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Abstract

Obtaining an efficient bound for the triangle removal lemma is one of the most outstanding

open problems of extremal combinatorics. Perhaps the main bottleneck for achieving this goal

is that triangle-free graphs can be highly unstructured. For example, triangle-free graphs might

have only regular partitions (in the sense of Szemerédi) of tower-type size. And indeed, essentially

all the graph properties P for which removal lemmas with reasonable bounds were obtained, are

such that every graph satisfying P has a small regular partition. So in some sense, a barrier for

obtaining an efficient removal lemma for property P was having an efficient regularity lemma for

graphs satisfying P.

In this paper we consider the property of being induced C4-free, which also suffers from the

fact that a graph might satisfy this property but still have only regular partitions of tower-type

size. By developing a new approach for this problem we manage to overcome this barrier and

thus obtain a merely exponential bound for the induced C4 removal lemma. We thus obtain the

first efficient removal lemma that does not rely on an efficient version of the regularity lemma.

This is the first substantial progress on a problem raised by Alon in 2001, and more recently by

Alon, Conlon and Fox.

1 Introduction

An n-vertex graph is ε-far from satisfying a property P if one should add/delete at least εn2 edges

in order to turn G into a graph satisfying P. The so called induced removal lemma of Alon, Fischer,

Krivelevich and Szegedy [2] states that for every fixed graph H, if an n-vertex graph G is ε-far from

being induced H-free, then G contains at least nh/RemH(ε) induced copies of H, where h = |V (H)|
and RemH(ε) depends only on ε. The proof of this lemma in [2] supplied extremely weak bounds for

RemH(ε), which were later improved by Conlon and Fox [9]. However, even these improved bounds

are of tower-type1.

Alon [1] asked for which graphs H we have RemH(ε) = poly(1/ε), that is, for which graphs H

can we obtain polynomial bounds for the induced removal lemma. This question was addressed by

Alon and the second author [5] who resolved this problem for all graphs H except for P3 (the path
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in part by ISF Grant 1028/16 and ERC Starting Grant 633509.
1We use tower(x) for a tower of exponents of height x, so tower(3) = 222 . The original proof of the induced removal

lemma in [2] gave only wowzer-type bounds, where wowzer is the iterated-tower function.
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on 4 vertices) and C4 (the 4-cycle). The former case was recently solved by Alon and Fox [4], who

proved that RemP3(ε) = poly(1/ε). They further asked to determine if RemC4(ε) = poly(1/ε). This

problem was also later raised by Conlon and Fox [10].

Prior to this work the best bound for RemC4(ε) was the same tower-type bound that holds for all

graphs H. As we explain in the next subsection, the reason is that this problem seemed to lie just

outside the realm of the known techniques for proving efficient bounds for graph removal lemmas.

Our main result in this paper makes the first substantial progress on this problem, by improving the

tower-type bound into an exponential one.

Theorem 1.1. If an n-vertex graph G is ε-far from being induced C4-free, then G contains at least

n4/2(1/ε)
c

induced copies of C4, where c is an absolute constant.

We conjecture that the exponential bound in Theorem 1.1 can be further improved to a polynomial

one.

Given a (possibly infinite) family of graphs F , we say that a graph is induced F-free if it is induced

H-free for every H ∈ F . Observe that for infinite families F it is not a priori clear that a graph

which is ε-far from being induced F-free should contain any constant size (that might depend on ε)

subgraph that is not induced F-free. Such a result was obtained by Alon and the second author [6],

who extended the result of [2] by showing that for every family of graphs F , there is a function

RemF (ε), so that if G is ε-far from being induced F-free, then a random subset of RemF (ε) vertices

from V (G) is not induced F-free with probability at least (say2) 2/3. Needless to say that as in [2],

the bounds for RemF (ε) given by [6] are also (at least) of tower-type.

It is natural to ask if Theorem 1.1 can be extended to properties defined by forbidding a family

of graphs F , one of which is C4. The most notable and natural example is the property of being

chordal, which is the property of not containing an induced cycle of length at least 4. Previously, the

best bound for this problem was the tower-type bound which follows from the general result of [6].

Here we obtain the following improved bound.

Theorem 1.2. There is an absolute constant c, such that for every ε ∈ (0, 1), for every integer n

and for every n-vertex graph G which is ε-far from being chordal, there is 4 ≤ ` ≤ O(ε−18) such that

G contains at least n`/2(1/ε)
c

induced copies of C`.

While Theorem 1.2 asserts that if G is ε-far from being chordal it must contain an induced cycle

of length poly(1/ε), it only implies that a sample of vertices of size 2(1/ε)
c

contains an induced cycle

with probability at least 2/3. We do believe, however, that this exponential bound can be further

improved to a polynomial one.

It is now natural to ask if Theorem 1.2 can be further extended to an arbitrary family of graphs

F , one of which is C4. As our final theorem shows, this is not the case in a very strong sense.

Theorem 1.3. For every (decreasing) function g : (0, 1/2)→ N there is a family of graphs F = F(g)

so that C4 ∈ F and yet RemF (ε) ≥ g(ε).

In fact, for every (small enough) ε > 0 and every n ≥ n0(ε), there is an n-vertex graph G which

is ε-far from being induced F-free, and yet does not contain an induced copy of any F ∈ F on fewer

than g(ε) vertices.
2It is easy to see that if F = {H}, this way of defining RemF (ε) is equivalent (up to polynomial factors) to the

induced removal lemma of [2], as we stated it above.
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1.1 Relation to prior works

In this subsection we would like to explain why in Theorem 1.1 we managed to overcome for the

first time a natural barrier, which was the main reason why one could not derive Theorem 1.1 via

techniques that were previously used for proving graph removal lemmas. For simplicity we will start

by discussing the triangle removal lemma, that is, the special case of the induced removal lemma

when H = K3. The original proof of the triangle removal lemma [25] relied on the famous regularity

lemma of Szemerédi [26], which is one of the most powerful tools for tackling problems in extremal

graph theory. It states that for every ε > 0 there is an M = M(ε) so that every graph has an ε-regular

partition of order at most M (see [24] for the precise definitions related to graph regularity). Since

Szemerédi’s proof only established that M(ε) ≤ tower(1/ε5), this approach for proving the triangle

removal lemma only gave the very weak bound RemK3(ε) ≤ tower(poly(1/ε)). Gowers’ celebrated

result [18], which states that M(ε) ≥ tower(poly(1/ε)), implies that one cannot get a better bound

for RemK3(ε) via the regularity lemma. In a major breakthrough, Fox [13] managed to prove the

triangle removal lemma while avoiding Szemerédi’s version of the regularity lemma, thus showing

that RemK3(ε) ≤ tower(O(log 1/ε)). A different formulation of his proof was later given in [10]

and [21]. The latter proof shows that Fox’s result can be derived from a variant of the regularity

lemma. Unfortunately, it was shown in [21] that this variant of the regularity lemma must also

produce partitions of tower-type size. Hence this approach does not seem to allow one to prove (say)

exponential bounds for the triangle removal lemma.

