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Abstract

Over the past few decades several anonymous communication protocols have
been suggested and studied, among which most notable are Chaum’s protocol
[Cha79] and its derivatives which have been rigorously analyzed.

Previous solutions assume at least one of the following assumptions:

1. All players are active at all times.

2. The network’s graph is complete.

These two assumptions do not fit well with most networks and in particular,
the Internet.

One particular solution is that of [CKKL99]. Improving on a work of Rackoff
and Simon [RS93], they show that under these two assumptions, a variant of
Chaum’s protocol provides anonymous communication within O(log2(N)) steps
on a network of size N . Their proof relies on the convergence rate of a Markov
chain they call ”Matching Exchange” which is already referred to in [RS93].

In this thesis we define and analyze a similar Markov chain (we call ”Partition
Exchange”) and show that it converges even faster. Our proof can be viewed as
an extension of [CKKL99].

We are optimistic that this analysis will aid the design of an efficient new
anonymous communication protocol which would not require the above two
assumptions.
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Chapter 1

Anonymous
Communication

The phrase “anonymous” can take several interpretations. (1) we could wish to
hide the content of a sent message (this is sometimes called “confidentiality”).
(2) we might want to have senders and receivers anonymity. And (3) we would
like to have unlinkability, meaning that even if an adversary knows the set
{a1, . . . , an} of senders and the set {b1, . . . , bn} of receivers, he cannot link the
senders to the receivers.

The attack model also has several variants. In the passive model the adver-
sary is curious but honest, i.e., it eavesdrops on the communication links/nodes
under its control, but it does not deviate from the protocol. We call such an
adversary an eavesdropper. An active adversary might change, initiate or delete
messages. Both the passive and the active adversaries can be static meaning
that they determine the communication links under their control before the pro-
tocol begins, or dynamic meaning that they may acquire communication links
during the execution of the protocol and based on the communication so far.

Finally, there are the network topology and the cost issues. The desired
network topology is a sparse graph with a small diameter, like the Internet
graph. Common cost functions are:

• time delay - The time it takes a message to reach its destination.

• message overhead - The number of messages transmitted in the protocol
per send request.

Current solutions can be divided into three groups: (1) A trusted party
solution (See the survey [DD06, Sect. 2]) (2) Heuristics solutions which do not
provide a security proof (many of which are based on Chaum’s seminal paper
from 1979 [Cha79]). A survey of this work can be found in [DD06, Sect. 3]. (3)
Rigorous proofs, among which we note: Buses [BD03], Crowds [RR98], DC-Nets
protocol [Cha88],Rackoff and Simon [RS93] rigorous security proof for a variant

7



8 CHAPTER 1. ANONYMOUS COMMUNICATION

of Chaum’s protocol and its improvement [CKKL99] and finally [GK L04] and
[BFG+10].

We consider only those protocols with a rigorous proof - namely, those noted
in point (3).

All of these protocols fail to be applicable because either:

• They require the participation of all nodes at each stage of the protocol,
leading to a high message overhead when the number of active players n
is much smaller than the network size N .

• They are not suitable for general sparse graphs.

• The security they provide is only proportional to the path length (e.g.,
Crowds).

Chaum’s protocol [Cha81] hides the content of a message and its destination
using multiple layers of encryption and can be viewed as a reduction from the
unlinkability problem to that of traffic analysis. In the traffic analysis problem,
n senders generate n indistinguishable packets and route them through a net-
work of size N . The adversary then tries to analyze the traffic in order to link
between senders and their intended receivers. Chaum does not give a formal
proof of this reduction, however in 2005 Camenisch and Lysyanskaya [CL05]
defined and designed a provably secure onion routing scheme. Using their work
Chaum’s protocol is indeed a provable reduction from unlinkability to traffic
analysis. We therefore concern ourselves only with the traffic analysis problem.

The following solutions meet all but one of the desired properties:

• Relying on a protocol related to that of Chaum, [GK L04] achieve un-
linkability after polylog(n) steps for graphs with mixing time polylog(n).
However, it requires that n = Θ(N) players participate at all times.

• Based on Chaum’s protocol, [BFG+10, BFTS04] provide unlinkability
within O(log(n)) steps and do not require that all players play at all
times. In addition, They provide unlinkability even if the distribution of
the receivers is not uniform on all players. Indeed, in reality the a-priori
distribution is far from uniform as for example, people tend to communi-
cate more with those speaking their own language. However, it assumes a
relaxed adversary that controls only a constant fraction of the links and a
complete graph.

1.1 [CKKL99] and our research

Based on [RS93], [CKKL99] show that when n = Θ(N) players are active, un-
linkability can be reached within O(log2(n)) steps on a complete graph, against
an adversary that controls all the links and a constant fraction of the nodes.
They analyze the following Markov chain which they call ”Matching Exchange”
(also known as ”Pair and Swap” by [RS93]):
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Matching Exchange: Let [n] be a set of positions, each containing a single
element. The transition to the next state is then defined as follows:

1. Generate a random partial matching of size Θ(n) on the n positions.

2. For each edge in the matching, swap the content of the paired posi-
tions with independent probability 1

2 .

It is easy to see that this Markov chain is ergodic and reversible and therefore
has USn as its stationary distribution. A well known measure of convergence
to the stationary distribution is the mixing time (See section 3.1.1). Briefly,
the mixing time relates to the norm 1 distance between the distribution of the
Markov chain at a given time step and its stationary distribution. [CKKL99]
show that mixing time to ε = 1

n is O(log(n)) steps.
One of the sources of randomness used in the Matching Exchange protocol

is the choice of matchings. Fixing the matchings yields a (matching) switch-
ing network. [CKLK01] consider the Matching Exchange process run with a
fixed sequence of matchings (that is, using only the randomness in step (2) of
Matching Exchange) and on the state space of all 0-1 sequences with n

2 zeros
and n

2 ones. They show that for almost any possible choice of matchings, the
distribution of the process after τ = O(log(n)) steps is almost uniform on the
modified state space. In conjunction with [RS93] this proves that unlinkability
can be reached within O(log2(n)) steps when n = Θ(N) players are active at
all times and on a complete graph.

In Chapter 3 we define and analyze a chain similar to Matching Exchange
which we call ”Partition Exchange”:

Partition Exchange: Let [n] be a set of positions each containing a single
element. Let m be the number of bins. The transition to the next state
is then defined as follows:

1. Partition the [n] elements into the m bins by placing each position
in an independently and uniformly selected bin.

2. For each bin, permute the content of its positions independently and
uniformly at random.

The stationary distribution of this Markov chain is also USn for the same reason
as above. In chapter 3 we prove its mixing time is O(log n

m
(n)) form = O( n

log(n) ).

Now consider modifying Partition Exchange to work on a fixed sequence of
partitions. We would like to extend our result in a similar manner as [CKLK01]
- that is, to show that for almost any fixed sequence of poly(log n

m
(n)) partitions,

the distribution of the modified Partition Exchange protocol is close to uniform
(note that the state space is left unchanged). Currently however, we are unable
to do so. Nevertheless, assuming it can be shown, we can provide an anonymous
communication protocol that has the following properties:

• On sparse graphs with diameter D, unlinkability can be reached already
within poly(D · log n

m
(n)) steps, even when n � N . In particular, this

applies to the Internet.
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• The protocol can provide anonymity services even for a single player at
the cost of moderate message overhead.

• It is routing oblivious in the sense that as long as messages arrive to their
specified destinations on time, the physical routing itself can be chosen by
the adversary.

To achieve this our protocol requires the usage of a shared bulletin board and
shared randomness which is perhaps its main drawback.1

1Once having a bulletin board, shared randomness can be obtained e.g., by using a pseu-
dorandom generator and assuming at least one of the active players is honest.



