Mathematical Proceedings of the Cambridge Philosophical Society

http://journals.cambridge.org/PSP

Additional services for **Mathematical Proceedings of the Cambridge Philosophical Society:**

Email alerts: <u>Click here</u> Subscriptions: <u>Click here</u> Commercial reprints: <u>Click here</u> Terms of use : <u>Click here</u>

An improved lower bound for arithmetic regularity

KAAVE HOSSEINI, SHACHAR LOVETT, GUY MOSHKOVITZ and ASAF SHAPIRA

Mathematical Proceedings of the Cambridge Philosophical Society / Volume 161 / Issue 02 / September 2016, pp 193 - 197 DOI: 10.1017/S030500411600013X, Published online: 11 March 2016

Link to this article: http://journals.cambridge.org/abstract_S030500411600013X

How to cite this article:

KAAVE HOSSEINI, SHACHAR LOVETT, GUY MOSHKOVITZ and ASAF SHAPIRA (2016). An improved lower bound for arithmetic regularity. Mathematical Proceedings of the Cambridge Philosophical Society, 161, pp 193-197 doi:10.1017/S030500411600013X

Request Permissions : Click here

CAMBRIDGE JOURNALS

Mathematical Proceedings of the Cambridge Philosophical Society

SEPTEMBER 2016

PART 2

Math. Proc. Camb. Phil. Soc. (2016), 161, 193–197 © Cambridge Philosophical Society 2016 193 doi:10.1017/S030500411600013X First published online 11 March 2016

An improved lower bound for arithmetic regularity

BY KAAVE HOSSEINI[†] AND SHACHAR LOVETT[†]

Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA. *e-mails*: skhossei@cse.ucsd.edu; slovett@cse.ucsd.edu

GUY MOSHKOVITZ[‡] AND ASAF SHAPIRA§

School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel. e-mails: guymosko@tau.ac.il; asafico@tau.ac.il

(Received 20 May 2014; revised 25 January 2016)

Abstract

The arithmetic regularity lemma due to Green [GAFA 2005] is an analogue of the famous Szemerédi regularity lemma in graph theory. It shows that for any abelian group G and any bounded function $f: G \to [0, 1]$, there exists a subgroup $H \leq G$ of bounded index such that, when restricted to most cosets of H, the function f is pseudorandom in the sense that all its nontrivial Fourier coefficients are small. Quantitatively, if one wishes to obtain that for $1 - \epsilon$ fraction of the cosets, the nontrivial Fourier coefficients are bounded by ϵ , then Green shows that |G/H| is bounded by a tower of twos of height $1/\epsilon^3$. He also gives an example showing that a tower of height $\Omega(\log 1/\epsilon)$ is necessary. Here, we give an improved example, showing that a tower of height $\Omega(1/\epsilon)$ is necessary.

1. Introduction

As an analogue of Szemerédi's regularity lemma in graph theory [4], Green [2] proposed an arithmetic regularity lemma for abelian groups. Given an abelian group G and a bounded

\$ Supported in part by NSF award 1350481.
 \$ Supported in part by ISF grant 224/11.
 \$ Supported in part by ISF Grant 224/11, Marie–Curie CIG Grant 303320 and ERC-Starting Grant

KAAVE HOSSEINI AND OTHERS

function $f : G \to [0, 1]$, Green showed that one can find a subgroup $H \leq G$ of bounded index, such that when restricted to most cosets of H, the function f is pseudorandom in the sense that all of its nontrivial Fourier coefficients are small. Quantitatively, the index of H in G is bounded by a tower of twos of height polynomial in the error parameter. The aim of this paper is to provide an example showing that these bounds are essentially tight. This strengthens a previous example due to Green [2] which shows that a tower of height logarithmic in the error parameter is necessary; and makes the lower bounds in the arithmetic case analogous to these obtained in the graph case [1].

We restrict our attention in this paper to the group $G = \mathbb{Z}_2^n$, and note that our construction can be generalised to groups of bounded torsion in an obvious way. We first make some basic definitions. Let A be an affine subspace (that is, a translation of a vector subspace) of \mathbb{Z}_2^n and let $f : A \to [0, 1]$ be a function. The Fourier coefficient of f associated with $\eta \in \mathbb{Z}_2^n$ is

$$\widehat{f}(\eta) = \frac{1}{|A|} \sum_{x \in A} f(x)(-1)^{\langle x, \eta \rangle} = \mathbb{E}_{x \in A}[f(x)(-1)^{\langle x, \eta \rangle}]$$

Any subspace $H \leq \mathbb{Z}_2^n$ naturally determines a partition of \mathbb{Z}_2^n into affine subspaces

$$\mathbb{Z}_2^n/H = \{H+g : g \in \mathbb{Z}_2^n\}$$
.

The number $|\mathbb{Z}_2^n/H| = 2^{n-\dim H}$ of translations is called the *index* of *H*.