Although the best known bounds for the triangle removal are of tower-type, there are families of

graphs F for which one can prove much better (non-tower-type) bounds for RemF (ε), that is, for the

removal lemma of induced F-freeness. One example is the result of Alon and Fox [4] mentioned above

regarding induced P3-freeness. The main point we would like to make is that all these improved

bounds (save for one case discussed below) were not obtained by avoiding the regularity lemma.

Instead, they still (implicitly or explicitly) used the regularity lemma, but relied on the fact that

induced F-free graphs have much smaller ε-regular partitions. For example, the result of Alon and

Fox [4] regarding induced P3-freeness can be derived from the fact that every induced P3-free graph

has an ε-regular partition of size poly(1/ε). See [14] for a proof of this and other related results.

It is now natural to ask if one can use the above approach in order to obtain better bounds for the

triangle removal lemma. Unfortunately, there are bipartite versions of Gowers’ [18] lower bound for

the regularity lemma, as well as for the variant of the regularity lemma introduced in [21]. Therefore,

a graph can be triangle-free but still only have regular partitions of tower-type size. This means that

any proof of the triangle removal lemma that relies on (one of the above versions of) the regularity

lemma is bound to produce tower-type bounds.

With regard to induced C4-freeness, it is easy to see that every split graph is induced C4-free,

where a split graph is a graph whose vertex set can be partitioned into two sets, one inducing a

complete graph and the other an independent set. This means that if we take a bipartite version

of Gowers’ lower bound [18] (or of the one from [21]), and put a complete graph on one of the

vertex sets, we get an induced C4-free graph that has only regular partitions of tower-type size. In

particular, arguments similar to those that were previously used in order to devise efficient removal

lemmas cannot give better-than-tower-type bounds for this problem.

Summarizing the above discussion, Theorem 1.1 is the first example showing that one can obtain

an efficient removal lemma for a property P, even though graphs satisfying P might have only regular
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partitions of tower-type size. To do this, our proof is the first removal lemma that avoids using the

regularity lemma or one of its variants (save for the example discussed below). We are hopeful

that bounds similar to those obtained in Theorem 1.1 can be obtained for removal lemmas of other

properties for which the best known bounds are of tower-type, most notably for triangle freeness.

Let us end the discussion by describing the only previous example of a removal lemma that was

obtained while avoiding a regularity lemma, and how it differs from Theorem 1.1. In 1984 Erdős

[12] (implicitly) conjectured that k-colorability has a removal lemma, that is, that if G is ε-far from

being k-colorable then a sample of Ck(ε) vertices from V (G) spans a non-k-colorable subgraph with

probability at least 2/3. This was first verified by Rödl and Duke [23] who used the regularity lemma

in order to obtain a tower-type bound for Ck(ε). This tower-type bound was dramatically improved

by Goldreich, Goldwasser and Ron [16], who obtained a new proof of this result (as well as for

similar partition problems) that avoided the regularity lemma and thus gave a polynomial bound for

Ck(ε). Let us try3 to explain why k-colorability differs from triangle-freeness or induced C4-freeness.

First, as opposed to these two properties which are local, the partition properties of [16] are global.

Perhaps the best way to see this is from the perspective of graph homomorphisms: triangle-freeness

means that there is no edge-preserving mapping from the vertices of the triangle to the vertices of

G, while 3-colorability means that there is such a mapping from the vertices of G to the vertices

of the triangle4. The second difference, which is more important for our quantitative investigation

here, is that k-colorability is defined using global edge counts (i.e. having no edges inside a vertex

partition into k sets). This can explain (at least in hindsight), why one does not need any structure

theorem in order to handle this property. Instead one can rely on sampling arguments that boil down

to estimating various edge densities (this is not to say that devising such proofs is an easy task!).

It appears that arguments of this sort cannot be used to prove removal lemmas for local properties

such as triangle freeness or induced C4-freeness.

1.2 Paper overview

The main idea of the proof is to show that (very roughly speaking) every induced C4-free graph

is a split graph. To be more precise, every5 induced C4-free graph is close to being a union of

an independent set and few cliques, so that the bipartite graphs between these cliques are highly

structured. Note that we have no guarantee on the structure of the bipartite graph connecting the

independent set and the cliques6. Towards this goal, in Section 2 we describe some preliminary

lemmas, mostly regarding the structure of bipartite graphs that do not contain an induced matching

of size 2. In Section 3 we give the main partial structure theorem, stated as Lemma 3.6. In the course

of the proof we will make a surprising application of one of the main results of Goldreich, Goldwasser

and Ron [16]. In Section 4 we give the proofs of Theorems 1.1 and 1.2. We will make use of the

structure theorem from Section 3 but will also have to deal with the (unavoidable) unstructured part

of the graph. This will be done in Lemma 4.1. Finally, in Section 5, we give the proof of Theorem

1.3. We will make no effort to optimize the constant c appearing in Theorems 1.1 and 1.2.

3See also Subsection 8.3.2 of Goldreich’s upcoming book [15] for a similar attempt.
4In the language of graph limits, this is the distinction between left and right homomorphisms, see [20].
5It is known [22] that most induced C4-free graphs are split graphs. We stress that in our setting we have to deal

with every induced C4-free graph, not just typical ones!
6This unstructured part is unavoidable due to the example we mentioned earlier of putting Gowers’ construction

between a clique and an independent set.
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2 Forbidding an induced 2-matching

Our goal in this section is to introduce several definitions and prove Lemma 2.4 stated below, re-

garding graphs not containing induced matchings of size 2 of a specific type, which we now formally

define. Let G be a graph and let X,Y ⊆ V (G) be disjoint sets of vertices. An induced copy of M2 in

(X,Y ) is an (unordered) quadruple x, x′, y, y′ such that x, x′ ∈ X, y, y′ ∈ Y , {x, y}, {x′, y′} ∈ E(G)

and {x, y′}, {x′, y} /∈ E(G). We say that (X,Y ) is induced M2-free if it does not contain induced

copies of M2 as above. Observe that if X and Y are cliques then G[X ∪ Y ] is induced C4-free if and

only if (X,Y ) is induced M2-free. For x ∈ X, we denote NY (x) = {y ∈ Y : {x, y} ∈ E(G)}.

Claim 2.1. (X,Y ) is induced M2-free7 if and only if there is an enumeration x1, . . . , xm of the

elements of X such that NY (xi) ⊆ NY (xj) for every 1 ≤ i < j ≤ m.