Chapter 2

Preliminaries

2.1 Tail Bounds

2.1.1 Chernoff

Theorem 2.1.1. [MR95] (Theorem 4.1) Let X1, . . . , Xn be independent Boolean
random variables, X =

∑
iXi, µ = E[X]. Then,

Pr[X ≥ (1 + δ)µ] ≤ [eδ/(1 + δ)(1+δ)]µ

The following simple version of the Chernoff bound will be useful in our
proof.

Theorem 2.1.2. [MR95] (Theorem 4.1) Let X1, . . . , Xn be independent Boolean
random variables, X =

∑
iXi, µ = E[X]. Then,

Pr[X ≤ (1− δ)µ] ≤ exp(−δ
2µ

2
)

The following bound is useful when the expectation µ is very large:

Corollary. Let X1, . . . , Xn be independent Boolean random variables, X =∑
iXi, µ = E[X]. Assume L� µ, then

Pr[X ≤ L] ≤ exp(−(
µ

2
− L))

2.1.2 Martingales and Azuma

Definition 2.1.1. [MR95] A sequence of Z1, . . . , Zn is said to be a martingale
with respect to another sequence X1, . . . , Xn If for all 1 ≤ i ≤ n,

• E[Zi] <∞

• E[Zi|X1, . . . , Xi−1] = Zi−1

11



12 CHAPTER 2. PRELIMINARIES

Definition 2.1.2. [MR95] The random variables Z1, . . . , Zn defined with re-
spect to the random variables X1, . . . , Xn and a function f as follows:

Zi = EXi+1,...,Xn [f(X1, . . . , Xn)|X1, . . . , Xi]

(where X1, . . . Xi are treated as random variables) form a martingale and are
known as a Doob martingale.

Definition 2.1.3. [MR95] Let Z0, Z1, . . . be a martingale sequence such that
for each k |Zk − Zk−1| ≤ ck where ck may depend on k. Then by Azuma’s
inequality, for all t and any λ > 0

Pr[|Zt − Z0| ≥ λ] ≤ 2exp(− λ2

2
∑t
k=1 c

2
k

)

The following will be used in conjunction with Azuma’s inequality:

Definition 2.1.4. [MR95] Let F : Dr → R be a real valued function with r
arguments from a domain D. F is said to satisfy the Lipschitz condition if for
any (x1, . . . , xr) ∈ D and any k ∈ [r] and y ∈ D:

|F (x1, . . . , xk−1, xk, xk+1, . . . , xr)− F (x1, . . . , xk−1, y, xk+1, . . . , xr)| ≤ cL

for some constant cL > 0



Chapter 3

Partition Exchange

We consider a process we call ”Partition Exchange” where at each time step,
we randomly partition n positions (each storing a single element) among m
bins and proceed to randomly permute the content of the positions within each
bin. We are motivated by the fact that a variant of Partition Exchange models
the adversary’s knowledge under an anonymous communication protocol we
designed.

[CKKL99] consider a similar process they call ”Matching Exchange” - At
each time step, a random partial matching of size Θ(n) is selected on the n
positions and for each pair in the matching we independently and uniformly at
random select whether to swap the elements between the two positions or leave
them as is. [CKKL99] prove that convergence to the uniform distribution is met
already after O(logn) steps. The similarity between the two processes arises if
we regard each pair in Matching Exchange as falling into the same bin. Put
differently, we may degenerate Partition Exchange into Matching Exchange if
we set m = Θ(n) and permute only bins that contain two elements.

Our goal is to show that Partition Exchange rapidly converges afterO(log n
m
n)

time steps1 and, in addition, to extract specific constants for which this hap-
pens. Our proof uses the delayed path coupling strategy developed in [CKKL99]
and is an adaptation of [CKKL99] to our more general case.

3.1 Preliminaries

We introduce a few definitions: Let Sn denote the set of permutations on [n].
Let ∆ : Sn × Sn → {0, . . . , n− 1} be such that for all π, π′ ∈ Sn, ∆(π, π′) is the
minimum number of transpositions required to transform π into π′. Clearly, ∆
is a metric.

We denote the set of possible partitions of n elements to m bins as Pn,m =
[m]n. Let P ∈ Pn,m. We denote by S(P ) the set of permutations that can be

1 n
m

being the expected size of each bin.

13



14 CHAPTER 3. PARTITION EXCHANGE

attained on the partition P . That is, σ ∈ S(P ) if for all i, j ∈ [n], σ(i) = j
implies that i and j reside in the same bin.

Let H be some set and suppose h ∈ H. We denote by UH the uniform
distribution over H and we denote by UH(h) the probability of selecting h
according to UH . By x ∼ UH we mean that x is selected according to UH .

Fact 3.1.1. [BY] Fix p ∈ [n] and let σ be a randomly chosen permutation from
Sn. Define the random variable X to be the length of the cycle p resides in
according to σ, then X is distributed uniformly on [n].

3.1.1 Mixing Time

Let M be a Markov chain over a finite state space S with transition matrix M
and a stationary distribution µ. Let π(0) be the initial distribution at time 0, and
π(t) = M tπ(0) the distribution at time t. A standard measure of convergence is
the mixing time defined as:

τM(ε)
def
= min

{
T : ∀π(0) ,∀t≥T ‖π(t) − µ‖1 ≤ ε

}
3.1.2 Coupling

Let
{

(π(t), πR
(t))
}
t∈N be a stochastic process over S × S, developing accord-

ing to a Markov chain N.
{

(π(t), πR
(t))
}

is called a coupling [Ald83] for M if

marginally, both π(t) and πR
(t) evolve according to M. That is, π(t+1) = Mπ(t)

and πR
(t+1) = MπR

(t) where M is the transition matrix of M. (Notice that
we allow dependencies between π(t) and πR

(t)). The mixing time of M may be
bounded using the following lemma:

Lemma 3.1.2. (the coupling lemma) Suppose there is a coupling
{

(π(t), πR
(t))
}

for M and that πR
(0) is the stationary distribution of M. If for all t ≥ T ,

Pr[π(t) 6= πR
(t)] ≤ ε then τM(ε) ≤ T .

3.1.3 Path Coupling

Let S2 ⊆ S×S be a symmetric relation whose transitive closure is S×S. Define
a function d : S × S → N as follows: for adjacent states (π, πR) ∈ S2, let
d(π, πR) = 1. For an arbitrary (π, πR) ∈ S × S, d(π, πR) is the length of the
shortest path from π to πR via S2.

The path coupling construction [BD97] reduces the task of finding a coupling
that works on all initial pair of states, to that of finding one that needs to work
only on adjacent states. Formally,

Lemma 3.1.3. (the path coupling lemma) Suppose there exists a coupling
{

(π(t), πR
(t))
}

for M, and a symmetric relation S2 ⊆ S× S whose transitive closure is S× S,
such that for some δ < 1, E[d(π(t+1), πR

(t+1))] < δ for all t ∈ N and adjacent
(π(t), πR

(t)) ∈ S2. Define dmax = maxπ,π′∈S d(π, π′). Then,

τM(ε) ≤ dlog(dmaxε
−1)/ log(δ−1)e
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3.1.4 Delayed Path Coupling

The following Lemma taken from [CKKL99] (Lemma 4.2) relates the mixing
time of a Markov chain M to the behavior of a t-step path coupling. Note that
the resulting coupling may be non-Markovian.

Lemma 3.1.4. (the delayed path coupling lemma) Let T be a positive integer
and let

{
(π(t), πR

(t))
}

be a coupling for M such that for all t ∈ N and every

adjacent (π(t·T ), πR
(t·T )) ∈ S2 we get that E[d(π(t(T+1)), πR

(t(T+1)))] < δ for
some real δ < 1. Then,

τM(ε) ≤ T · dlog(dmaxε
−1)/ log(δ−1)e

3.2 The Process

Let [n] be a set of positions, each storing a single element and let m be some
positive integer. We consider a Markov chain M we call Partition Exchange on
the set Sn of permutations of [n] whose transition is defined as follows:

1. Partition [n] among m bins by placing each position in an independently
and uniformly selected bin. Let P denote the resulting partition.

