (Reverse Mizing) if E : [L]x[T| — [N] is a (K, €)-extractor
with regular right degree Q) = LN—T then for every S C [N], and X C [L],
| X| > K, we have:

‘M_H‘ N
151Q ISI L

Proof. By the mixing property of extractors we have: V.S C [N], VX C
[L], | X| > K it holds that:

Te(X)NS| |S‘
T1X]|

Multiplying and dividing by %@I and noting that |T'g(X)NS| =
II'e(S) N X| we get:

Qls| '|PE<S> nx| 1/X|
TIX | QS| N

Substituting @) = % the lemma follows. O

Finally, we mention that [11] give the following lower bounds, which
have matching upper bound for extractors and strong extractors: if
E:[L] x [T] — [N] is a (K, €)-(strong) extractor, then:

1
(13) T = Q(E—Qlog
entropy loss:

(14) Aa = Q(5)

IMPROVING THE ALPHABET-SIZE 17

3.5. Extractors and List Recoverability from Arbitrary Size.
We now further generalize the notion of list recovering to that of list
recovering from arbitrary size. Recall that a code C' of block length N is
(0, a3, L)-list recoverable if for every Sy, ..., Sy C ¥ of size o|X| each,
there are at most L codewords w € C', having at least 6NV coordinates
w; € S;. We say that the i*" coordinate of a codeword C(z) agrees with
some S; C ¥ of arbitrary size, if C(z); € S;. Denoting S = |J,{5;, 1},
where {S;,1} = {(x,7)|x € S;}, we say that the agreement of C'(z) with
S, is the number of coordinates ¢ having agreement with S;. The list
recovering property can be now thought of as having a small number of
codewords having some fixed agreement (JV) with a set S C X x [N].

In list recovering from arbitrary size we demand that for each S C
¥ x [N] there is a small number of codewords having relative agree-
ment with S which is slightly more than the proportional size of S.
Formally, A code C' C [X]V is (L, €) list recoverable from arbitrary size
if for every S C ¥ X N, there are at most L codewords C(z), for which
As(x) > (3 + ON, where Ag(x) = {i|(;,7) € S}.

[16] have shown that the notion of list recoverability from arbitrary
size is equivalent to that of a strong extractor. Intuitively, and using
the notations of extractors and codes above, the mixing property for
strong extractors states that for every subset S C [T] x [M] there are
few vertices having relative number of neighbors in S larger than the
relative size of S. In list recovering from arbitrary size there are few
codewords having relative agreement with S C 3 x [N] larger than the
relative size of S. Formally, [16] show:

Theorem 9. If E : [N] x [D] — [M] is a (L, €)-strong extractor, then
the code Cg : [N] — [M]” defined by Vz € [N], C(x) = (E(z,1),..., E(x, D))
is (L, €)-list recoverable from arbitrary size. Conversely, if Cg is (e, L)
list recoverable from arbitrary size then E is a (%, 2¢)-strong extractor.

We can thus derive an upper bound on the rate of a list recover-
able code from arbitrary size from the degree lower bound of strong
extractors:

Lemma 4. For every e > 0 if Cp : [N] — [q]? is a (¢, L)-list recover-
able code from arbitrary size and L is constant in N, then the rate of
the code ¢, satisfies:

2

_logQN_O €)

Proof. Theorem 9 implies that Cg is a (%,26)—strong extractor F :
[N] x [D] — [M]. By the degree lower bound of strong extractors (13)

"op = Dlogq ‘loggq

18 IMPROVING THE ALPHABET-SIZE

we have D = Q(% log(<)). Taking L independent of N, the lemma
follows. O

3.6. The Dispersers and Extractors Parameters. We now elabo-
rate on the exact parameters of the dispersers and extractors surveyed
in section 1.2. The extractors and dispersers we mention are used as GG
in the various G o C' constructions appearing in this paper. In all cases
we consider a (K €)-disperser/extractor G : [L] x [T] — [N].

We also summarize in table 2 the parameters of the relevant graphs
below using slightly different notations, which comply with the nota-
tions of [1] for ease of presentation.

3.6.1. The Optimal Disperser Gop. Ta-Shma and Radhakrishnan [11]
show that any disperser with parameters as above must have degree:

1 N

1 T = Q(-log —

(15) (~log 22)
and entropy loss:

KT 1

1 — = Q(log -

(16) = 9log)

Probabilistically, [11] show a disperser with:
2 N

1 I'=-(In—=+1

(17) 2 41)

and with entropy loss:

KT
N
The disperser we refer to as G, has degree and entropy loss, as in (17),

(18). Gop is used in all constructions (except the explicit decoding of
1] in section 2.2, where an optimal extractor is needed).
P

(18) = 2(in(1) + 1)

3.6.2. The Balanced Disperser Gyaianceda- We compare all constructions
to those using Gpuanced; based on Ramanujan graphs, having the pa-
rameters:

(19) > A1)

(20) A== =4(- 1)

IMPROVING THE ALPHABET-SIZE 19

3.6.3. The Zig-Zag Based Constructions Gp,,,, Gg,,., and Gegpiicit- As
mentioned above the graphs G in the G o C constructions are dis-
persers/extractors for the high min-entropy range. Such graphs can
be constructed using the recent zig-zag product scheme of [13] tailored
for this range.

Zig-Zag preliminaries: We begin with the definition of min-entropy.
A random variable X distributed over {0,1}" is said to have k < n
bits of min-entropy, denoted H,(X) = k, if for every z € {0,1}",
Pr[X = z] < 27%. Min-entropy is thus a measurement of the amount
of randomness in a weak source which is not uniformly distributed. An
extractor is a function which takes a weak random source X having
some min—entropy k < n and transforms it to almost purely (ideally
k) random bits. Formally (using min—entropy term):

Definition 7. A function Ext : {0,1}" x {0,1}* — {0,1}™ is a (k, €)-
extractor if for every X distributed over {0,1}", having k min—entropy,
Ext(X,Uy) is e-close to U,,.

[14] have shown that no deterministic function can perform such
an extraction. Thus, the extractors we consider take as input (apart
form the weak source) an additional random seed of pure randomness
to perform the extraction. Let us recall that for the application of
codes, we consider agreement sets of size ¢ out of L, where € > 0 is
some constant independent of L. In terms of min—entropy this is like
having a source with £k = log L — log(%) bits of min—entropy out of
n = log L. Defining A =n —k = %, we say that the source has A
min—entropy deficiency. Thus, for the error amplification of codes we
need an extractor for sources with constant min—entropy deficiency. As
pointed out by [3] any source X of length n having A deficiency can be
thought of two ’almost independent’ sources each having A deficiency.
Formally, (3] show:

Lemma 5. Let X be a random source distributed over {0,1}", having
A deficiency. For every e > 0 and every ni,ny, such that ny +ns = n,
X is e-close to a block source X1 0 Xy (o denotes string concatenation),
where X1 has A deficiency, and conditioned on any value of X1, Xo
has A+ 2log(1) deficiency.