Proof. Observe that (X,Y ) contains an induced M2 if and only if there are x, x′ ∈ X for which there

exist y ∈ NY (x) \ NY (x′) and y′ ∈ NY (x′) \ NY (x). Therefore, (X,Y ) is induced M2-free if and

only if for every x, x′ ∈ X it holds that either NY (x) ⊆ NY (x′) or NY (x′) ⊆ NY (x). Consider the

poset on X in which x precedes x′ if and only if NY (x) ⊆ NY (x′). This poset is a linear ordering.

Enumerate the elements of X from minimal to maximal to get the required enumeration.

For a pair of disjoint vertex-sets X,Y , we say that (X,Y ) is homogeneous if the bipartite graph

between X and Y is either complete or empty. Throughout the paper, and in particular in the

following lemma, we will avoid floor/ceiling signs, by assuming that the number of vertices in the

vertex-set under consideration is divisible by some small integers (ultimately these integers would

depend only on the parameter ε). In what follows, when considering partitions of a set, we allow

partition classes to be empty.

Lemma 2.2. If (X,Y ) is induced M2-free then for every integer r ≥ 1 there are partitions X =

X1 ∪ · · · ∪ Xr and Y = Y1 ∪ · · · ∪ Yr+1 such that |Xi| = |X|
r for every 1 ≤ i ≤ r, and (Xi, Yj) is

homogeneous for every 1 ≤ i ≤ r and 1 ≤ j ≤ r + 1 satisfying i 6= j.

Proof. Let x1, . . . , xm be the enumeration of the elements of X from Claim 2.1. For 1 ≤ i ≤ r define

Xi = {xj : (i−1)m
r < j ≤ im

r }. Let now y1, . . . , yn be an enumeration of the elements of Y with

the property that for every x ∈ X, the set NY (x) is a “prefix” of the enumeration, that is, so that

NY (x) = {y1, . . . , yk} for some 0 ≤ k ≤ n. Define Y1 = NY (xm/r), Yi = NY (xim/r) \NY (x(i−1)m/r)

for i = 2, . . . , r and Yr+1 = Y \NY (xm).

It remains to show that (Xi, Yj) is homogeneous for every i 6= j. Assume first that i < j.

Then for every x ∈ Xi we have NY (x) ⊆ NY (xim/r) ⊆ NY (x(j−1)m/r). By the definition of

Yj we have Yj ∩ NY (x(j−1)m/r) = ∅. Thus, Yj ∩ NY (x) = ∅ for every x ∈ Xi, implying that

the bipartite graph (Xi, Yj) is empty. Now assume that i > j. For every x ∈ Xi we have

NY (xjm/r) ⊆ NY (x(i−1)m/r) ⊆ NY (x). By the definition of Yj we have Yj ⊆ NY (xjm/r). Thus,

Yj ⊆ NY (x) for every x ∈ Xi, implying that the bipartite graph (Xi, Yj) is complete.

For two partitions P1,P2 of the same set, we say that P2 is a refinement of P1 if every part of

P2 is contained in one of the parts of P1. A vertex partition P of an n-vertex graph G is called

7Let us mention that half-graphs are a special case of induced M2-free bipartite graphs. A half-graph has 2n vertices

x1, . . . , xn, y1, . . . , yn, and xi is adjacent to yj if and only if i ≥ j.
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δ-homogeneous if the sum of |U ||V | over all non-homogeneous unordered distinct pairs U, V ∈ P is

at most δn2. Note that if a δ-homogeneous partition P refines a partition {X1, . . . , Xk} such that

each Xi is either a clique or an independent set, then every refinement of P is also δ-homogeneous.

Lemma 2.3. Let δ ∈ (0, 1/2), let G be an n-vertex graph and let V (G) = X1∪· · ·∪Xk be a partition

such that X1, . . . , Xk are cliques and (Xi, Xj) is induced M2-free for every 1 ≤ i < j ≤ k. Then

there is a δ-homogeneous partition which refines {X1, . . . , Xk} and has at most k (2/δ)k parts.

Proof. For every 1 ≤ i < j ≤ k, we apply Lemma 2.2 to (Xi, Xj) with parameter r =
⌈
1
δ

⌉
to

get partitions Pi,j of Xi and Pj,i of Xj , Pi,j = {X1
i,j , . . . , X

r
i,j}, Pj,i = {X1

j,i, . . . , X
r+1
j,i }, such that

|Xp
i,j | =

|Xi|
r for every 1 ≤ p ≤ r, and (Xp

i,j , X
q
j,i) is homogeneous for every p 6= q. Note that

r∑
p=1

|Xp
i,j ||X

p
j,i| =

r∑
p=1

1

r
|Xi||Xp

j,i| ≤
1

r
|Xi||Xj | ≤ δ|Xi||Xj |. (1)

For every i = 1, . . . , k, define Pi to be the common refinement of the partitions (Pi,j)1≤j≤k, j 6=i. We

have |Pi| ≤ (r + 1)k−1 ≤ (1δ + 2)k−1 ≤ (2/δ)k. The partition P :=
⋃k
i=1 Pi refines {X1, . . . , Xk}

and has at most k (2/δ)k parts. For every U, V ∈ P, if (U, V ) is not homogeneous, then there are

1 ≤ i < j ≤ k and 1 ≤ p ≤ r such that U ⊆ Xp
i,j and V ⊆ Xp

j,i. This follows from the fact that

X1, . . . , Xk are cliques and the property of the partitions (Pi,j)1≤i 6=j≤k. By (1), we have

∑
1≤i<j≤k

r∑
p=1

|Xp
i,j ||X

p
j,i| ≤ δ

∑
1≤i<j≤k

|Xi||Xj | ≤ δn2,

implying that P is δ-homogeneous, as required.

We are ready to prove the main lemma of this section. One important idea we will employ here

is that of obtaining a partition P and then a refinement Q of P with somewhat better parameters,

and then using some parts of Q in order to approximate P. This idea goes back to the original proof

of the induced removal lemma in [2].

Lemma 2.4. Let δ ∈ (0, 1/2), let G be an n-vertex graph and let V (G) = X1∪· · ·∪Xk be a partition

such that X1, . . . , Xk are cliques and (Xi, Xj) is induced M2-free for every 1 ≤ i < j ≤ k. Then

there is a set Z ⊆ V (G) of size |Z| < δn, a partition V (G) \ Z = Q1 ∪ · · · ∪ Qq which refines

{X1 \ Z, . . . ,Xk \ Z} and subsets Wi ⊆ Qi such that the following hold.