2. Output a uniformly selected σ ∈R S(P ).

It is clear that this Markov chain is ergodic and reversible, and therefore M has
USn as its stationary distribution. We are interested in its rate of convergence.

Theorem 3.2.1. For any ε > 0, n ≥ 1010 and m ≤ n
d0ln(n) for d0 ≥ 24

τM(ε) ≤ (20log n
10m

(n/49) + 10) · ln(n/ε)

ln(n)− 10

We shall use delayed path coupling (Lemma 3.1.4) to prove Theorem 3.2.1.
However, we conjecture that in fact:

Conjecture 3.2.1.
τM(ε) ≤ 4log n

m
(n/ε)

3.3 The Analysis

We define a Markov chain N = (π(t), π
(t)
R )Tt=0 with initial ∆(π(0), π

(0)
R ) = 1.

Since ∆(π(0), π
(0)
R ) = 1, there exist i 6= j ∈ [n] such that π

(0)
R = (i, j)π(0). For

each t ∈ [T ] we pick a partition P (t) and a permutation σ(t) according to M.
Let P̄ = (P (1), . . . , P (T )) and σ̄ = (σ(1), . . . , σ(T )). This defines the progress

of the left coordinate of N. We now turn to define σ̄R = (σ
(1)
R , . . . , σ

(T )
R ) =

σ̄R(P̄ , σ̄, {i, j}) which will determine how the right coordinate of N evolves. We
wish to do so such that the second coordinate is also a faithful copy of M and
such that the two coordinates tend to meet.
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3.3.1 An Observation

Suppose π(0) = (i, j)π
(0)
R . Clearly, if i and j fall into the same bin at time 1, we

may set σ
(1)
R = σ(1)(i, j) to get π1 = π

(1)
R . However, this has probability exactly

1
m to occur.

Suppose (α1, . . . , αk = i), (β1, . . . , βl = j) are the (distinct) cycles of i and j

in σ(1). We show that there are min(k, l) ways to set σ
(1)
R such that (1) For each

z ∈ {1, . . . ,min(k, l)}, we maintain ∆(π(1), π
(1)
R ) = 1 and π

(1)
R = (αz, βz)π

(1)

and (2) keep the same cycle structure. (1) implies that at time step 2, the
probability that none of the (αz, βz) pairs falls into the same bins is at most
(1− 1

m )min(k,l) and (2) hints that the marginal distributions will be identical.
To see how we can keep distance 1 in min(k, l) ways we choose some z ∈

{1, . . . ,min(k, l)} and set σ
(1)
R by exchanging between the (z−1) length prefixes

of the two cycles in σ(1) (for z = 1 there is no exchange). That is, we swap the
cycles (α1, . . . , αk = i), (β1, . . . , βl = j) in σ(1) with (β1, . . . , βz−1, αz . . . , αk =

i) (α1, . . . , αz−1, βz, . . . , βl = j) in σ
(1)
R . It is not difficult to verify that π

(1)
R =

(αz, βz)π
(1)

3.3.2 The Delayed Path Coupling

Definition 3.3.1. We define the vertex labeled tree Tree(T ) = Tree(T )(P̄ , σ̄, {i, j})
by induction on t < T . Initially Tree(0) contains a single vertex v(0) whose label
D(v(0)) = {i, j} (A label is always a set of two distinct positions). Let V (t−1)

denote the set of vertices at the (t− 1)’th layer of the tree. A vertex v ∈ V (t−1)

is called isolated at time t if it meets the following condition - There does not
exist a vertex u 6= v among the vertices of V (t−1) for which a position from D(u)
and a position from D(v) reside in the same bin according to P (t) (See Figure
3.1.(b)).

Now, Tree(t) is defined based on Tree(t−1) as follows:

• Step 1: Set W (t) = ∅ and let I(t−1) ⊆ V (t−1) be the set of isolated vertices
according to P (t). For each vertex v ∈ I(t−1) with D(v) = {p, q}, suppose
(α1, ..., αk = p), (β1, ..., βl = q) are the cycles of p and q according to

σ(t), then, for each z ∈ {1, . . . ,min(k, l)} generate a vertex v
(t)
z with label

D(v
(t)
z ) = {αz, βz} and add it to W (t).

• Step 2: If |W (t)| ≤ |V (t−1)|

– Discard W (t) and its defined labeling and for each v ∈ V (t−1) with
D(v) = {p, q}, add a single vertex labeled

{
σ(t)(p), σ(t)(q)

}
to V (t).

Otherwise, we manage the growth of V (t) as follows:

1. If m
36 < |W (t)| < c0n for some constant parameters c0 to be define

later, then V (t) takes only the lexicographically first (according to
the labels) m

36 vertices in W (t) with their defined labeling and we
discard the rest.
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(a) (b)

Figure 3.1: (a) The labeled tree at time t, where the positions p and q are in
the label of v(t−1) ∈ V (t−1) and according to σ(t), p and q reside in the cycles
(α1, . . . , αk = p) and (β1, . . . , βl = q) (resp.) for k = min(k, l).
(b) For m = 6, suppose V (1) = {v1, v2, v3} with D(v1) = {α1, β1}, D(v2) =
{α2, β2}, D(v3) = {α3, β3}. A possible partition P (2) is depicted where v1 is an
isolated vertex according to P (2), while v2, v3 are not.

2. Otherwise, set V (t) = W (t) with its defined labeling.

We call a time step t for which we discard the intermediate layer W (t) non-
generating.

Note that by the first condition in Step 2, the number of vertices in a layer
is non-decreasing with respect to its former layer. Clearly, the labels of vertices
generated by the same vertex are disjoint. Moreover, since we only use isolated
vertices it is easy to see that for any specific layer, a position may appear in the
label of at most one vertex in that layer. It is also easy to see that this remains
true for non-generating time steps as well. We may conclude that the labels in
a given layer are disjoint which implies that there can be at most n

2 vertices in
any layer.

Definition 3.3.2. We say (P̄ , σ̄, {i, j}) is good if there exists some t ∈ [T ] and
w ∈ V (t−1) with label D(w) = {p, q} such that both p and q fall into the same
bin according to P (t). We call the first t for which such a w exists, the good time
step of (P̄ , σ̄, {i, j}), and we call the lexicographically first such w ∈ V (t−1), the
good vertex of (P̄ , σ̄, {i, j}).

The delayed path coupling construction: If (P̄ , σ̄, {i, j}) is not good
we set σ̄R(P̄ , σ̄, {i, j}) = σ̄R = σ̄. Otherwise, let (t, w) be the good time step
and good vertex of (P̄ , σ̄, {i, j}) and let (w(0) = v(0), w(1), . . . , w(t−1) = w) be
the path of w in Tree(T )(P̄ , σ̄, {i, j}). Now,

• For all τ = 1, . . . , t− 1: Set σ
(τ)
R = D(w(τ))σ(τ)D(w(τ−1)).
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• For t: Set σ
(t)
R = σ(t)D(w) = σ(t)D(w(t−1)).

• For every τ ∈ {t+ 1, . . . , T}: Set σ
(t)
R = σ(t).

Thus (σ̄, σ̄R) define the T step progress of N. This completes the construction.

In the following subsections we prove the following Theorems:

• Theorem 3.4.1: N is a delayed path coupling of M.

• Theorem 3.5.1 Let i 6= j ∈ [n] and suppose π
(0)
R = (i, j)π(0). Suppose

m ≤ n
d0ln(n) for d0 ≥ 24, then,

E[∆(π(T ), π
(T )
R )] ≤ e · n−1/10

For T ≥ 2log n
10m

(n) + 1

Combining these two theorems with the delayed path coupling Lemma (Lemma
3.1.4) we prove Theorem 3.2.1:

Proof. Note that the metric ∆ meets the condition of the delayed path coupling
Lemma and that for all (π, π′) ∈ S× S, ∆(π, π′) < n. By Theorem 3.4.1, N is a
delayed path coupling of M and since the Markov chain is time homogeneous,
we may apply the delayed path coupling Lemma (Lemma 3.1.4). Specifically,
for δ = e · n−1/10 and T = 2log n

10m
(n/49) + 1 we obtain that:

τM(ε) ≤ (2log n
10m

(n) + 1)
ln(nε−1)

ln(n1/10/e)
≤ (20log n

10m
(n) + 10)

ln(nε−1)

ln(n)− 10

as stated.