[14] implies that no deterministic extraction is possible for such a
block source, even if A is small. [10] give a simple extractor for block
sources. The idea is to take a relatively short truly random seed, which
is used to extract the randomness from X5. The extracted randomness
is then used to extract the randomness from X;. The smaller A is, the
smaller the truly random seed can be.

20 IMPROVING THE ALPHABET-SIZE

However, this idea looses A min—entropy ’by definition’. The zig-zag
scheme of [13], overcomes this loss. We now sketch the zig-zag scheme,
see figure 3.

Let X be a source distributed over {0,1}", having A min-entropy
deficiency. Let € > 0, n; +no = n, with X7, X5 as in the lemma above.
Let By : {0,1}" x {0,1}* — {0,1}™, be a (ny — A — 2log(1),¢)
extractor. FEs uses dp truly random bits to extract mo random bits
from X5. Let Ey : {0,1}" x {0,1}™ — {0,1}™, be a (ny — A¢)
extractor, having the following property: F; can be extended to a pair
of functions (Ey, Cy) : {0,1}™ x {0,1}™ — {0,1}™ x {0, 1} ™2™
such that (F,C}) is a 1 — to — 1 mapping.

E uses the output bits of E5 to extract m; random bits from X;.
The point is to note that:

(21) <E1,Cl>(X1,E2(X27Y))OXQOY2210ZQOX20Y

where Y = Uy, and Z;, Z, denote the output distribution of (E;, Cy),
is a 1 —to — 1 mapping. Now, since Z; is close to uniform, we expect
that given the m; random bits of Z; extracted from X, there are still
almost n—A+dy—m4 random bits in Zy0X50Y . Thus, we apply a third
extractor using fresh random bits on Z 0 X5 0Y. This extractor needs
to be a ((n — A + dy — my), €)-extractor By : {0, 1} Fmermtnatda o
{0,1}% — {0,1}™. Thus, the total entropy loss of the process is only
the entropy loss of E3 and the total amount of random bits used is
dy + ds.

The Zig-Zag disperser: For most of our applications we only need a
disperser with optimal entropy loss. Seemingly, the natural thing to do
would be taking E;, Fs and E3 to be dispersers. Doing so will reduce
both the amount of randomness needed and the entropy loss which is
smaller for a disperser. However, if for example Fs is a disperser the
argument above fails. To see why we note that X; o X5 is a block
source in which X; conditioned on X, might have very small or even
no min—entropy. Thus, if E, is a disperser and FEy(X5,Y) is far from
uniform, X; conditioned on F3(X5,Y) might have very small or even
no min—entropy. This in turn implies that although (E;,C4) is a 1 —
to — 1 mapping we cannot argue about the amount of min—entropy in
Zy0 X50Y conditioned on Z; as we did before. Similarly, if we take F;
to be a disperser, Z; might be far from uniform and again we cannot
argue about the amount of min—entropy in Z,, given Z;.

We thus take only E5 to be a disperser. The above argument is
identical, only we ’extract’ the n — A + dy — my bit of min—entropy
from Z5 o X5 0Y in a ’disperser manner’. This yields Z3 which is not
close to uniform but close to have full support. This is exactly what

IMPROVING THE ALPHABET-SIZE 21

| X |
H (X)=n-A \ " !
H (X)=n-A 1 X Xy iy U,
d 2
H_(X,)=n,—A-2log(1fe m ”2\ /2
—
—
m,
~
{£.€)
—
| 4 2y = i
m, n +m,—m, n d, d,

2
m;,

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

FicurE 3. The zig-zag scheme

we need as we want a disperser and not an extractor. Taking E3 to be
a disperser, the entropy loss of the scheme above will be the entropy
loss of a disperser which is much better than that of an extractor. Also
dz can be much smaller for a disperser.

The parameters: We now give the exact parameters of the zig-zag based
constructions which we use. In all three constructions F; is the extrac-
tor of [5] based on an expander random walk:

Theorem 10. For any € > 0 and 0 < k < n there exists an explicit
(n — A, e)-extractor E = {0,1}" x {0,1}* — {0,1}", where d = A +
2log() +2

Using an appropriate expander for the construction of E; (e.g. a
Caley graph), it can be easily extended to be a 1 — to — 1 mapping
(Er, 1) {0,13" x {0,1}* — {0,1}" x {0,1}".

For Gp,,, we take E to be an optimal extractor and E3 to be an
optimal disperser. Gp,,, is used in the error correcting codes construc-
tion from section 2.1 and all constructions of list decodable codes from
section 2.3. This construction actually appears in [13] lemma 6.13 only
with E5 being an optimal extractor.

Lemma 6. ([13] corollary 6.13, replacing Es with an optimal disperser)
For any 1 < K < N and € > 0, there exists a (K,¢€)-Disperser G :

22 IMPROVING THE ALPHABET-SIZE
(L] x [T] — [N] with

(22) T = 512(%)3(10g(%) + log(%) +2)?

(23) A= 2(111(%) +1)

Given x € [L], and y € [T] computing G(a: y) takes 25log® L time.
The construction time of the disperser is 2(%) poly log L, and it can
be represented in O((& + log(1))?) space.

For G'g,,, we take Ey and E3 to be optimal extractors, this construc-
tion is given in [13] lemma 6.13. Gg,, is used in the construction of
error correcting codes having efficient decoding from section 2.2.

Lemma 7. ([13] corollary 6.13) For any 1 < K < N and ¢ > 0, there
exists a (K, €)-Extractor E : [L] x [T] — [N] with

1 L 1
(24) T = 1024(=)*(log(=) + log(=) + 2)?
€ K €
Lo
(25) A=16(-)"In2
€
Given x € [L], and y € [T]| computing G(x y) takes 25log? L time.
The construction time of the disperser is 2(%) poly log L, and it can

be represented in O((£ + log(1))?) space.

We emphasize that although Gp,,, and Gg,,, use optimal subcompo-
nents these subcomponents are small enough so that the construction
time is exponential in . Recall that for our applications % L . L where
1 — € is a constant representlng the decoding radius/minimum distance
of the codes.

For Gegpiicit we take Ey and Es to be the optimal entropy loss extrac-
tors of [12]. This construction is explicit, however its entropy loss and
degree are inferior to previous constructions. Gegpiicit is used through-
out all the constructions we consider.