1. The sum of |Qi||Qj | over all non-homogeneous pairs (Qi, Qj), 1 ≤ i < j ≤ q, is at most δn2.

2. |Wi| ≥ (δ/2k)10k
2
n for every 1 ≤ i ≤ q and (Wi,Wj) is homogeneous for every 1 ≤ i < j ≤ q.

Proof. The assertion is trivial for k = 1 so we assume that k ≥ 2. Apply Lemma 2.3 to G with

parameter δ to obtain a δ-homogeneous partition P which refines {X1, . . . , Xk}. Let us define

Q = {U ∈ P : |U | ≥ δn
|P|} and write Q = {Q1, . . . , Qq}. Then Item 1 holds since P is δ-homogeneous.

Setting Z =
⋃
U∈P\Q U , notice thatQ refines {X1\Z, . . . ,Xk\Z} and that |Z| < |P|· δn|P| = δn. Apply

Lemma 2.3 to G[V (G) \ Z], with the partition {X1 \ Z, . . . ,Xk \ Z} (in place of {X1, . . . , Xk}), and

with parameter δ′ := δ2

4|P|4 . The lemma gives a δ′-homogeneous partition V with at most k(8|P|4/δ2)k
parts. LetW be the common refinement of Q and V. Note thatW is δ′-homogeneous as a refinement
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of V, since V is δ′-homogeneous and refines {X1 \Z, . . . ,Xk \Z}, and X1 \Z, . . . ,Xk \Z are cliques.

Moreover, we have

|W| ≤ |Q| · |V| ≤ |P| · k(8|P|4/δ2)k. (2)

For each 1 ≤ i ≤ q, define Wi = {W ∈ W : W ⊆ Qi}, choose a vertex wi ∈ Qi uniformly at

random and let Wi ∈ Wi be such that wi ∈ Wi. We will show that with positive probability, the

sets W1, . . . ,Wq satisfy the statement in Item 2. For 1 ≤ i ≤ q, the probability that |Wi| < |Qi|
2q|W| is

smaller than
|W|· |Qi|

2q|W|
|Qi| = 1

2q , as there are at most |Wi| ≤ |W| sets W ∈ Wi of size less than |Qi|
2q|W| . By

the union bound, with probability larger than 1
2 , every 1 ≤ i ≤ q satisfies

|Wi| ≥
|Qi|

2q|W|
≥

(
δ2

8|P|4
)k
δn

2k|P|3
=

δ2k+1n

23k+1k|P|4k+3
≥ δ2k+1n

23k+1k4k+4(2/δ)4k2+3k
≥
(
δ

2k

)10k2

n ,

where in the second inequality we used |Qi| ≥ δn
|P| , q ≤ |P| and (2), in the third inequality we used

the bound on |P| given by Lemma 2.3, and in the last inequality we used the assumption k ≥ 2. For

1 ≤ i < j ≤ q, the probability that the pair (Wi,Wj) is not homogeneous is∑ |W ||W ′|
|Qi||Qj |

≤ 4|P|2

δ2n2

∑
|W ||W ′| ≤ 4|P|2

δ2n2
· δ′n2 =

1

|P|2
,

where the sums are taken over all non-homogeneous pairs (W,W ′) ∈ Wi ×Wj , the first inequality

uses |Qi|, |Qj | ≥ δn
2|P| and the second the fact that W is δ′-homogeneous. By the union bound, with

probability at least 1−
(
q
2

)
1
|P|2 ≥ 1−

(|P|
2

)
1
|P|2 >

1
2 , all pairs (Wi,Wj) are homogeneous. We conclude

that Item 2 holds with positive probability.

It is worth mentioning that the bounds in the above lemma are the sole reason why our bound in

Theorem 1.1 is exponential rather than polynomial.

3 A partial structure theorem for C4-free graphs

Our main goal in this section is to prove Lemma 3.6 stated below, which gives an approximate partial

structure theorem for induced C4-free graphs. The “approximation” will be due to the fact that the

graph will only be close to having a certain nice structure, while the “partial” will be since there

will be a (possibly) big part of the graph about which we will have no control. As we discussed in

Section 1, this partialness is unavoidable as evidenced by split graphs.

In addition to the lemmas from the previous section, we will also need the following theorems

of Goldreich, Goldwasser and Ron [16] and of Gyárfás, Hubenko and Solymosi [19]. In both cases,

ω(G) denotes maximum size of a clique in G.

Theorem 3.1 ([16], Theorem 7.1). For every ε ∈ (0, 1) there is q3.1(ε) = O(ε−5) with the following

property. Let ρ ∈ (0, 1) be such that ε < ρ2/2 and let G be a graph which is ε-far from satisfying

ω(G) ≥ ρn. Suppose q ≥ q3.1(ε) and let Q ∈
(
V (G)
q

)
be a randomly chosen set of q vertices of G.

Then with probability at least 2
3 we have ω(G[Q]) < (ρ− ε

2)q.

Theorem 3.2 ([19]). Every induced C4-free graph G with n vertices and at least αn2 edges satisfies

ω(G) ≥ 0.4α2n.

7



Let us now derive the following important corollary of the above two theorems. For a set X ⊆
V (G) with at least 2 vertices, define d(X) = e(X)/

(|X|
2

)
, where e(X) is the number of edges of G

with both endpoints in X.

Lemma 3.3. Let α ∈ (0, 1/2) and let G be a graph on n vertices with at least αn2 edges. Then for

every β ∈ (0, 1), either G contains Ω(α80β20n4) induced copies of C4 or there is a set X ⊆ V (G)

with |X| ≥ 0.1α2n and d(X) ≥ 1− β.

In the proof of Lemma 3.3 we need the following simple fact, which is proved by a standard application

of the second moment method (see e.g. [7]). We first prove Claim 3.4 and then present the proof of

Lemma 3.3.

Claim 3.4. Let α ∈ (0, 1/2) and let G be a graph with n vertices and at least αn2 edges. Then for

every r ≥ 240
α , a randomly chosen set R ∈

(
V (G)
r

)
satisfies e(R) ≥ α

2 r
2 with probability at least 2

3 .

Proof. Let η ∈ (0, 1) be such that G has exactly ηn2 edges, noting that η ≥ α. We consider the

random variable e(R). For each e ∈ E(G), let Ie be the indicator of the event e ⊆ R. Then

e(R) =
∑

e∈E(G) Ie. Note that P[e ⊆ R] = r(r−1)
n(n−1) , so by linearity of expectation we have E[e(R)] =

e(G) · r(r−1)n(n−1) ≥ e(G) · 34 ·
r2

n2 = 3η
4 r

2. Now let us estimate the variance of e(R). We have

Var[e(R)] =
∑

e∈E(G)

P[e ⊆ R] +
∑

e,e′∈E(G)

(
P[e, e′ ⊆ R]− P[e ⊆ R] · P[e′ ⊆ R]

)
,

where the second sum is over all ordered pairs e, e′ of distinct edges. If e, e′ are disjoint then

P[e, e′ ⊆ R] = r(r−1)(r−2)(r−3)
n(n−1)(n−2)(n−3) ≤

(
r
n

)4
, and P[e ⊆ R] · P[e′ ⊆ R] =

(
r(r−1)
n(n−1)

)2
≥ r2(r−1)2

n4 ≥ r4−2r3
n4 .