3.4 N is a Delayed Path Coupling of M

Let H =
{

(P̄ , σ̄) ∈ PTn,m × STn |∀t ∈ [T ], σ(t) ∈ S(P (t))
}

- That is H is the set of
all T length sequences of partitions and T length sequences of permutations such
that each permutation can be attained on its corresponding partition. In addi-
tion, let Hσ̃ =

{
(P̄ , σ̄) ∈ H|

∏
t σ

(t) = σ̃
}

and let N2 = {{p, q}|p, q ∈ [n], p 6= q}
We define a function Φ : H×N2 → PTn,m×STn and a function Φσ which is identi-

cal to Φ, but outputs only the sequence of permutations (i.e., if Φ(P̄ , σ̄, {i, j}) =
(Π̄, β̄) then Φσ(P̄ , σ̄, {i, j}) = β̄).

We shall show that Φ and Φσ have the following properties:

1. (Validness:) Φ(P̄ , σ̄, {i, j}) ∈ H for all (P̄ , σ̄) ∈ H and i, j ∈ [n]

2. (Φσ represents our construction:) σ̄R(P̄ , σ̄, {i, j}) = Φσ(P̄ , σ̄, {i, j})

3. (Equiprobability) Fix i, j ∈ [n]. For all (Π̄, β̄) ∈ H,

Pr(P̄ ,σ̄)∼UH [Φ(P̄ , σ̄, {i, j}) = (Π̄, β̄)] = UH(Π̄, β̄)
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Given the above properties of our construction we may now prove that N is
a T step delayed path coupling of M.

Theorem 3.4.1. For all σ̃ ∈ Sn

Pr(P̄ ,σ̄)∼UH [σ(T ) . . . σ(1) = σ̃] = Pr(P̄ ,σ̄)∼UH [σ
(T )
R . . . σ

(1)
R = σ̃]

and therefore N is a coupling of M.

Proof.

Pr(P̄ ,σ̄)∼UH [σ
(T )
R . . . σ

(1)
R = σ̃]

=
∑

β̄∈STn :
∏
t β

(t)=σ̃

Pr(P̄ ,σ̄)∼UH [σ̄R(P̄ , σ̄, {i, j}) = β̄]

=
∑

β̄∈STn :
∏
t β

(t)=σ̃

Pr(P̄ ,σ̄)∼UH [Φσ(P̄ , σ̄, {i, j}) = β̄] (By property 2)

=
∑

(Π̄,β̄)∈Hσ̃

Pr(P̄ ,σ̄)∼UH [Φ(P̄ , σ̄, {i, j}) = (Π̄, β̄)]

=
∑

(Π̄,β̄)∈Hσ̃

UH(Π̄, β̄) (By property 3)

=
∑

β̄∈STn :
∏
t β

(t)=σ̃

Pr(P̄ ,σ̄)∼UH [σ̄ = β̄] = Pr(P̄ ,σ̄)∼UH [σ(T ) . . . σ(1) = σ̃]

as required.

3.4.1 The Function Φ

We begin by defining the function Φ. Let ((P
(1)
Φ , . . . , P

(T )
Φ ), (σ

(1)
Φ , . . . , σ

(T )
Φ ))

denote its output. Now, if (P̄ , σ̄, {i, j}) is not good we simply set

((P
(1)
Φ , . . . , P

(T )
Φ ), (σ

(1)
Φ , . . . , σ

(T )
Φ )) = (P̄ , σ̄)

Otherwise, let t and w ∈ V (t−1) be its good time step and good vertex and
suppose the path from the root to w in Tree(T ) = Tree(P̄ , σ̄, {i, j}) is (w(0) =
v(0), w(1), . . . , w(t−1) = w). Then, for each τ ∈ [T ] :

• For all 1 ≤ τ < t: Suppose D(w(τ−1)) = {p, q} and (α1, . . . , αk =
p) and (β1, . . . , βl = q) are the cycles of p and q according to σ(τ).
Therefore, by the construction of Tree, D(w(τ)) = {αz, βz} for some
z ∈ {1, . . . ,min(k, l)}2. Define f (τ) : [n] → [n] such that for all y ∈
{1, . . . , z − 1} it maps αy to βy and vice versa, and on all other elements
it acts as the identity. We define:

2This is true even when τ is non-generating, in which case D(w(τ)) =
{
σ(τ)(p), σ(τ)(q)

}
=

{α1, β1}
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– ∀α ∈ [n], P
(τ)
Φ (α) = P (τ)(f (τ)(α)). Note that f (τ) modifies only the

bins of p and q, and that p and q always remain in their respective
bins.

– σ
(τ)
Φ = D(w(τ))σ(τ)D(w(τ−1)).

• At time step t: We set P
(t)
Φ = P (t) and σ

(t)
Φ = σ(t)D(w)

• For all t < τ ≤ T : We set (P
(τ)
Φ , σ

(τ)
Φ ) = (P (τ), σ(τ))

This completes the definition of Φ which in turn defines the function Φσ as
well. It is easy to see by mere comparison between the two resulting sequences
of permutations that σ̄R(P̄ , σ̄, {i, j}) = Φσ(P̄ , σ̄, {i, j}). This shows property
2. Note that the construction is oblivious to time steps being generating or
non-generating, to the size of the layer and to the growth management in step
2 of the labeled tree’s construction.

We now relate our construction to the initial observation stated in the pre-
vious section.

Claim 3.4.1. Suppose (α1, . . . , αk = p), (β1, . . . , βl = q) are the (distinct) cy-
cles of p and q in σ(t) for some t ∈ [T ] and let z ∈ {1, . . . ,min(k, l)}. Moreover,
let σ∗ be the permutation obtained from σ(t) by replacing the cycles of p and
q with (β1, . . . , βz−1, αz . . . , αk = p) and (α1, . . . , αz−1, βz, . . . , βl = q) (where
z=1 means no change occurred). Then, σ∗ = (αz, βz)σ

(t)(p, q)

Proof. We consider two cases:

• If z = 1 (such as when t is non-generating) then σ∗ = σ(t) since no
positions are swapped. Since σ(t) maps p to α1 and q to β1 it follows by
inspection that (α1, β1)σ(t)(p, q) = σ(t) as well.

• If z 6= 1, the difference between σ(t) and (α1, β1)σ(t)(p, q) is only in four
positions - Namely, αz−1, βz−1, p and q. It is easy to verify by inspection
that this is also the case with σ(t) and σ∗. Now, for αz−1, since z − 1 <
min(k, l) we have that (αz, βz)(α1, . . . , αk, β1, . . . , βl)(αz−1) = βz and by
inspection of the right hand side, it as well maps αz−1 to βz. The other
three cases can be shown identically.

Note that this shows σ(t) and (αz, βz)σ
(t)(p, q) have the same cycle decomposi-

tion up to renumbering of the positions.

We now show that the construction is valid (property 1):

Claim 3.4.2. For all τ ∈ [T ], σ
(τ)
Φ ∈ S(P

(τ)
Φ )

Proof. The claim is trivial for non-good (P̄ , σ̄, {i, j}). Suppose (P̄ , σ̄, {i, j}) is
good and let t and w be its good time step and good vertex. Let (w(0) =
v(0), . . . , w(t−1) = w) be the path from the root v(0) to w on Tree(P̄ , σ̄, {i, j}).
Now,
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• For 1 ≤ τ ≤ t − 1: Suppose D(w(τ−1)) = {p, q} and D(w(τ)) = {αz, βz}
as in the definition of Φ. Clearly:

σ
(τ)
Φ , D(w(τ))σ(τ)D(w(τ−1)) = (αz, βz)σ

(τ)(p, q)

When z = 1 (such as in non-generating time steps) we have that σ(τ) =

σ
(τ)
Φ and since fτ = id in this case, P (τ) = P

(τ)
Φ and so the claim follows.