Lemma 8. ([13] Theorem 6.12 using the explicit extractors of [12]
Theorem 4) For any 1 < K < L and ¢ > 0, there ezists a (K,¢)-
Eztractor E : [L] x [T| — [N] with degree:

(26) T — 90(log® (1 log(%))
and entropy loss:

(27) A= 128(12)

€

IMPROVING THE ALPHABET-SIZE
Graph A T Ref
Gopt 2(ln(%) +1) 1 %(111(1%) +1) 1 i [11]
G [200(2) + 1) [512G log(;y) + Tog(E) + 27 | 13
Gompe | 12817 200 oy P) 13
A5 -1)
Gbalanced 4(% -) i_(; [1]
TABLE 2. The dispersers’ and extractor’s parameters

we use to improve on [1].

L] x [T] — [N], which is a ((1 — §)L,d)-

for G :

The parameters are quoted

disperser/extractor. § is the relative distance of G o C.
0o 18 relative distance of C' and N s the block length of

C.

23

Givenz € [L], andy € [T] computing E(z,y) takes 25log? L+O((log(£)+

log($))?) time. The construction time of the extractor is poly(()(%)

4. COMPARING THE Li1ST DECODABILITY VARIANTS

Comparing the optimal rate and almost optimal rate list decodable
codes in table 1, we see that both have sub exponential decoding list
size, and both have the same alphabet size®. To see why we loose on
the rate, we observe that each construction uses a different variant of
a list recoverable code. The optimal rate construction uses a list re-
coverable code whereas the almost optimal rate construction uses a list
recoverable code from arbitrary size. We now compare the parameters

of these codes.

type of the code 12| Decoding list size | error rate
L.R.C. O() | sub exponential in N [O(1) Q1)
L.R.C. from arbitrary size | O(Z) | sub exponential in N | O(1) Q(m)

Where € > 0 is the agreement fraction of the resulting list decodable
code. Thus, we loose on the rate when using list recoverable code from

arbitrary size.

Furthermore, if we think of € above as a parameter and compare the
rate upper bound for list recoverable codes from arbitrary size with the
probabilistic bound for list recoverable codes, both having decoding list

of size O(%), we have:

4The benefit of the almost optimal rate construction is that when using optimal
extractors for the left list recoverable from arbitrary size code, one can get optimal

decoding list size.

24 IMPROVING THE ALPHABET-SIZE

type of the code |X| | Decoding list size | error | rate
L.R.C. 0(3) o) o) | Q1)
L.R.C. from arbitrary size | O(2) o) O(1) O(@)

The mentioned rate upper bound of list recoverable codes from arbi-
trary size is immediate from the connection with extractors (as shown
in section 3.5). The probabilistic bound for list recoverable codes is
shown in [8] Corollary 9.3.

5. THE INTERNAL STRUCTURE OF THE DIFFERENT
CONSTRUCTIONS

In this section we summarize the various ways in which we use the
G o C' construction. In section 1 we give the example where C' is a
linear code, as in [1]. For the constructions in sections 2.2, 2.3 we need
to take C either as a list decodable code or as a list recoverable code
or as a list recoverable code from arbitrary size. As shown below, the
choice of ' determines the internal structure of the proof regarding the
list decodability of the overall construction.

5.1. Taking C to be a Linear Code. For the asymptotically good
error correcting codes [1] take C' to be a linear code. The parameters
of G o C where C' is a linear code are given in lemma 1. We now give
the proof.

Lemma 1. If G : [L] X [T] — [N] is a (eL,0)- disperser with entropy
loss A, and if C is a [N,7N,N], code then GoC'is a [L, 5L, (1—¢)L]
code

qT

Proof. The alphabet size of G o C' is immediate from the composition
definition. By the composition definition the rate of G o C is:
Nlogq N r-e

(28) " Tloa() " IT T A

For the relative distance, let C'(x) be a codeword of C. C' is linear with
relative distance ¢, and so there are at least NV coordinates which are
not zero in C(x). By the reverse expansion of dispersers (Lemma 2),
these 0N coordinates have at least (1 — €)L neighbors in G, yielding
(1 — €)L coordinates different from zero in G o C'(x). Thus, from the
linearity of G o C' it has relative distance (1 — €). U

IMPROVING THE ALPHABET-SIZE 25

5.2. Taking C to be a List Decodable Code. For the unique decod-
ing of asymptotically good error correcting codes mentioned in section
2.2, [9] take C to be a list decodable code, and give a unique decoding
procedure for a linear code. The next lemma describes the decoding
scheme and shows how the parameters behave.

Lemma 9. Assuming:

o for every a > 0, there exists [N, TN, %N]q(a) code C, which can
be list decoded from (1 — «) fraction of errors.
e for every € > 0, there eists (eL, 1) extractor G : [L] x [T] —

[N], with regular right degree Q = XL, and entropy loss A.

Then for every 0 < 6 < 5, € < 8, the code GoC is [L, L, (1—6)L}q(%)T
code, for which there is a list decoding procedure from a fraction of
(1 —6) errors, implying a unique decoding procedure from 156 fraction
of errors.

The proof follows exactly the lines of [9]:

Proof. Let 6 > 0, € < §. Let C be the code from the first assumption
using a = %, and G the extractor from the second assumption. Exactly
as in lemma 1, GoC' has the stated rate, relative distance, and alphabet
size. We now show the decoding procedure for G o C. Let w € [¢7]%,
be a word which agree with some codeword G o C'(z) on at least 6L
coordinates. Denote by X C [L] the coordinates in agreement. |X| >
0L > eL. We now perform the decoding procedure described in section
3.3, only, instead of taking all votes to the sets Sy, ..., Sy, we take only

the t most popular votes, for ¢ to be determined later. We now claim:

Claim 2. If for some i € [N|, C(z); ¢ S;, then in G there are at most

Q .

71 edges between X and i

Proof. All edges from X to i vote for the same symbol, as X contain

coordinates of a legitimate codeword. Thus, if this symbol didn’t make

it to the t most popular votes, it means that there are ¢t other symbols,
Q

each having more than 75 votes. Assuming by contradiction that the

claim is false imply that the degree of i is bigger than ¢ - t% + t% =
Q. O

Thus, denoting by Y € [N] all coordinates for which C'(z); ¢ S;, we
conclude that

Q
Fe(X)NY| <|Y|——
Le(X)NY| < ¥l

26 IMPROVING THE ALPHABET-SIZE

Choosing t such that t + 1 = r%7 we have:

TFe(X)NY|] 6
29 —_— < =
2 vig "2
The reverse mixing lemma (Lemma 3), implies that:
Fe(X)NY 1N
| G() ’ > 5(1 . __)
Y@ 41Y]
And so for every Y such that [Y| > £
Ta(X)NY| ¢
30 —_— >
& vig 2

Thus, it must be that |Y| < &, otherwise (30) contradicts (29). We
conclude that there are more than %N sets S;, which contain C(z);.
We now use the sets S, ..., Sy to construct ¢ strings wy, ..., w;. For

each 1 <j <t,and 1 <i < N define (w;); be the 4t symbol of S;.