So the term corresponding to the pair e, e′ in the above sum is at most r4

n4 − r4−2r3
n4 = 2r3

n4 . Since

there are at most e(G)2 = η2n4 pairs of edges e, e′ altogether, the pairs in which e, e′ are disjoint

contribute at most η2n4 · 2r3
n4 = 2η2r3 to the above sum.

If e, e′ intersect (namely, have a vertex in common), then P[e, e′ ⊆ R] = r(r−1)(r−2)
n(n−1)(n−2) ≤

(
r
n

)3
.

Since there are at most e(G) · 2 · n pairs of intersecting edges e, e′, these pairs contribute at most

e(G) · 2n · r3
n3 = 2ηr3. Altogether, we have

Var[e(R)] ≤
∑

e∈E(G)

P[e ⊆ R] + 2η2r3 + 2ηr3 ≤ ηr2 + 2η2r3 + 2ηr3 ≤ 5ηr3,

where in the second inequality we used the fact that
∑

e∈E(G) P[e ⊆ R] = E[e(R)] ≤ e(G)·
(
r
n

)2
= ηr2.

By Chebyshev’s inequality (see e.g. [7]), we have

P
[
|e(R)− E[e(R)]| > η

4
r2
]
≤ Var[e(R)]

η2

16r
4
≤ 5ηr3

η2

16r
4

=
80

ηr
≤ 80

αr
≤ 1

3
,

where in the last inequality we used our choice of r. Finally, notice that if |e(R)− E[e(R)]| ≤ η
4r

2

then e(R) ≥ E[e(R)]− η
4r

2 ≥ 3η
4 r

2 − η
4r

2 = η
2r

2 ≥ α
2 r

2, as required.

Proof of Lemma 3.3. Set ρ = 0.1α2, ε = ρ2β
4 = α4β

400 and r = max{q3.1(ε), 240α }. By Theorem 3.1 we

have r = O(α−20β−5). We assume that there is no X ⊆ V (G) with |X| ≥ 0.1α2n and d(X) ≥ 1− β,
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and prove that G contains Ω(α80β20n4) induced copies of C4. Let X ⊆ V (G) be such that |X| ≥ ρn.

Since d(X) < 1−β, we have
(|X|

2

)
−e(X) > β

(|X|
2

)
≥ β |X|

2

4 ≥
ρ2β
4 n2 = εn2. This shows that G is ε-far

from containing a clique of size ρn or larger. By our choice of r via Theorem 3.1, a random sample

R of r vertices of G satisfies ω(G[R]) < (ρ− ε
2)r < 0.1α2r with probability at least 2

3 . By Claim 3.4,

we also have e(R) > α
2 r

2 with probability at least 2
3 . So with probability at least 1

3 we have both

ω(G[R]) < 0.1α2r and e(R) > α
2 r

2. If both events happen, then G[R] must contain an induced copy

of C4, by Theorem 3.2. We conclude that G contains at least 1
3

(
n
r

)
/
(
n−4
r−4
)

= 1
3

(
n
4

)
/
(
r
4

)
= Ω(α80β20n4)

induced copies of C4.

The last ingredient we need is the following result of Alon, Fischer and Newman [3]. For a pair

of disjoint vertex sets X,Y , we say that (X,Y ) is ε-far from being induced M2-free if one has to

add/delete at least ε|X||Y | of the edges between X and Y to make (X,Y ) induced M2-free.

Lemma 3.5 ([3]). There is an absolute constant d such that the following holds. If (X,Y ) is ε-far

from being induced M2-free then (X,Y ) contains at least εd|X|2|Y |2 induced copies of M2.

We can clearly assume that d ≥ 1 in the above lemma, and will do so in what follows. The

following is the key lemma of this section. Note that it gives us a lot of information about G[Y ] and

G[X1 ∪ · · · ∪Xk] but no information about the bipartite graph connecting X1 ∪ · · · ∪Xk and Y .

Lemma 3.6. There is an absolute constant c0 > 0, such that for every α, γ ∈ (0, 1/2), every

n-vertex graph G either contains Ω(αc0γc0n4) induced copies of C4, or admits a vertex partition

V (G) = X1 ∪ · · · ∪Xk ∪ Y with the following properties.

1. e(Y ) < αn2.

2. |Xi| ≥ 0.1α3n and d(Xi) ≥ 1− γ for every 1 ≤ i ≤ k.

3. For every 1 ≤ i < j ≤ k, the pair (Xi, Xj) is γ-close (i.e. not γ-far) to being induced M2-free.

Proof. We prove the lemma with c0 = max(84, 20d), where d is the constant from Lemma 3.5. We

inductively define two sequences of sets, (Vi)i≥0 and (Xi)i≥1. Set V0 = V (G). At the i’th step

(starting from i = 0), if e(Vi) < αn2 then we stop. Note that if we did not stop then |Vi| ≥
α1/2n > αn. If e(Vi) ≥ αn2 then by Lemma 3.3, applied to G[Vi] with parameters α and β = 0.25γd,

either G[Vi] contains Ω(α80γ20d|Vi|4) ≥ Ω(α84γ20dn4) induced copies of C4 or there is Xi+1 ⊆ Vi
with |Xi+1| ≥ 0.1α2|Vi| ≥ 0.1α3n and d(Xi) ≥ 1 − 0.25γd. If the former case happens then the

assertion of the lemma holds, so we may assume that the latter case happens, in which case we

set Vi+1 = Vi \ Xi+1 and continue. Suppose that this process stops at the k’th step for some

k ≥ 0. Set Y = Vk. We clearly have V (G) = X1 ∪ · · · ∪ Xk ∪ Y . For every 1 ≤ i ≤ k we have

|Xi| ≥ 0.1α3n and d(Xi) ≥ 1− 0.25γd ≥ 1− γ. Since the process stopped at the k’th step, we must

have e(Y ) = e(Vk) < αn2.