Otherwise for z 6= 1, Claim 3.4.1 implies that σ
(τ)
Φ was obtained from σ(τ)

by exchanging the the cycles of p and q with (β1, . . . , βz−1, αz . . . , αk = p)
and (α1, . . . , αz−1, βz, . . . , βl = q). This fits exactly with f (τ) since it
as well exchanges the bin location of (α1, . . . , αz−1) and (β1, . . . , βz−1).

Therefore, σ
(τ)
Φ ∈ S(P

(τ)
Φ ) as required.

• At time t: By the construction P
(t)
Φ = P (t), σ

(t)
Φ = σ(t)D(w) and by the

definition of a good vertex, both the positions in D(w) reside in the same

bin. It is therefore easy to see that σ
(t)
Φ ∈ S(P

(t)
Φ ).

• The claim is trivial for all t < τ ≤ T .

Therefore the construction is indeed valid and property 1 holds. Our next
goal is property 3 and for that we first prove:

Claim 3.4.3. Fix (P̄ , σ̄) ∈ H and i, j ∈ [n] and denote (P̄R, σ̄R) = Φ(P̄ , σ̄, {i, j}).
Suppose (P̄ , σ̄, {i, j}) is good and let (t, w) be its good time step and good vertex.
Then

Tree(t−1)(P̄ , σ̄, {i, j}) = Tree(t−1)(P̄R, σ̄R, {i, j})

With identical labeling of the vertices.

Proof. Generally, the growth of a tree at time step τ ∈ [T ] is completely deter-
mined by the following factors: (1) the vertices at the (τ − 1)th layer (2) the
partition to bins at time τ which determines which of the vertices are isolated
(3) the permutation at time τ which determines the number of vertices each
isolated vertex adds to W (τ) and their labeling, and (4) the size of W (τ).

Let (w(0) = v(0), w(1), . . . , w(t−1) = w) be the path from the root to w in
Tree(t−1)(P̄ , σ̄, {i, j}). We prove the claim by induction on τ : Initially v(0) is
the only vertex of both Tree(0)(P̄ , σ̄, {i, j}) = Tree(0)(P̄R, σ̄R, {i, j}) with label
D(v(0)) = {i, j} according to both. Let 1 ≤ τ ≤ t − 1 and assume that the
trees are equal up to and including the (τ − 1)th layer, with identical labeling
of their vertices. We would like to show this property holds for τ . We consider
two cases:

1. If τ is a non-generating time step then, as shown in the proof of Claim
3.4.2 for z = 1:

σ
(τ)
R = σ(τ) and P

(τ)
R = P (τ)
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Now, by the induction hypothesis, V (τ−1) = V
(τ−1)
R with identical labeling

of the vertices and since the partitions are identical it follows that both

sides have the same set of isolated vertices. Combined with σ
(τ)
R = σ(τ)

we see that for both trees the same W (τ) with identical labeling of its
vertices will be created in step 1 of the construction. Since τ is non-
generating W (τ) will be discarded under both constructions and the same
set of vertices with identical labeling will be created in both sides.

2. Otherwise τ is a generating time step. By the induction hypothesis V (τ−1) =

V
(τ−1)
R with identical labeling of the vertices. Now, suppose D(w(τ−1)) =
{p, q}. Since w(τ−1) is isolated according to P (τ) (it must be so, since only
isolated vertices may have children in generating time steps and w(τ) is
its child) it follows that the positions appearing in the labels of all other
vertices in V (τ−1) do not reside in the same bin with neither p nor q. Now,

since only the bins of p and q might be modified in P
(τ)
R under f (τ), it

follows that for all w(τ−1) 6= v ∈ V (τ−1), v is isolated according to P
(τ)
R

if and only if it is isolated according to P (τ). Moreover, since only the

cycles of p and q are modified in σ
(τ)
R (By Claim 3.4.1) it follows that such

an isolated v adds the same number of vertices with identical labeling to
W (t).

The remaining vertex to be considered is w(τ−1). By Claim 3.4.1 σ
(τ)
R is ob-

tained by exchanging the cycles of p and q with (β1, . . . , βz−1, αz, . . . , αk =
p) and (α1, . . . , αz−1, βz, . . . , βl = q) for some z ∈ {1, . . . ,min(k, l)}. Note
that for any such z, p and q themselves remain in their distinct bins and

therefore w(τ−1) remains isolated under P
(τ)
R . It follows by inspection of

the two pairs of cycles that under both σ(τ) and σ
(τ)
R , w(τ−1) adds min(k, l)

vertices labeled {α1, β1}, {α2, β2}, . . . to W (t).

Finally, by the above argument it follows that the intermediate layer W (t)

is identical in both constructions. Therefore, whatever takes place in step

2 of the construction holds for both trees and therefore V
(τ)
R = V (τ)

We conclude that Tree(τ)(P̄ , σ̄, {i, j}) = Tree(τ)(P̄R, σ̄R, {i, j}) with iden-
tical labeling. This proof holds for all τ < t and in particular for t − 1 as
required.

Claim 3.4.4. Fix i, j ∈ [n]. For all (P̄ , σ̄) ∈ H, (P̄ , σ̄, {i, j}) is good if and only
if (P̄R, σ̄R, {i, j}) is good. Moreover, if t and w are the good time step and good
vertex of (P̄ , σ̄, {i, j}) then t and w are the good time step and good vertex of
(P̄R, σ̄R, {i, j}).

Proof. If (P̄ , σ̄, {i, j}) is not good then (P̄ , σ̄) = (P̄R, σ̄R) and the claim follows.
Otherwise, suppose (P̄ , σ̄, {i, j}) is good with t and w ∈ V (t−1) as its good
time step and good vertex. Claim 3.4.3 ensures that the path from the root to
w is identical in both Tree(t−1)(P̄ , σ̄, {i, j}) and Tree(t−1)(P̄R, σ̄R, {i, j}) with
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identical labeling along the path. Denote (w(0) = v(0), w(1), . . . , w(τ−1) = w)
as the path of w in the identical subtrees. We first show that none of the first
t− 1 steps can be a good time step according to (P̄R, σ̄R, {i, j}). We then show
that t is indeed its good time step with w ∈ V (t−1) as the lexicographically first
vertex for which the positions in its label fall into the same bin.

• For all 1 ≤ τ ≤ t−1, as explained before wτ−1 must be isolated according
to P (τ). Suppose D(wτ−1) = {p, q}, then by the definition of fτ the only

bins whose content may be changed in P
(τ)
R is that of p and q, however,

p and q themselves reside in the same two distinct bins according to both

P (τ) and P
(τ)
R and therefore wτ−1 cannot be a good vertex at time τ .

Moreover, since fτ leaves all other bins as is, none of the other vertices
can be a good vertex at time τ as well.

• By the construction P (t) = P
(t)
R and by Claim 3.4.3, V (t−1) = V

(t−1)
R

with identical labeling of the vertices. It follows that w is also the lexi-

cographically first vertex according to P
(t)
R for which the positions in its

label fall into the same bin. Since t is the first time step for which this
occurs, it follows that t and w are the good time step and good vertex of
(P̄R, σ̄R, {i, j}) as well. This also implies that (P̄R, σ̄R, {i, j}) is good.

Denoting Φi,j as the function Φ with a fixed third parameter {i, j} ⊆ [n],
we now use the two claims above to show that Φi,j is a bijection and Φ2

i,j = id.