Claim 3. At least one of the words wy, ..., w; has aN agreement with

C(z).

Proof. More than half of the sets S; contain the symbol C(x);. Aver-
aging over the ¢ words wj, there is at least one such word with at least
N

2 coordinates from C(z). By the choice of t, & > ¢N = aN. O

Thus, using the decoding procedure of C' on wy, ..., w;, gives a list
which contains . Now, for the unique decoding, let w € [¢7]* have at
most 156 < (1—9) fraction of errors. We apply the decoding procedure
above, to get a decoding list L. Encoding all words in L we find the

single word within distance at most % from w. O

Remark 1.

(1) One could argue that we don’t need the t popular votes, and we
can actually do with all Q) votes. Howewver, this might have a
time cost, especially if € << 6. To see why, recall that t ~ % <<

%. Q = % = /—E\ Even if we take an extractor with optimal
entropy loss and constant error, we still have () = 0(%) >> %.

(2) One could worry what happens if the t we choose is larger than
Q. This cannot happen as) = % = %, where € < 0, and in

all cases A > 2, meaning () > % ~t.

5.3. Taking C to be a List Recoverable Code. For the optimal
rate list decodable code construction and the optimal decoding list size
list decodable code construction mentioned in 2.3, [9] take C' to be a list
recoverable code. The next lemma gives the parameters and decoding
scheme for composing a list recoverable code with a disperser.

IMPROVING THE ALPHABET-SIZE 27

Lemma 10. Assuming that for every ¢ > 0:

e There exists (eL, %) disperser G : [L] x [T] — [N] with entropy
loss A, and regular right degree QQ = % = %

e There exists (N, rN)y—o(1)2y code C which is (3,2, M)-list re-
coverable code

Then for everye < 0, GoC'is a (L, %L

A)0((1)2)T; (1—67 M)-Z’LSt decodable

code

We follow the lines of [8] ”Reduction of list decoding to list recover-
ability using expanders”.

Proof. Let ¢ > 0. Let C, and GG be as above. The block length, rate
and alphabet size of G o C' follow exactly as in lemma 1. We now show
the list decodability parameters. Let w € [¢7]F, be a word which agree
with some codeword G o C'(z) on at least eL coordinates. Denote by
X C [L] the coordinates in agreement. |X| > eL. We now perform the
decoding procedure described in section 3.3, yielding Sy, ..., Sy of size
% each. By the expansion property of GG, there are at least %N sets S;,
for which C'(x); € S;. Thus, performing the decoding procedure of C
we get the decoding list of size M. U

5.4. Taking C to be a List Recoverable Code from Arbitrary
Size. For the almost optimal rate list decodable code construction
mentioned in 2.3, [7] takes C to be a list recoverable code from ar-
bitrary size® to construct an almost optimal rate list decodable code.
The next lemma analyzes the parameters and decoding scheme.

Lemma 11. Let C C [M]P be a code of rate r¢, which is (L,(c) list
recoverable code from arbitrary size. Let G : [N] x [T] — [D] be a
(eN, (a)-disperser, with entropy loss Ag = #. if M- D > 1_?;’2(;,
then G o C' has the following properties:

(1) It has rate r¢ - i, and is defined over an alphabet of size M.
(2) It is a (1 — €, L)-list decodable code.

Proof. Let C' and G be as above. The rate and alphabet size follow
immediately as in lemma 1. We now show the list decodability param-
eters. Let w € [MT]N, be a word which agree with some codeword
G o C(x) on at least eN coordinates. Denote by X C [N] the co-
ordinates in agreement. |X| > eN. We now perform the decoding
procedure described in section 3.3, yielding Sy,...,Sp. We think of
each element s € S;, as an ordered pair (s,i) € [M] x [D]. Thus,
S = J; Si can be thought of a subset of [M] x [D]. Since X is the set

°In the terminology of [7] C is a strong extractor.

28 IMPROVING THE ALPHABET-SIZE

of coordinates in agreement, then for all the neighbors G(z, j) € [D]
(j € [T)) of z € X, we have:

(w2); = C(@) G ()

More specifically we have:

(31) (we)j, G(z, 7)) = (C2)c@.), G2, 5))

By the expansion property of G, there are at least (1 — (g)D in-
dices G(x,7) € [D] for which (31) holds. Thus, denoting Ag(x) =
{i|(C(z);,1) € S}, we have that |Ag(z)| > (1 —{g)D. Now, |S| < NT,

and by the assumption M - D > %, and so:
S| NT
— D < (—— D <(1-— D<A .
(MD+CC) _(MD+CC) < (1-¢e)D < As(z)

Thus, by the list recoverability from arbitrary size property of C, there
are at most L codewords having |As(z)| agreement with C(x), or in
other words at most L codewords having e N agreement with G o C(z).

O

6. ASYMPTOTICALLY GOOD ERROR CORRECTING CODES OVER
LARGE ALPHABETS

Section 1.1 shows that when taking the [1] construction of C,s o
G, where Cj,, is a Justesen code and G is a balanced disperser, the
alphabet size, as well as the rate can be improved by replacing the
balanced expander with an unbalanced one, while keeping all other
parameters the same®. In this section we formally prove this (Theorems
1-6).

6.1. Improving the Alphabet Size (Theorem 1). The proof is
straight forward from lemma 1:

Proof. Let 0 < 1. Take C to be a [N,7,sN,dusN],,,. Justesen code
having constant rate, constant relative distance and constant alphabet
size. Take G : [L] x [T] — [N] to be a ((1 —0)L, 0 sys)-disperser. By the
above lemma the resulting code G o C'is a [L, “usd=2], 0L]gr ~code.
Plugging in the degree and entropy loss of the dispersers Ghralanced: Gopt
Gp,,. and Gegpiicit gives the claimed rate and alphabet size.]

6This is true when using Gopt or Gp,,,. For the explicit extractor Gegpiicit the
alphabet size is improved, but the rate is inferior to that of [1], due to its larger
entropy loss.