To finish the proof, we show that if Item 3 in the lemma does not hold then G contains at least

0.5·10−4α12γdn4 induced copies of C4. Assume that for some 1 ≤ i < j ≤ k, the pair (Xi, Xj) is γ-far

from being induced M2-free. By Lemma 3.5, (Xi, Xj) contains at least γd|Xi|2|Xj |2 induced copies of

M2. Let (xi, x
′
i, xj , x

′
j) be such a copy, where xi, x

′
i ∈ Xi and xj , x

′
j ∈ Xj . If {xi, x′i}, {xj , x′j} ∈ E(G)

then xi, x
′
i, xj , x

′
j span an induced copy of C4. Since d(Xi), d(Xj) ≥ 1 − 0.25γd, there are at most

0.5γd|Xi|2|Xj |2 quadruples of distinct vertices (xi, x
′
i, xj , x

′
j) ∈ Xi ×Xi ×Xj ×Xj for which either

9



{xi, x′i} /∈ E(G) or {xj , x′j} /∈ E(G). Thus, G contains at least 0.5γd|Xi|2|Xj |2 ≥ 0.5 · 10−4α12γdn4

induced copies of C4.

We finish this section with the following corollary of the above structure theorem, which will be

more convenient to use when proving Theorems 1.1 and 1.2 in the next section.

Lemma 3.7. There is an absolute constant c0 > 0 such that for every α, γ ∈ (0, 1/2), every n-vertex

graph G either contains Ω(αc0γc0n4) induced copies of C4 or there is a graph G′ on V (G), a partition

V (G) = X1 ∪ · · · ∪ Xk ∪ Y , where 0 ≤ k ≤ 10α−3, a subset Z ⊆ X := X1 ∪ · · · ∪ Xk, a partition

X \ Z = Q1 ∪ · · · ∪Qq which refines {X1 \ Z, . . . ,Xk \ Z}, and subsets Wi ⊆ Qi such that:

1. G′[Xi \ Z] is a clique for every 1 ≤ i ≤ k, and G′[Y ] is an independent set.

2. |Z| < αn and every z ∈ Z is an isolated vertex in G′.

3. In G′, the sum of |Qi||Qj | over all non-homogeneous pairs (Qi, Qj), 1 ≤ i < j ≤ q, is at most

αn2.

4. (Wi,Wj) is homogeneous in G′ for every 1 ≤ i < j ≤ q and |Wi| ≥ (α/20)4000α
−6 |X| for every

1 ≤ i ≤ q.

5. |E(G′)4E(G)| < (2α+ γ)n2 and |E(G′[X \ Z])4E(G[X \ Z])| < γn2.

Proof. The constant c0 in this lemma is the same as in Lemma 3.6. Apply Lemma 3.6 to G with

the given α and γ. If G contains Ω
(
αc0γc0n4

)
induced copies of C4 then the assertion of the

lemma holds, and otherwise let X1, . . . , Xk, Y be as in the statement of Lemma 3.6. Note that

k ≤ 10α−3 since |Xi| ≥ 0.1α3n for every 1 ≤ i ≤ k. Let G′′ be the graph obtained from G by making

Y an independent set, making X1, . . . , Xk cliques and making (Xi, Xj) induced M2-free for every

1 ≤ i < j ≤ k. By Lemma 3.6 we have |E(G′′[Y ])4E(G[Y ])| < αn2 and |E(G′′[X])4E(G[X])| <
γ
∑k

i=1

(|Xi|
2

)
+ γ

∑
i<j |Xi||Xj | < γn2. We now apply Lemma 2.4 to G′′[X] with parameter δ = α

(and with respect to the partition {X1, . . . , Xk}) and obtain a subset Z ⊆ X of size |Z| < α|X| ≤ αn,

a partition X \Z = Q1 ∪ · · · ∪Qq which refines {X1 \Z, . . . ,Xk \Z}, and subsets Wi ⊆ Qi such that

|Wi| ≥ (α/2k)10k
2 |X| ≥ (α4/20)1000α

−6 |X| ≥ (α/20)4000α
−6 |X| for every 1 ≤ i ≤ q.

Let G′ be the graph obtained from G′′ by making every z ∈ Z an isolated vertex. Then Item 2 is

satisfied. The second part of Item 5 holds because G′[X\Z] = G′′[X\Z] and |E(G′′[X])4E(G[X])| <
γn2. For the first part of Item 5, note that |E(G′)4E(G′′)| < |Z|n < αn2, which implies that

|E(G′)4E(G)| ≤ |E(G′)4E(G′′)|+ |E(G′′)4E(G)| < (2α+ γ)n2. Since G′[X \Z] = G′′[X \Z] and

G′[Y ] = G′′[Y ], it is enough to establish that Items 1, 3 and 4 hold if G′ is replaced by G′′. For

Item 1, this is immediate from the definition of G′′; for Items 3 and 4, this follows from our choice

of Q = {Q1, . . . , Qq} and W1, . . . ,Wq via Lemma 2.4 (with parameter δ = α).

4 Proofs of main results

In this section we prove Theorems 1.1 and 1.2. The last ingredient we need is the following key

lemma.

Lemma 4.1. Let F be a (finite or infinite) family of graphs such that

10



1. C4 ∈ F .

2. For every F ∈ F and for every v ∈ V (F ), the neighbourhood of v (in F ) is of size at least 2

and is not a clique.

Suppose G is a graph with vertex partition V (G) = X ∪ Y such that Y is an independent set and

G[X] is induced F-free. If one must add/delete at least ε|X||Y | of the edges between X and Y to

make G induced F-free, then G contains at least ε4

28
|X|2|Y |2 induced copies of C4.

Proof. Let us pick for every y ∈ Y a maximal anti-matching M(y) in G[NX(y)], that is, a max-

imal collection of pairwise-disjoint non-edges contained in NX(y). For every pair of non-edges

{u, v}, {u′, v′} ∈ M(y), there must be at least one non-edge between the vertices {u, v} and the

vertices {u′, v′}, as otherwise u, v, u′, v′ would span an induced C4 in X, in contradiction to the

assumptions that G[X] is induced F-free and C4 ∈ F . Therefore, for every y there are at least(|M(y)|
2

)
+ |M(y)| ≥ |M(y)|2/2 non-edges inside the set NX(y). For every y ∈ Y let d2(y) denote the

number of unordered pairs of vertices in NX(y), that are non-adjacent. Then the above discussion

implies that every y ∈ Y satisfies

d2(y) ≥ |M(y)|2

2
. (3)

Let G′ be the graph obtained from G by deleting, for every y ∈ Y , all edges going between y and

the vertices of M(y). Since M(y) is spanned by 2|M(y)| vertices, we have

|E(G′)4E(G)| = 2
∑
y∈Y
|M(y)| . (4)

We now claim that G′ is induced F-free. Indeed, suppose U ⊆ V (G) spans an induced copy of

some F ∈ F . Since by assumption G[X] is induced F-free and since G′[X] = G[X], there must

be some y ∈ U ∩ Y . Since the neighbourhood of y in F is of size at least 2 and is not a clique,

and since G′[Y ] = G[Y ] is an empty graph, there must be u, v ∈ U ∩ X for which u, v ∈ NX(y)

and {u, v} /∈ E(G′). Now, the fact that u, v are connected to y in G′ means that neither of them

participated in one of the non-edges of M(y). But then the fact that {u, v} /∈ E(G′) implies that

also {u, v} /∈ E(G) (because we did not change G[X]) which in turn implies that {u, v} could have

been added to M(y), contradicting its maximality.