Claim 3.4.5. Let i, j ∈ [n], then Φi,j(Φi,j(P̄ , σ̄))) = (P̄ , σ̄) and therefore Φi,j
is a bijection.

Proof. If (P̄ , σ̄, {i, j}) is not good then Φi,j(P̄ , σ̄) = (P̄ , σ̄) and indeed Φi,j(Φi,j(P̄ , σ̄))) =
(P̄ , σ̄). Otherwise, let t and w be its good time step and good vertex. By Claim
3.4.4, t and w are also the good time step and good vertex of (P̄R, σ̄R, {i, j}).
Moreover, Claim 3.4.3 ensures that the path from the root to w is identical in
both trees with identical labeling along the path. Let (w(0) = v(0), w(1), . . . , w(τ−1) =
w) be that path and denote Φi,j(P̄R, σ̄R) = (P̄∗, σ̄∗). Then, by Φ’s definition:

• For all τ < t:

σ
(τ)
∗ = D(w(τ))σ

(τ)
R D(w(τ−1))

= D(w(τ))D(w(τ))σ(τ)D(w(τ−1))D(w(τ−1))

= σ(τ)

and ∀α ∈ [n]:

P
(τ)
∗ (α) = P

(τ)
R (f (τ)(α))

= P (τ)(f (τ)(f (τ)(α)))

= P (τ)(α)
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• For t we have that P
(t)
∗ = P

(t)
R = P (t) and

σ
(t)
∗ = σ

(t)
R D(w) = σ

(t)
R D(w)D(w) = σ(t)

• For all t < τ ≤ T , (P
(τ)
∗ , σ

(τ)
∗ ) = (P

(τ)
R , σ

(τ)
R ) = (P (τ), σ(τ))

Finally, we turn to prove property 3.

Lemma 3.4.2. Fix i, j ∈ [n]. For all (Π̄, β̄) ∈ H,

Pr(P̄ ,σ̄)∼UH [Φi,j(P̄ , σ̄) = (Π̄, β̄)] = UH(Π̄, β̄)

Proof. By Claim 3.4.5,

Pr(P̄ ,σ̄)∼UH [Φi,j(P̄ , σ̄) = (Π̄, β̄)] = Pr(P̄ ,σ̄)∼UH [Φi,j(Φi,j(P̄ , σ̄)) = Φi,j(Π̄, β̄)]

= Pr(P̄ ,σ̄)∼UH [(P̄ , σ̄) = Φi,j(Π̄, β̄)]

Where the first transition is valid since Φi,j is a bijection.

Now, if (Π̄, β̄, {i, j}) is not good then Φi,j(Π̄, β̄) = (Π̄, β̄) and the claim is
trivial. Otherwise (Π̄, β̄) is good. Denote (Π̄R, β̄R) = Φi,j(Π̄, β̄). Note now that

for all τ ∈ [T ], Π(τ) and Π
(τ)
R have the same structure in the sense that each bin

contains the same number of elements. Therefore,

PrP̄∼UPTn,m
[P̄ = Π̄] = PrP̄∼UPTn,m

[P̄ = Π̄R] (3.1)

Now for all τ ∈ [T ] given the fact that P (τ) and P
(τ)
R have the same structure,

S(P (τ)) and S(P
(τ)
R ) span sets of the same size and it follows that:

Pr[σ̄ = β̄|P̄ = Π̄] = Pr[σ̄ = β̄R|P̄ = Π̄R] (3.2)

Combining 3.1 and 3.2 we get:

Pr(P̄ ,σ̄)∼UH [(P̄ , σ̄) = (Π̄R, β̄R)] = Pr(P̄ ,σ̄)∼UH [(P̄ , σ̄) = (Π̄, β̄)]

= UH(Π̄, β̄)

as required.

3.5 Convergence Rate of M

Claim 3.5.1. Let i 6= j ∈ [n] and suppose π
(0)
R = (i, j)π(0). If (P̄ , σ̄, {i, j}) is

good then π(T ) = π
(T )
R , otherwise ∆(π(T ), π

(T )
R ) = 1.
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Proof. If (P̄ , σ̄, {i, j}) is not good, then (P̄R, σ̄R) = (P̄ , σ̄) and it is clear that
the distance remains 1. Otherwise, let t and w be the good time step and good
vertex of (P̄ , σ̄) and let (w(0) = v(0), w1, . . . , w(t−1) = w) be the path of w in
Tree(P̄ , σ̄, {i, j}). Now,

π
(T )
R = σ

(T )
R . . . σ

(1)
R π

(0)
R

= σ(T ) . . . σ(t+1)σ(t)D(w)D(w(t−1))σ(t−1)D(w(t−2)) . . . D(w(1))σ(1)D(w(0))D(v(0))π(0)

= σ(T ) . . . σ(1)π(0) = π(T )

as required.

We now turn to prove Theorem 3.5.1.

Theorem 3.5.1. Let i 6= j ∈ [n] and suppose π
(0)
R = (i, j)π(0). Suppose m ≤

n
d0ln(n) for d0 ≥ 24, then,

E[∆(π(T ), π
(T )
R )] ≤ e · n−1/10

For T ≥ 2log n
10m

(n) + 1

Proof. Considering Claim 3.5.1:

E[∆(π(T ), π
(T )
R )] = Pr[∆(π(T ), π

(T )
R ) = 1]

= Pr[(P̄ , σ̄, {i, j}) is not good]

= Pr[∀t ∈ [T ], t is not a good time step of (P̄ , σ̄, {i, j})]

Suppose we show that for some T0, |V (T0)| ≥ c0n with high probability (c0 as
in the construction). Then the probability that none of vertices in V (t−1) are
good according to P (t) for all t = T0 + 1, . . . , T is at most:

exp(−c0n
m

(T − T0)) (3.3)

We call a bin balanced at time t if according to P (t), it contains at least 2n
3m

positions and in addition we call a partition balanced if all its bins are balanced.
Since the positions are distributed independently and uniformly at random, we
may apply Chernoff (Theorem 2.1.2) to conclude that a bin is not balanced with
probability at most exp(− n

18m ) and so using the union bound, a partition is not
balanced with probability at most

m · exp(− n

18m
) (3.4)

We state three major lemmas whose proof will be deferred. In these Lemmas
we assume that 18ln(n) ≤ m

36 .
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1. Growth to Ω(ln(n)) vertices:
Lemma 3.6.1: Fix partitions P (1), . . . , P (D) for D = 0.9log n

7.5m
(n) and

suppose they are balanced. Then, the labeled tree has |V (D)| < 18ln(n)
with probability at most

18 · ln(n)

n0.9/2
+

2D(18ln(n))2

m
(3.5)

2. Growth to Ω(m) vertices:
Lemma 3.6.2: Suppose |V (D)| ≥ 18ln(n) for some integer D > 0. Then,
after D1 = log n

10m
( m

72ln(n) ) steps the probability that |V (D+D1)| < m
36 is at

most

D1(2n−
18
16 (2e−1/18−1.5)2 +m · e− n

18m + n−(0.05)2 nm ) (3.6)

3. Growth to Θ(n) vertices:
Lemma 3.6.5: Suppose |V (D+D1)| ≥ m

36 for some integers D,D1 > 0.

Then, the probability that |V (D+D1+1)| < n
342 is at most

2n−
18
16 (2e−1/18−1.5)2 +m · e− n

18m + n−(0.05)2 nm (3.7)

We condition on the first D partitions being balanced (Note that the other
D1 + 1 also turn out to be balanced, this conditioning happens within the
Lemmas). In addition, we take T0 = D +D1 + 1 and note that:

T0 + 2 = 0.9log n
7.5m

(n) + log n
10m

(
m

72ln(n)
) + 3

< log n
10m

(n0.9) + log n
10m

(
m

72ln(n)
· ( n

10m
)2) + 1

< 2log n
10m

(n/49) + 1

Taking T ≥ 2log n
10m

(n/49) + 1 for our choice of n ≥ 1010, and assuming m ≤
n

d0ln(n) we obtain that the sum of the the error terms 3.3-3.7 is at most e·n−1/10.