IMPROVING THE ALPHABET-SIZE 29

6.2. Approaching the Singleton Bound (Theorems 2, 3). We
first see how the rate function of G o C},, behaves for prescribed al-
phabet size ¢ and relative distance § < 1. The analysis below follows
that of [1], only we represent the rate function using the entropy loss
of the disperser G as implied by (28):

(32) RateGoCJ“S (57 Q) = RJus(50a QO) : (1 A 5)

Where, q,0 < 1 are the prescribed alphabet size and relative distance of
the construction and &y, o = q% are the relative distance and alphabet
size of Cj,,. Writing the rate function as above it is immediate to see
the improvement in the rate when using an unbalanced disperser with
optimal entropy loss:

(1) The smaller the entropy loss is, the larger the rate is.

(2) The alphabet size of the Justesen code is q%, where 7' is the
degree of the disperser used. Since unbalanced dispersers have
smaller degree the alphabet size of the Justesen code can be
larger. The rate function of Justesen code (9) is increasing in
the alphabet size and so we get a better rate for the Justesen
code, and thus a better rate for the overall code.

We now turn to the analysis. Substituting the Justesen code lower
bound (11) in (32) we have that:

E -T-(1-9)
o ? 2 E 1 N B
(33) Rateceo,,,(0,0) 2 Boll =0) = 52— =57
where:
1— 2560
4 Eo =
(34) 0 2A
209
E — R
(35) ! A

We now split the analysis for the balanced and unbalanced cases:

Claim 4. For the balanced disperser Gyaianced, the following holds:
(1) Ey is of the form {L((‘?)), where p(9) > 1 and lims_q u(0) = 1.
(2) Ey-T-(1=9) is a constant which depends only on d.

Thus, for the balanced case (33) can be rewritten as:

f(0o) 9(do)
> — [A—
Rategoc,,.(0,q) > 20) (1-19) g, q — 2T
Let 71 > g(do). Let 9 < f(dp). By the property of p(d) above there

exists dmin(70) such that for any 6 > dpin, 70 > J;((‘?)). Since T is

30 IMPROVING THE ALPHABET-SIZE

increasing in 9, for every 0 > 0,,:,, there exists ¢, such that for every
q > Qmin logyq > 2T. Altogether, there exists positive constants 7,
71, such that for every d > ,in(70), there exists gnin(J), such that
for every g > @uin the rate function of the construction satisfies (6)
proving theorem 2.

Claim 5. For Gy and Gp,, the following holds:
(1) A depends only on 6y and lims_; T - (1 —0) = 0.
(2) Ey depends only on d.

Thus, (33) can be rewritten as:
g'(9)

Rategoc,,.(0,9) > f'(d0)(1 = 0) — 2log, g — 2T

where lims_,; ¢'(0) = 0. Let v9 = f'(do). Let 7 > 0. Since lim;s_,; ¢'(0) =
0 there iS dmin(71), such that for every § > din, 71 > ¢'(9). Again,
since T is increasing in 4, for every & > 0., there exists ¢, such
that for every q > @min logy ¢ > 2T'. Altogether, there exists a positive
constant g, such that for every 4y > 0, there is d,,;,(71) such that for
every 0 > Opin, there exists ¢ni,(9), such that for every ¢ > ¢pin the
rate function of the construction satisfies (6). This proves theorem 3.

We now turn to prove claims 4, 5 and estimate the exact values ~q
can attain in each case. We note that by lemma 1, the disperser we
need is a ((1 — 0)L, dp)-disperser G : [L] x [T] — [N], where N, &
are the block length and relative distance of the Justesen code used
in G o Cj,s, and 0 is the relative distance of G o Cy,s. We refer the
reader to table 2 for the disperser graphs parameters 7" and A used in
the proofs below.

Proof. (Claim 4) The degree T' of Gparancea Satisfies:
4(+ —1) 4(+ —1)
5 do > 40

where lims_; p1(6) = 1, u > 1 (see [1] section 3). The entropy loss of
Gralancea satisfies:

A=(1-0)T
Substituting the above in (34) we get:
1-2
B, = (:)
8z — 1)

f(%0)
w(9)

degree and entropy loss above in (35) we have:
Ei-T-(1-90)> 2.

Obviously, Ey is of the form as claimed above. Substituting the

IMPROVING THE ALPHABET-SIZE 31

(1—240)
8(%—1)
7o is attained at 9y ~ 0.29, and is =~ 0.021. 0

Thus, we can take vy < , and y; > 20p. The maximum value of

Proof. (Claim 5) For G, substituting its entropy loss in (34) we get:
(1 —2do)
2(In(5) +1)

Obviously, Ey depends only on §yg. Also A is dependent only on 4y, and

by the degree of G, we have lims_,; T - (1 — §) = 0 as claimed above.
(1—240)
2(1n(%)+1)'

Ey =

By E, above, we can take vy =

value of 0.0605 at dy =~ 0.1.

For Gp,,, substituting its entropy loss in (34) we get:
(1 - 250)

2(In(5) + 1)

Again, Ey and A depend only on §y. Also lims, 7 - (1 —0) = 0 as
(1—200)
2(In(50)+1)
its maximum value of 0.0427, at dg ~ 0.0855. O

6.3. Beating The Zyablov Bound (Theorem 4). [1] show that for
large enough alphabet size g, the rate function of G o Uy, beats the
Zyablov bound. We show that the alphabet size needed to beat this
bound can be much smaller when using an unbalanced disperser G.
For the analysis we need the following lemma implicit in [1].

Yo attains its maximum

0=

claimed above. By Ej above, we can take vy = o attains

Lemma 12. Let Ryyqpi00(0) be the Zyablov rate function given in (4).
Let G o Cyys be a code with rate function of the form (33). If q is large
enough such that:

E\T
| — 4T
(37) og2q>2(E0_1)—|—
where Ey, Ey are as in (34),(35), then Rategoc,,.(0,q) > Rzyabiov(0,)

Proof. By the Gilbert-Varshmov bound Rgy (6) > (1 — H,(9)). By the
Singleton bound for every ¢, R(0) < (1 —). Thus, we have:

(38) (1=20) > (1= H,y(9))
Substituting (38) in (4), we get:

)
RZyablov((S) < IB?SC(]- - M)(l - ;)

The maximum is achieved when p = V0, giving:

RZyablov(é) < (]— - \/(_5)2

32 IMPROVING THE ALPHABET-SIZE

Using (33) we need ¢ satisfying:
Ey-T-(1-9)
2log, q — 2T

Rearranging the above, we get:

Eo(1—6) — > (1—5)?

E\T
log2q>+_ﬁ+T
2 0_1+\/3)

Noting that i;g < 1, the lemma follows. U

Corollary 2. For Gyaanced; Gopty GDoper a0d Gegpiicie i order to beat
the Zyablov bound it is enough to take q, satisfying

(39) log, g = ©(T)
where T is the disperser’s degree.