By the assumption of the lemma we thus have |E(G′)4E(G)| ≥ ε|X||Y |. Combining this with

(3), (4) and Jensen’s inequality thus gives

∑
y∈Y

d2(y) ≥ 1

2

∑
y∈Y
|M(y)|2 ≥ 1

2
|Y | ·

(∑
y∈Y |M(y)|
|Y |

)2

=
1

2
|Y | ·

(
|E(G′)4E(G)|

2|Y |

)2

≥ ε2

8
|X|2|Y |.

For a pair of distinct vertices u, v ∈ X set t(u, v) = 0 if {u, v} ∈ E(G) and otherwise set t(u, v)

to be the number of vertices y ∈ Y connected to both u and v. Recalling that Y is an independent

set in G, we see that u, v belong to at least
(
t(u,v)

2

)
induced copies of C4. Hence, G contains at least

∑
u,v∈X

(
t(u, v)

2

)
≥

(
|X|
2

)
·
(∑

u,v∈X t(u, v)/
(|X|

2

)
2

)
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=

(
|X|
2

)
·
(∑

y∈Y d2(y)/
(|X|

2

)
2

)
≥ |X|2

4
· (ε2|Y |/4)2

4
=
ε4

28
|X|2|Y |2,

induced copies of C4, where the first inequality is Jensen’s, the following equality is double-counting,

and the last inequality uses our above lower bound for
∑

y∈Y d2(y).

We are now ready to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Set

α =
ε6

213
, γ =

1

2
(α/20)16000α

−6
(ε/2)4,

and notice that γ ≥ 2−(1/ε)
c′

for some absolute constant c′. Let G be an n-vertex graph which is ε-far

from being induced C4-free. We apply Lemma 3.7 to G with the α and γ defined above. If G contains

Ω
(
αc0γc0n4

)
induced copies of C4 (where c0 is from Lemma 3.7) then we are done. Otherwise, let

G′, X = X1 ∪ · · · ∪Xk, Y , Z, Q = {Q1, . . . , Qq} and Wi ⊆ Qi be as in Lemma 3.7. Let G′′ be the

graph obtained from G′ by doing the following: for every 1 ≤ i < j ≤ q, if (Wi,Wj) is a complete

(resp. empty) bipartite graph then we turn (Qi, Qj) into a complete (resp. empty) bipartite graph.

By Item 4 in Lemma 3.7, one of these options holds. By Item 3 in Lemma 3.7, the number of changes

made is at most αn2. By Item 5 in Lemma 3.7 we have∣∣E(G′′)4E(G)
∣∣ ≤ ∣∣E(G′′)4E(G′)

∣∣+
∣∣E(G′)4E(G)

∣∣ < (3α+ γ)n2 <
ε

2
n2,

implying that G′′ is ε
2 -far from being induced C4-free (as G is ε-far from being induced C4-free).

Note that |X \Z| ≥ ε
2n, as otherwise deleting all edges incident to the vertices of X \Z would make

G′′ an empty graph (and hence induced C4-free) by deleting |X \ Z| · n < ε
2n

2 edges.

Let us assume first that G′′[X \Z] contains an induced copy of C4, say on the vertices v1, v2, v3, v4.

For 1 ≤ s ≤ 4, let is be such that vs ∈ Qis . It is easy to see that by the definition of G′′, every

quadruple (w1, . . . , w4) ∈ Wi1 ×Wi2 ×Wi3 ×Wi4 spans an induced copy of C4 in the graph G′. By

Item 4 in Lemma 3.7, G′ contains

|Wi1 | · |Wi2 | · |Wi3 | · |Wi4 | ≥ (α/20)16000α
−6 |X|4 ≥ (α/20)16000α

−6
(ε/2)4n4 = 2γn4

induced copies of C4. By Item 5 in Lemma 3.7, G[X \Z] and G′[X \Z] differ on less than γn2 edges,

each of which can participate in at most n2 induced copies of C4. Thus, G contains at least γn4

induced copies of C4, as required.

From now on we assume that G′′[X \Z] is induced C4-free, implying that G′′[X] is induced C4-free

(as every z ∈ Z is isolated in G′′). Since G′′ is ε
2 -far from being induced C4-free, one cannot make

G′′ induced C4-free by adding/deleting less than ε
2n

2 ≥ ε|X||Y | edges between X and Y . Hence,

we have |X||Y | ≥ ε
2n

2, as otherwise one could remove all edges between X and Y , thus making

G′′ induced C4-free by removing at most ε
2n

2 edges. Notice that the conditions of Lemma 4.1 hold

(with respect to the family F = {C4}) since G′′[Y ] = G′[Y ] is an independent set (by Item 1 in

Lemma 3.7) and G′′[X] is induced C4-free by assumption. By Lemma 4.1, G′′ contains at least
ε4

28
|X|2|Y |2 ≥ ε6

210
n4 = 8αn4 induced copies of C4. Since |E(G′′)4E(G)| < (3α + γ)n2 < 4αn2, at

least 4αn4 = ε6

211
n4 of these copies are also present in G. This completes the proof of the theorem.
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Proof of Theorem 1.2. Set

α =
ε6

213
, γ =

1

2
(α/20)10

5α−9
(ε/2)20α

−3
,

and notice that γ ≥ 2−(1/ε)
c′

for some absolute constant c′. Let G be an n-vertex graph which is

ε-far from being chordal. As in the proof of Theorem 1.1, we apply Lemma 3.7 to G with the α and

γ defined above. If G contains Ω
(
αc0γc0n4

)
induced copies of C4 then we are done. Otherwise, let

G′, X = X1 ∪ · · · ∪Xk, Y , Z, Q = {Q1, . . . , Qq} and Wi ⊆ Qi be as in Lemma 3.7.

Let G′′ be the graph obtained from G′ by doing the following: for every 1 ≤ i < j ≤ q, if (Wi,Wj)

is a complete (resp. empty) bipartite graph then we make (Qi, Qj) a complete (resp. empty) bipartite

graph. As in the proof of Theorem 1.1, G′′ is ε
2 -far from being chordal, and we have |X \ Z| ≥ ε

2n.