This yields:

E[∆(π(T ), π
(T )
R )] ≤ e · n−1/10

3.6 Proof Of Lemmas

In the next three sections we state and prove the lemmas concerning with the
growth of the labeled tree. In section 3.6.1 we show that after some D steps, the
Dth layer has Ω(ln(n)) vertices with high probability. We do so by showing that
the growth in the first layers is almost independent. In sections 3.6.2 and 3.6.3
we argue that having Ω(ln(n)) enables us to show (using Chernoff) that with
high probability, each subsequent layer is expected to grow by a factor of Ω( nm )
where here we use the independence between different vertices that belong to
the same layer. Finally, in section 3.6.4 we prove two auxiliary lemmas.
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3.6.1 Growth to Ω(ln(n))

Consider the labeled tree that would be generated if we were to change the
following two things in the construction (1) all vertices, isolated or not, would
generate vertices in the manner described and, (2) we do not impose any restric-
tion on the size of the layer such as those in step 2 of the construction. We call
the resulting labeled tree the non-pruned labeled tree. Notice that in this tree,
the labels in a layer may not be disjoint, or even repeated in several distinct
vertices. In other words, the size of a layer is not bounded. The following claim
shall help us in our analysis.

Claim 3.6.1. Fix partitions P (1), . . . , P (D) for D = 0.9log n
7.5m

(n) and suppose

the partitions are balanced. Then, the non-pruned tree has |V (D)| < 18ln(n)

with probability at most 18·ln(n)
n0.9/2 .

Proof. For all t ∈ [D], let X(t) = |V (t)|
|V (t−1)| and Y (t) = ln(X(t)). In addition,

let Y =
∑D
t=1 Y

(t). Clearly |V (D)| =
∏D
t=1X

(t) = exp(Y ) and therefore, if
Y ≥ ln(18ln(n)) then exp(Y ) ≥ 18ln(n) as we desire. We are therefore required
to bound Pr[Y < ln(18ln(n))] for our choice of D.

We now determine E[Y (t)] for all t ∈ [D]. Let v ∈ V (t−1) with D(v) = {p, q}
and denote by g(v) the number of vertices v generates according to σ(t). Now,

Y (t) = ln(
|V (t)|
|V (t−1)|

) = ln(

∑
v∈V (t−1) g(v)

|V (t−1)|
) (3.8)

≥ 1

|V (t−1)|
·
∑

v∈V (t−1)

ln(g(v)) (3.9)

by the convexity of the ln function. For all v ∈ V (t−1), g(v) = min(kp, kq) where
kp and kq are the cycle lengths of p and q (resp.) in σ(t). By Fact 3.1.1, kp and
kq are distributed uniformly over their respective bin size and therefore since
we assume P (t) is balanced, it follows by Equation 3.9 and Claim 3.6.2 below,
that:

E[Y (t)] ≥ 1

|V (t−1)|
·
∑

v∈V (t−1)

E[ln(g(v))] ≥ ln(
n

7.5m
) (3.10)

Setting D = 0.9ln(n)/ln( n
7.5m ) we obtain E[Y ] ≥ 0.9ln(n). Now, 3.10 is true for

any history Y (1), . . . , Y (t−1), therefore we may apply Chernoff (Corollary 2.1.1)
to obtain the stated bound.

The claim implies that with high probability the Dth layer of the non-pruned
tree contains at least 18ln(n) vertices. Note that the regular labeled tree evolves
identically to the non-pruned tree conditioned on all vertices being isolated.
Let D′ ≤ D denote the first time step for which the layer of the non-pruned
tree contains at least K = 18ln(n) vertices. By the construction, the size of
all previous layers is at most K vertices and therefore for any t ∈ [D′ − 1],
the probability that there is some non-isolated vertex in |V (t−1)|according to
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P (t) is at most
(

2K
2

)
1
m < 2(18ln(n))2

m . Since D′ ≤ D we can upper bound the
probability of the existence of a non-isolated vertex in any of the first D′ − 1

layers by 2D(18ln(n))2

m . Note that due to the modifications in the growth of the
non-pruned tree, we require that 18ln(n) < m

36 . This results with the following
Lemma:

Lemma 3.6.1. Fix partitions P (1), . . . , P (D) for D = 0.9log n
7.5m

(n) and suppose

they are balanced. Then, the labeled tree has |V (D)| < 18ln(n) with probability
at most

18 · ln(n)

n0.9/2
+

2D(18ln(n))2

m
(3.11)

3.6.2 Growth to Ω(m)

Lemma 3.6.2. Suppose |V (D)| ≥ 18ln(n) for some integer D > 0. Then, after
D1 = log n

10m
( m

72ln(n) ) steps the probability that |V (D+D1)| < m
36 is at most

D1(2n−
18
16 (2e−1/18−1.5)2 +m · e− n

18m + n−(0.05)2 nm ) (3.12)

Proof. Consider the following Lemma whose proof (using Azuma’s inequality)
is deferred:

Lemma 3.6.3. Suppose |V (t)| = r ≤ m
36 Then, the probability that less than r

2

vertices are isolated according to P (t+1) is upper bounded by 2exp(− (2e−1/18−1.5)2r
16 )

note that the lemma remains true when using balanced partition (rather then
a random partition from Pn,m, with the additional error term of m · exp( −n18m ).
We condition on the partitions being balanced. Now, for any balanced parti-
tion, a similar argument as in the proof of Lemma 3.6.1 shows that each isolated
vertex is expected to generate at least 2n

9m vertices. Given that the partitions
are balanced, the number of vertices each isolated vertex generates is indepen-
dent from the other isolated vertices in that layer and we may apply Chernoff
(Theorem 2.1.2) to obtain the following Lemma:

Lemma 3.6.4. Given any balanced partition, a set of s isolated vertices gener-

ates less than 0.95 2ns
9m vertices with probability at most exp(− (0.05)2ns

9m )

Summing up the probabilities of failure we obtain that for all t > D, as long
as |V (t)| ≤ m

36 , less than 0.95 ns
9m are added to W (t+1) with probability at most:

2exp(− (2e−1/18 − 1.5)2|V (t)|
16

) +m · exp(− n

18m
) + exp(− (0.05)2n|V (t)|

18m
)

We remind the reader that by step 2 of the construction, when m
36 < W (t) < c0n

we set V (t) to be of size m
36 . In any case, since there are at least 18ln(n) vertices

in each of the subsequent layers, it follows that after D1 = log n
10m

( m
72ln(n) ) steps

we have |V (D)| < m
36 with probability at most

D1(2n−
18
16 (2e−1/18−1.5)2 +m · e− n

18m + n−(0.05)2 nm )
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3.6.3 Growth to Θ(n)

Lemma 3.6.5. Suppose |V (D+D1)| ≥ m
36 for some integers D,D1 > 0. Then,

the probability that |V (D+D1+1)| < n
342 is at most

2n−
18
16 (2e−1/18−1.5)2 +m · e− n

18m + n−(0.05)2 nm (3.13)

Proof. The bound follows immediately by applying Lemmas 3.6.3 and 3.6.4.
Except for the error probability, we get that:

|V (D+D1+1)| ≥ 0.95 · 2n

9m
· 1

2
· m

36
≥ n

342

3.6.4 The Expected Number of Isolated Vertices

Proof of Lemma 3.6.3. Let U (t) =
⋃
v∈V (t) D(v) be the set of positions appear-

ing in some label belonging to a vertex from V (t). Recall that in any given
layer, each position appears in the label of at most one vertex and therefore
|U (t)| = 2r where |V (t)| = r. Let Z(t+1) denote the number of positions from
U (t) which according to P (t+1) reside with some other position from U (t). The
probability that a specific position from U (t) does not reside with any other
position from U (t) in its bin is (1 − 1

m )2r−1 ≥ e−
2r
m ≥ e−1/18 and therefore

E[Z(t+1)] ≤ 2r(1− e−1/18).
Suppose we show that with high probability at most r

2 of the positions from

U (t) reside with some other position from U (t) in their bin according to P (t+1).
Conditioned on this event, these positions belong to at most r