Proof. Looking at (34) and (35), and using the fact that the entropy
loss of Ghatanceds Gopts G,y A0A Gegpiicit is dependent only on &y, (37)
implies that we need ¢ satisfying log, ¢ > f(dy) - T, where f is some
function dependent only on dy. Since dy is a constant the corollary
follows. U

Plugging the degree of Gyaanceds Gopty GDopes aNA Gegpricie in (39)
Theorem 4 follows.

6.4. Concatenation With Codes of Fixed Alphabet Size (The-
orem 6). We outline the proof of the theorem:

Proof. Let g be the prescribed fixed alphabet size, and § < 1 the re-
quired relative minimum distance. Following the lines of [1] section 4,
we concatenate a construction of the form G o C with a Wozencraft
ensemble of codes. The code C'is a [N¢, 7¢Ne, d¢Nelqe code, which is
a concatenation of two Reed-Solomon codes, having a rate function:

(40) Tc(5c) > (1 -V 5(;)2

This code was used as the outer code in [15]. Denoting by u the relative
distance of the Wozencraft ensemble used as the inner code, the relative
distance of GoC should be (%) such that the final relative distance is d.
Lemma 1 implies that we need a (%L, dc)-disperser G : [L|x[T] — [N¢].
Now, concatenating GG o C' with a Wozencraft ensemble of codes having
relative minimum distance g, (28) implies that the overall rate satisfies:

(41) 5

Rate(8) > ro(dc) — (1 = Hy(u)) = (1= v/c)”

_9
m

(1= Hy())

IMPROVING THE ALPHABET-SIZE 33

where A is the entropy loss of G, and (1 — H,(p)) is the lower bound
on rate of the Wozencraft ensemble. We remark that although the
code length of C' cannot take arbitrarily large values (q is fixed), it is
large enough to perform the concatenation with all the ensemble (see
[1] section 4, [15]). Letting:

(42) o= LYo

and taking the maximum over u, the rate function above has the form

of (7). Plugging the entropy loss of Gop, Gp,,, (18), (23) in (42) we
get the 7y values appearing in theorem 6. U

7. APPENDIX

We now give the proof of theorem 7 which deals with error correcting
codes with efficient decoding, and state the exact theorems and proofs
dealing with list decodable codes summarized in table 1.

7.1. Theorem 7, Asymptotically Good Error Correcting Codes
with Explicit Decoding Procedure.

Theorem 7. For any 3 > 0 ,% > 0 > 0 there is a constant B > 1 such

that for all % > € > 0 there is an explicitly specified code family with
rate (), relative distance at least (1 — €) and alphabet size f(e). A
code of block length N in the family can be list decoded in time d(e, N)
from up to a (1 —20) errors, and can be encoded in e(e, N) time. where:

o f(€) is given by:

FEztractor Used f(e) Ref

Balanced Ramanujan Graph| 2°0) | [9] Theorem 8
GE,, 20008*(2) | Section 7.1

G eaplicit plog(2) | Section 7.1

e For the balanced graph,(]9] Theorem 8):
Epatanced (€, N) = O(N 1og®M N)
dbatancea(€, N) = O(N'HP)

e for Gg,,-

e(e, N) = €patancea(€, O(elog?(
d(e, N) = dyarancea(€, O(elog?(
there is an overhead of 2(9)°
G Bope -

e For Gewplicit ;

e(e, N) = epatanced(€, O(€2PWl0aloa) N') O (2polviogios (D) N 1og? N)

)N) 4+ O(log?()N log? N)
))N) + O(log*()N log® N)

)

X = =

- polylog N time to construct

34 IMPROVING THE ALPHABET-SIZE

d(C, N) - dbalanced(€7 O(€2polyloglog(%)N)+O(2polyloglog(%)N 10g2 N)

The encoding and decoding times are as in the original construction
except:

(1) Replacing N with dXT7 where A, T are the entropy loss and
degree of the extractor used. This is because we use an un-
balanced extractor, implying that the block length of the code
G o C, is longer than block length of the code C' used.

(2) Adding NT - tg time, where tg is the time it takes to find a

neighbor in G.

Recall that in section 5.2 we gave a general lemma stating the parame-
ters and decoding scheme for a construction of the form GoC', where C'
is a list decodable code and G is an extractor. For theorem 7, [9] use the
list decodable code from lemma 13 below, with a balanced Ramajuan
graph having a large degree to assure the reverse mixing property.

Lemma 13. ([8] Lemma 11.1) For every a > 0 there exists a prime
power q = ., of order O(%), which may be assumed to be a power of
2, such that for all B > 0, the following holds. There is an explicitly
specified code family with constant rate ro 3 > 0 and relative distance at
least % over an alphabet of size q with the property that a code of block
length N in the family can be list decoded from up to (1 — «) fraction
of errors in O(N'P) time, and can be encoded in O(N log®V N)

We now prove the theorem:

Proof. Let5:%1,ﬁ>(),}L>e>0,anda:§:1i6. Let C', be the
(N, 745N, %N)q(%ﬁ) code from lemma 13. Taking a (eL, 1)-extractor
G : [L] x [T] — [N] lemma 9 implies that the code Gg,, o C is
(L, %L, (1 — €)L)oar, and is list decodable from 3L errors. We now
split the analysis to three: using balanced expanding graph with the
required mixing property, Gg,,, and Gegpiicit-

For the balanced graph we have:

By (25), (24), the degree and entropy loss of G'g,,, we have:

A = 0(1)
T — 9Olog*(1))

IMPROVING THE ALPHABET-SIZE 35

and by (26), (27), the degree and entropy loss of Gegpiicit We have:

A = 01
T — 90(log’log())

giving the stated rate and alphabet size. For the encoding and decoding
times we note that:

(1) The block length of G o C'is L, whereas the block length of C
is N = Elfg Thus, the times appearing in lemma 13 should be
taken accordingly.

(2) To encode we first need to encode using C' (O(N log®V N)),
and then perform the amplification (LT - tg), where t¢ is the
time for computing a neighbor in G.

(3) To decode, we first need to perform the decoding scheme (LT -
te), and then perform the decoding of C' for § strings (O(N'17)).

(4) For the balanced expanding graph, the encoding/decoding time
overhead of LT -t4 needed for the composition is dominated by
the encoding and decoding times of the code C'. Thus, the times
€balanced ANA dpgianceq are similar to the encoding and decoding
times of C.