Assume first that G′′[X \Z] is not chordal, namely that it contains an induced cycle C = v1 . . . v`
of length ` ≥ 4. By Item 1 in Lemma 3.7, G′′[Xi \ Z] = G′[Xi \ Z] is a clique for every 1 ≤ i ≤ k.

Since the cycle C does not contain a triangle, it can contain at most 2 vertices from each of these

cliques, implying that ` = |C| ≤ 2k ≤ 20α−3 = O(ε−18). The bound on k comes from Lemma 3.7.

For 1 ≤ s ≤ `, let is be such that vs ∈ Qis . It is easy to see that by the definition of G′′, `-tuple

(w1, . . . , w`) ∈ Wi1 × · · · ×Wi` spans an induced `-cycle in the graph G′. By Item 4 in Lemma 3.7,

G′ contains ∏̀
j=1

|Wij | ≥ (α/20)4000α
−6`|X|` ≥ (α/20)10

5α−9
(ε/2)20α

−3
n` = 2γn`

induced copies of C`. By Item 5 in Lemma 3.7, G[X] and G′[X] differ on less than γn2 edges, each

of which can participate in at most n`−2 induced copies of C`. Thus, G contains at least γn` induced

copies of C`, as required.

We now assume that G′′[X] is chordal. Since G′′ is ε
2 -far from being chordal, one must add/delete

at least ε
2n

2 ≥ ε|X||Y | of the edges between X and Y to make G′′ chordal. In particular, we have

|X||Y | ≥ ε
2n

2. Note that the family F = {C` : ` ≥ 4}, i.e. the family of forbidden induced subgraphs

for chordality, satisfies Conditions 1-2 of Lemma 4.1. Observe that Lemma 4.1 is applicable to G′′

(with respect to the family F = {C` : ` ≥ 4}), as G′′[Y ] = G′[Y ] is an independent set (by Item 1 in

Lemma 3.7), and G′′[X] is induced F-free (i.e. chordal) by assumption. By Lemma 4.1, G′′ contains

at least ε4

28
|X|2|Y |2 ≥ ε6

210
n4 = 8αn4 induced copies of C4. Since |E(G′′)4E(G)| < 4αn2, at least

4αn4 = ε6

211
n4 of these copies are also present in G. So in this case the assertion of the theorem holds

with ` = 4. This completes the proof.

5 An impossibility result

In this section we prove Theorem 1.3. It will in fact be more convenient to prove the following

equivalent statement.

Theorem 5.1. For every function g : (0, 12) → N there is a graph family F which contains C4 and

there is a sequence {εk}∞k=1 with εk > 0 and εk → 0, such the following holds. For every k ≥ 1 and

n ≥ n0(k) there is an n-vertex graph G which is εk-far from being induced F-free, but still every

induced subgraph of G on g(εk) vertices is induced F-free.

We will need the following theorem due to Erdős [11].
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Theorem 5.2. For every integer f there is n5.2 = n5.2(k, f) such that every k-uniform hypegraph

with n ≥ n5.2 vertices and nk−f
1−k

edges contains a complete k-partite k-uniform hypergraph with f

vertices in each part.

For integers k, f ≥ 1, let Bk,f be the graph obtained by replacing each vertex of the cycle Ck by

a clique of size f , and replacing each edge by a complete bipartite graph.

Lemma 5.3. For every pair of integers k ≥ 3 and f ≥ 1 there is n5.3 = n5.3(k, f) such that for

every n ≥ n5.3, the graph Bk,n/k is 1
2k2

-far from being induced {C4, Bk,f}-free.

Proof. Let V1, . . . , Vk be the sides of G := Bk,n/k (each a clique of size n/k). Let G′ be a graph

obtained from G by adding/deleting at most v(G)2

2k2
= n2

2k2
edges. Our goal is to show that G′ is not

induced {C4, Bk,f}-free. Let H be the k-partite k-uniform hypergraph with parts V1, . . . , Vk whose

edges are all k-tuples (v1, . . . , vk) ∈ V1 × · · · × Vk such that v1v2 . . . vkv1 is an induced cycle in G′.

Note that in G, every such k-tuple spans an induced cycle, and that adding/deleting an edge can

destroy at most
(
n
k

)k−2
such cycles. Thus, G′ contains at least

(
n
k

)k − n2

2k2

(
n
k

)k−2
= 1

2

(
n
k

)k
of these

induced cycles, implying that e(H) ≥ 1
2

(
n
k

)k
. For a large enough n we have 1

2

(
n
k

)k ≥ nk−f
1−k

and

n ≥ n5.2(k, f). Thus, by Theorem 5.2, H contains a complete k-partite k-uniform hypergraph with

parts Ui ⊆ Vi, each of size f . This means that in the graph G′, (Ui, Uj) is a complete bipartite

graph if j − i ≡ ±1 (mod k) and an empty bipartite graph otherwise. If G′[Ui] is a clique for every

1 ≤ i ≤ k then U1 ∪ · · · ∪ Uk spans an induced copy of Bk,f in G′. Suppose then that Ui is not a

clique for some 1 ≤ i ≤ k, say i = 1, and let x, y ∈ U1 be such that {x, y} /∈ E(G′). Then for every

z ∈ U2 and w ∈ Uk, {x, y, z, w} spans an induced copy of C4 in G′. Thus, in any case G′ is not

induced {C4, Bk,f}-free.

Proof of Theorem 5.1. For k ≥ 5 put εk = 1
2k2

and fk = g(εk). We will show that the family

F = {C4} ∪ {Bk,fk : k ≥ 5} satisfies the requirement. Let k ≥ 5, let n ≥ n5.3(k, fk) and set

G = Bk,n/k. By Lemma 5.3, G is εk-far from being induced {C4, Bk,fk}-free. Since C4, Bk,fk ∈ F ,

we get that G is εk-far from being induced F-free.

We claim that for every 4 ≤ ` < k, G is induced C`-free. Suppose, for the sake of contradic-

tion, that x1, . . . , x`, x1 is an induced `-cycle in G. Let V1, . . . , Vk be the sides of G = Bk,n/k. If

|{x1, . . . , x`} ∩ Vi| ≤ 1 for every 1 ≤ i ≤ k then x1, . . . , x` are contained in an induced path, which

is impossible. So there is some 1 ≤ i ≤ k for which |{x1, . . . , x`} ∩ Vi| ≥ 2. Suppose without loss

of generality that x1, x2 ∈ V1 (recall that V1, . . . , Vk are cliques). Then x3 ∈ V2 or x3 ∈ Vk, and in

either case x1, x2, x3 span a triangle, a contradiction.

We conclude that the smallest F ∈ F which is an induced subgraph of G, is F = Bk,fk . Thus,

every induced subgraph of G on less than v(Bk,fk) = k · g(εk) vertices is induced F-free, completing

the proof.
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