2 vertices from

V (t), which means that the rest r
2 must be isolated according to P (t+1) as we

require. We therefore bound the probability that more than r
2 positions do not

reside alone in their bin.
We observe the process of placing the positions in the bins and analyze it in

a similar fashion as [MR95], Exercise 4.12. Let X
(t+1)
1 , . . . , X

(t+1)
2r be random

variables where for each k ∈ [2r], X
(t+1)
k denotes the index of the kth position in

U (t) according to P (t+1). Notice that X
(t+1)
1 , . . . , X

(t+1)
2r are independent. We

can view Z(t+1) as a function f(X
(t+1)
1 , . . . , X

(t+1)
2r ) that returns the number of

positions sharing their bin with at least one other position. It is easy to see that
moving any position from one bin to another may change f ’s value by at most
2. Therefore, f satisfies the Lipschitz condition with constant cL = 2. We now

define the sequence of random variables Z
(t+1)
0 , . . . , Z

(t+1)
2r as follows:

1. Z
(t+1)
0 = E

X
(t+1)
1 ,...,X

(t+1)
2r

[f(X
(t+1)
1 , . . . , X

(t+1)
2r )]

2. For all k ∈ [2r], Z
(t+1)
k = E

X
(t+1)
k+1 ,...,X

(t+1)
2r

[f(X
(t+1)
1 , . . . , X

(t+1)
2r )|X(t+1)

1 , . . . , X
(t+1)
k ]
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note that Z
(t+1)
0 , . . . , Z

(t+1)
2r form a Doob martingale (Definition 2.1.2). It is

clear that for all k ∈ [2r], |Z(t+1)
k − Z(t+1)

k−1 | ≤ 2. Consequently, by Azuma’s
inequality:

Pr[|Z(t+1)
2r − Z(t+1)

0 | ≥ λ] ≤ 2exp(− λ2

16r
)

For all λ > 0. This is exactly the bound we are looking for since Z
(t+1)
0 =

E[Z(t+1)] and Z
(t+1)
2r = Z(t+1). Now

Pr[Z(t+1) > 0.5r] < Pr[|Z(t+1) − E[Z(t+1)| > 0.5r − E[Z(t+1)]]

< 2exp(− (0.5r − E[Z(t+1)])2

16r
)

≤ 2exp(− (2e−1/18 − 1.5)2r

16
)

3.6.5 The Expected Growth Size

Claim 3.6.2. Let K be some integer and suppose i, j ∼ UK , then

1. E[min(i, j)] ≥ K
3 and,

2. E[ln(min(i, j))] ≥ ln(K/5) for K ≥ 11

Proof.

E[min(i, j)] =
1

K2

K∑
i,j=1

min(i, j) =
1

K2
[2

∑
1≤i<j≤K

i+

K∑
i=1

i] (3.14)

=
1

K2
[2

K∑
i=1

i(K − i) +

K∑
i=1

i] (3.15)

=
1

K2
[
1

2
(2K + 1)(K + 1)K − 1

3
K(K + 1)(2K + 1)] (3.16)

≥ K

3
(3.17)

Using an identical analysis up until 3.15 above we obtain:

E[ln(min(i, j))] =
1

K2
[(2K + 1)

K∑
i=1

ln(i)− 2

K∑
i=1

i · ln(i)] (3.18)

=
1

K2
[(2K + 1)ln(K!)− 2

K∑
i=1

i · ln(i)] (3.19)
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Using Stirling’s approximation we have that ln(K!) ≥ Kln(K/e)+ln(
√

2πK)
and since:

K∑
i=1

i · ln(i) ≤
∫ K+1

1

xln(x) = x2 · ( ln(x)

2
− 1

4
)

∣∣∣∣K+1

1

we obtain from Equation 3.19 that

≥ 1

K2
[(2K + 1)(Kln(K/e) + ln(

√
2πK))− (K + 1)2 · (ln(K + 1)− 1

2
) +

1

2
]

> ln(K)− 1.5− K + 0.5ln(K)

K2

The claim now follows since 1.5 + K+0.5ln(K)
K2 < ln(5) for K ≥ 11 (as assumed).

3.7 A Lazy Version

We now turn to a more general case. We say a bin is inactive at a time step
t if instead of permuting its content as suggested by σt, it disregards it and
leaves it as is. We define the Markov chain Mα for some constant 0 < α < 1
in a similar fashion as M except that in addition, the bins are independently
active with probability α. It is not difficult to see that Mα shares the properties
of ergodicity and reversibility with M and therefore has USn as its stationary
distribution as well. Again, we would like to know Mα’s rate of convergence.

It turns out that this modification does not have any effect on the validity of
our delayed path coupling construction provided that we add to the definition
of a good vertex (Definition 3.3.2) that its positions must also fall into an active
bin. We do need to analyze the growth of the labeled tree in light of this
modification. Also note that this modification does not relate to a vertex being
isolated or not since isolation of a vertex is dependent only on the partition and
has no concern with the activeness of a bin (nor the permutation). Therefore,
Lemma 3.6.3 applies in this case with no modifications. On the other hand,
this clearly affects the number of vertices a vertex may generate - We say a
vertex v ∈ V (t−1) with D(v) = {p, q} is inactive at time t if either p or q fall
into an inactive bin at time t. Inactive vertices generate only a single vertex
(with label (σ(t)(p), σ(t)(q))) while an active one generates as many vertices as
it would under M. We shall show that the labeled tree growth is only slowed
down by some constant factor dependent on α. We Claim the following:

Theorem 3.7.1. For any ε > 0, constant α > 0, large enough n and m ≤
n

d0ln(n) for constant d0 ≥ 24

τMα
(ε) ≤ 10

α2
(2log n

10m
(n) + 1) · ln(n/ε)

ln(n)− 10

We state the equivalent of Theorem 3.5.1 and proceed to detail the required
modifications.
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Theorem 3.7.2. Let i 6= j ∈ [n] and suppose π
(0)
R = (i, j)π(0). Suppose m ≤

n
d0ln(n) for d0 ≥ 24, then,

E[∆(π(T ), π
(T )
R )] ≤ e · n−1/10

For T ≥ 1
α2 (2log n

10m
(n) + 1)

The required modifications are:

1. Modification in Lemma 3.6.1: We note that in the proof of Claim 3.6.1 it
is now the case that E[ln(g(v))] ≥ α2ln( n

7.5m ) simply since two bins are
active with probability α2 and with complement probability, g(v) = 1 and
ln(g(v)) = 0. The implication of this change is that we should set D to
be D/α2 to obtain the same result as in Lemma 3.6.1.

2. Modifications in Lemma 3.6.2:

• Consider Lemma 3.6.4. Given the s isolated vertices, it is now the

case that E[X] ≥ 2α2ns
9m for exactly the same reason above. Since

the bins are independently active with probability α we may apply
Chernoff to obtain a similar result.

• We now seek a growth factor of at least α2n
10m

• We are also required that

D1 =
log( m

72ln(n) )

log( α
2n

10m )

3. Modifications in Lemma 3.6.5: The changes are similar to that of the

previous point. We require that c0 = α2

342

4. Conditioning on |V (T0)| > c0n, each vertex is independently good with
probability α

m and therefore the probability of failure in time steps T0 +

1, . . . T is at most n−
αc0n
m (T−T0).

Now, for large enough n and some integer constant T − T0 > 2α−1 we can
satisfy the same bounds as in the proof of Theorem 3.5.1.

Considering the fact that D,D1 and T −T0 grew each by a factor of at most
α−2 we obtain the result in the Theorem.
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