Substituting the degree, entropy loss and tg for Gg,,, and Gegpiicit in
the above, the theorem follows. We mention that in the case of Gg,,

there is an additional overhead of 2()°" . polylog N construction time
as implied from lemma 7. U

We remark that had we known to explicitly construct an optimal
extractor with degree T = O(log (£)), the resulting code would have
alphabet of size (1)°1),

7.2. List Decodable Codes with Optimal Rate.

Theorem 11. For every e > 0, every constant v > 0 there exists a code
family with rate 9(2_0(”2)6), which can be list decoded from a fraction
of (1 —¢) errors, and have alphabet size f(€). A code of block length N
in the family can be found with high probability in time cp(N,€,7y) or
deterministically in time cd(N, €,v). Moreover, the code can be encoded
in e(N,e,7) time, and list decoded in d(N,e,~). Where,

o f(€) is given by:

36 IMPROVING THE ALPHABET-SIZE

Disperser used f(e) Ref
Gbalanced 20(% log %) [9] Theorem 6
Gopt 2000g”(0)) | This paper
Gp,,, 200108”()) | This paper
Gleaplicit plog(%) This paper

L4 Cpbalanced(N7 €, '7) = O(Nz(l_v) log(%)}

Cdbalanced<N7 €, ’7) = 2O(N(1_"V)(%) log(%))

ebalanced(N7 €, 7) = O(N2(1_’Y) 10g2 N lOgO(l)(%));
dbalanced<N7 €, 7) = 2O(N’Y log(%))
are the construction, encoding and decoding times achieved in

[9].

o)

® pp,,. (N, €,7) = cpbalanced(elogz(%) N, e,7) + 2 plog(N),
cdp,,, (N, €,v) = cdbalamed(elogz(%) N,e,v) + 2(1)7W plog(N),
€Dyt (N, €,7) = €patancea(€log? (%) ‘N, e,7)+0(log?(£)Nlog® N),
D,y (N, €,7) = datancea(€log®(2) - N, €,7) + O(log*(1) N log” N)

are the construction, encoding and decoding times “when using
the disperser Gp,, .

® CDiig—zag—ext(N,€,77) = Cpbalanced(EIOgB(%> “N,e,7),
zig—ag—eat(N, €,7) = cdpatancea(€log?(2) - N, €, 7),
Gg,, (N, e,7) = ebalanced(elog ()-N, €,)+N2p01yl°9l09 (log N+
log®(1)),
dzzg cag—eat (N, €,7) = dyatancea(e1og®(L)-N, e, 7)-+N2volwlostos () (log? N+
log®(1))

are the construction, encoding and decoding times when using
the extractor Gegplicit-

The encoding and decoding times are as in the original construction
except:

(1)

Replacing N with dXT, where A, T are the entropy loss and

degree of the disperser used. Using an unbalanced disperser
implies that the block length of the code G o C' is longer than
block length of the code C used.

Adding NT - tg time, where tg is the time it takes to find a
neighbor in GG. This is the time it takes to perform the compo-
sition/decoding scheme.

(2)

Recall that in section 5.3 we gave a general lemma stating the param-
eters and decoding scheme for a construction of the form G o C'; where
C' is a list recoverable code and G is a disperser. For theorem 11, [9]

IMPROVING THE ALPHABET-SIZE 37

use the list recoverable code from lemma 14 below, with a balanced
Ramajuan graph.

Lemma 14. (implicit in [8] Theorem 9.16) For every 0 < v < 3 and
every € > 0, there exist a code family with the following properties:

(1) The family has rate 9792 und is defined over an alphabet of
size O(%).

(2) Any code of block length N in the family is (3, O(), 200V log())).-
list recoverable. Such list recovering can be accomplished in
20(N"1og(2)) fime.

(3) A code of block length N in the family can be constructed in de-
terministic 200N <1982 time, or probabilistically in O(N21=7) log(1))
time. Also, encoding can be performed in O(N?*1=7) log? Nlogo(l)(%))
time .

Remark 2. As implied by lemma 10 from section 5.3, the size of the
voting sets is (%) The list recoverable code above can deal with sets of
size O(%) The constant in the O(-) can be adjusted by picking appro-
priate v. This will only affect the constants in the rate and the decoding
list size of the code C. The exact details can be found in [8] Lemma

9.15 and Theorem 9.16.

Proof. The proof of the theorem follows immediately from plugging
in lemma 10 the code from lemma 14, together with G, Gp,,,, and
Geaplicit which are taken to be (eL, 1)-dispersers G : [L] x [T] — [N].
For completeness we recall the following:

(1) The above Gy, has O(1) entropy loss and degree O(log(1)),
giving the required rate and alphabet size.

(2) The above Gp,,,, has O(1) entropy loss and degree O(log?(1)),
giving the required rate and alphabet size. With these degree
and entropy loss we have that N = £ = O(elog®(1)L), and it
takes O(log” L) to compute a neighbor in Gp, ,. The construc-

tion time of Gp,,, is 2(%)p0lylogL.

(3) The above G egpiicit, has O(1) entropy loss and degree O(log®(2)),
giving the required rate and alphabet size. With these degree
and entropy loss we have that N = O(elog?(1)L), and it takes
O(log® L + logg(%)) to compute a neighbor in Gegpicit. The con-
struction time of Gegpicit is poly(L).

O

7.3. List Decodable Codes with Optimal List Size.

38 IMPROVING THE ALPHABET-SIZE

Theorem 12. For every e > 0, there exists a code family with rate
Q(e?), which can be list decoded from a fraction of (1 — €) errors, and
have alphabet size f(€). A code of block length N in the family can
be found with high probability in time cp(N,€) or deterministically in
time cd(N,€). Moreover the code can be encoded in e(N,¢€) time, and
list decoded in d(N,€). Where,

e f(€) is exactly as in Theorem 11.
hd Cpbalanced<N7 6) = O((%) 10g(%) 10g2 N),
Cdbalanced(N, 6) = NO((%)log(%))’
6balanced(]\[, E) - O(N IOg N),
dbalanced<N; 6) — O((%)O(l).]\/v2 log N)
are the construction, encoding and decoding times achieved in
9].
) [T]he construction, encoding and decoding times of Gp,,,,

Geaplicit are computed from the times above in the exzact manner
described in 7.2.

The construction used to obtain these codes is exactly as the one
used in 7.2, the only change is the list recoverable code used:

Lemma 15. (Implicit in [8] Theorem 9.14) For every € > 0 there exists
a code family with the following properties:
(1) 1t fias rate ©(€), and is defined over an alphabet of size q =
O(=).
(2) each code in the family is (3,%,0(L))-list recoverable.Such list
recovering can be accomplished in O((2)°VN?log N) time.
(3) A code if block length N in the family can be constructed in de-
terministic NO(15() time, or probabilistically in O((1)log(2)log N)
time. Also, encoding can be performed in O(N log N) time.

More details regarding the above code construction can be found in [8]
section 9.3 on Pseudolinear codes.

Theorem 12 now follows by plugging the above code with G, Gp,,,,
and Gegpiicit in lemma 10.

7.4. Almost Optimal Rate List Decodable Codes.

Theorem 13. For every e >0

(1) There exists a family of codes constructible in time t(N,€) hav-
ing rate Q(m), which can be list decoded from a fraction of

(1—¢) errors, and have alphabet size f(€). A code of block length
N in the family has a decoding list size of 2V 9()-Nloslg(e)-N)

IMPROVING THE ALPHABET-SIZE 39

where f(€) is as in Theorem 11 and t(e, N), g(e, N) are given

by:
Disperser used g(e) t(e, N) Ref
Gbalanced m pOly(N, %) [7]
ji .
GDype m 2<polylog(N) | This paper
€ olyloglo (%) .
G eaplicit % poly(N, %) This paper

(2) There exists a family of codes having rate Q(@) FEach code

in the family is a (1 — ¢, O(2))-list decodable code.

In section 5.4 we gave a general lemma giving the parameters and
decoding scheme for a construction of the form G o C, where C is
a list recoverable code from arbitrary size and G is a disperser. For
theorem 13, [7] use the following list recoverable code from arbitrary
size, which is based on strong extractors from Reed-Muller codes from
[16] Theorem 1.

Lemma 16. For every ¢ > 0 and every § > 2 there is an explicit
family of codes having rate over an alphabet of size

log@™) B-llogo(l)(%))
ﬁ% A code of block length D is the family is a (L, }l)—list recover-
able from arbitrary size, where L = 90/ D' (1og(D-g' () g g(e) =

O(

1
1og®™ Blog®™M (1))

Also, the existence of optimal strong extractors imply the following
in terms of list recoverability from arbitrary size.

Lemma 17. For every ¢ > 0 and every 3 > 2, there exists a family
of codes having rate Q(m) over an alphabet of size ﬁ%. A code
of block length D is the family is a (O(B1),1)-list recoverable from
arbitrary size.

We now prove Theorem 13. Let € > 0. Let G : [N] x [T] — [D] be a
(eN, i)—disperser with entropy loss Ag. We let 8 = 2A¢.

For the explicit part of the theorem, we pick the code C' to be as
in lemma 16, of block length D, with the above ¢, and alphabet size
M=0- (%) By the choice of 3, we have:

1 A
M-D=8(-)D=2-%D >2NT
€ €
and so by lemma 11, G o C' has rate r¢ - t, alphabet size M7, and
is (1 — ¢, L). The degree T of the various dispersers give the alphabet
size as given by f(€) in the Theorem. Having G with a constant error

40

of

IMPROVING THE ALPHABET-SIZE

%, implies that for all of the dispersers used Ag = O(1), thus § =

O(1), and for all dispersers we get the stated rate of Q(W) By

lemma 16 the decoding list size L = 20(VD-¢'()os(D-g'(€) apq g'(e) =
O(—5tr1). Having O(1) entropy loss, we have that D = O(eNT),

log@) (1)

yielding

(4

3) [, — 90(\/eNT-g'(e) log(eNT g/ (e)))

Substituting the degree T' of Gyaanced; G b, and Gegpiicit in the above,
gives L, and g¢(€) as stated in the theorem.

as

Finally, the construction time of the various dispersers gives t(IV, €)
in the Theorem.
For the second part of the theorem, we note that the existence of

optimal strong extractors, which implies lemma 17 plugged in lemma
11 together with G, yields the stated parameters.

10.

REFERENCES

. N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth, Construction of asymptoti-
cally good, low-rate error-correcting codes through pseudo-random graphs, IEEE
Transactions on Information Theory 38 (1992), 509-516.

N. Alon, J. H. Spencer, and P. Erdés, The Probabilistic Method, Wiley—
Interscience Series, John Wiley & Sons, Inc., New York, 1992.

B. Chor and O. Goldreich, Unbiased bits from sources of weak randomness
and probabilistic communication complexity, SIAM Journal on Computing 17
(1988), no. 2, 230-261.

P. Elias, List decoding for noisy channels, 1957-IRE WESCON Convention
Record, Pt. 2, 1957, pp. 94-104.

O. Goldreich and A. Wigderson, Tiny families of families with random proper-
ties: A quality-size trade-off for hashing, Random Structures and Algorithms
11 (1997), 315-343.

V. Guruswami and P. Indyk, Near-optimal linear-time codes for unique decoding
and new list decodable codes over smaller alphabets, Proceedings of the 34th
Annual ACM Symposium on Theory of Computing, 2002.

Venkatesan Guruswami, Better extractors for better codes?, Proceedings of the
36th Annual ACM Symposium on Theory of Computing, ACM Press, 2004,
pp. 436-444.

, List decoding of error-correcting codes, Ph.D. thesis, Massachusetts
Institute of Technology, August 2001.

Venkatesan Guruswami and Piotr Indyk, Fzpander-based constructions of effi-
ciently decodable codes, Proceedings of the 42nd Annual IEEE Symposium on
Foundations of Computer Science, 2001, pp. 658-667.

N. Nisan and D. Zuckerman, Randomness is linear in space, Journal of Com-
puter and System Sciences 52 (1996), no. 1, 43-52.

11

12.

13.

14.

15.

16.

IMPROVING THE ALPHABET-SIZE 41

. J. Radhakrishnan and A. Ta-Shma, Bounds for dispersers, extractors, and
depth-two superconcentrators, SIAM Journal on Discrete Mathematics 13
(2000), no. 1, 2-24.

R. Raz, O. Reingold, and S. Vadhan, Eztracting all the randomness and re-
ducing the error in Trevisan’s extractors, Proceedings of the 31st Annual ACM
Symposium on Theory of Computing, 1999, pp. 149-158.

O. Reingold, S. Vadhan, and A. Wigderson, Entropy waves, the zig-zag prod-
uct, and new constant-degree expanders and extractors, Proceedings of the 41st
Annual IEEE Symposium on Foundations of Computer Science, 2000.

M. Santha and U. V. Vazirani, Generating quasi-random sequences from semi-
random sources, Journal of Computer and System Sciences 33 (1986), 75-87.
Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, A modification
of the constructive asymptotically good codes of Justesen for low rates, Inform.
Control 25 (1974).

A. Ta-Shma and D. Zuckerman, Ezxtractor codes, Proceedings of the 33rd An-
nual ACM Symposium on Theory of Computing, 2001, pp. 193-199.