1.1. Arithmetic regularity and the main result

For an affine subspace A = H + g of \mathbb{Z}_2^n , where $H \leq \mathbb{Z}_2^n$ and $g \in \mathbb{Z}_2^n$, we say that a function $f : A \to [0, 1]$ is ϵ -regular if all its nontrivial Fourier coefficients are bounded by ϵ , that is,

$$\max_{\eta \notin H^{\perp}} \left| \widehat{f}(\eta) \right| \leqslant \epsilon \; .$$

Note that a trivial Fourier coefficient (i.e., $\widehat{f}(\eta)$ with $\eta \in H^{\perp}$) satisfies $|\widehat{f}(\eta)| = |\mathbb{E}_{x \in A} f(x)|$. Henceforth, for any $f : \mathbb{Z}_{2}^{n} \to [0, 1]$ we write $f|_{A} : A \to [0, 1]$ for the restriction of f to A.

Definition 1.1 (ϵ -regular subspace). Let $f : \mathbb{Z}_2^n \to [0, 1]$. A subspace $H \leq \mathbb{Z}_2^n$ is ϵ -regular for f if $f|_A$ is ϵ -regular for at least $(1 - \epsilon) \cdot |\mathbb{Z}_2^n/H|$ translations A of H.

Green [2] proved that any bounded function has an ϵ -regular subspace H of bounded index, that is, whose index depends only on ϵ (equivalently, H has bounded codimension). In the following, twr(h) is a tower of twos of height h; formally, twr(h) := $2^{\text{twr}(h-1)}$ for a positive integer h, and twr(0) = 1.

THEOREM 1 (Arithmetic regularity lemma in \mathbb{Z}_2^n , [2 theorem 2.1]). For every $0 < \epsilon < 1/2$ there is $M(\epsilon)$ such that every function $f : \mathbb{Z}_2^n \to [0, 1]$ has an ϵ -regular subspace of index at most $M(\epsilon)$. Moreover, $M(\epsilon) \leq \operatorname{twr}(\lceil 1/\epsilon^3 \rceil)$.

A lower bound on $M(\epsilon)$ of about twr $(\log_2(1/\epsilon))$ was given in the same paper [2], following the lines of Gowers' lower bound on the order of ϵ -regular partitions of graphs [1]. While Green's lower bound implies that $M(\epsilon)$ indeed has a tower-type growth, it is still quite far from the upper bound in Theorem 1.

Our main result here nearly closes the gap between the lower and upper bounds on $M(\epsilon)$, showing that $M(\epsilon)$ is a tower of twos of height at least linear in $1/\epsilon$. Our construction follows

194

the same initial setup as in [2], but will diverge from that point on. Our proof is inspired by the recent simplified lower bound proof for the graph regularity lemma in [3] by a subset of the authors.

THEOREM 2. For every $\epsilon > 0$ it holds that $M(\epsilon) \ge \operatorname{twr}(\lfloor 1/16\epsilon \rfloor)$.

1.2. A variant of Theorem 2 for binary functions

One can also deduce from Theorem 2 a similar bound for ϵ -regular *sets*, that is, for binary functions $f : \mathbb{Z}_2^n \to \{0, 1\}$. For this, all we need is the following easy probabilistic argument.

CLAIM 1·2. Let $\tau > 0$ and $f : \mathbb{Z}_2^n \to [0, 1]$. There exists a binary function $S : \mathbb{Z}_2^n \to \{0, 1\}$ satisfying, for every affine subspace A of \mathbb{Z}_2^n of size $|A| \ge 4n^2/\tau^2$ and any vector $\eta \in \mathbb{Z}_2^n$, that

$$\left|\widehat{S|_A}(\eta) - \widehat{f|_A}(\eta)\right| \leq \tau.$$

Proof. Choose $S : \mathbb{Z}_2^n \to \{0, 1\}$ randomly by setting S(x) = 1 with probability f(x), independently for each $x \in \mathbb{Z}_2^n$. Let A, η be as in the statement. The random variable

$$\widehat{S|_A}(\eta) = \frac{1}{|A|} \sum_{x \in A} S(x) (-1)^{\langle x, \eta \rangle}$$

is an average of |A| mutually independent random variables taking values in [-1, 1], and its expectation is $\widehat{f|_A}(\eta)$. By Hoeffding's bound, the probability that $|\widehat{S|_A}(\eta) - \widehat{f|_A}(\eta)| > \tau$ is smaller than

$$2 \exp(-\tau^2 |A|/2) \leq 2^{-2n^2+1}$$

The number of affine subspaces over \mathbb{Z}_2^n can be trivially bounded by 2^{n^2} , the number of sequences of *n* vectors in \mathbb{Z}_2^n . Hence, the number of pairs (A, η) is bounded by 2^{n^2+n} . The claim follows by the union bound.

Applying Claim 1.2 with $\tau = \epsilon/2$ (say) implies that if $f : \mathbb{Z}_2^n \to [0, 1]$ has no ϵ -regular subspace of index smaller than twr ($\lfloor 1/16\epsilon \rfloor$) then, provided *n* is sufficiently large in terms of ϵ , there is $S : \mathbb{Z}_2^n \to \{0, 1\}$ that has no $\epsilon/2$ -regular subspace of index smaller than twr ($\lfloor 1/16\epsilon \rfloor$).

2. Proof of Theorem 2

$2 \cdot 1$. The Construction

To construct a function witnessing the lower bound in Theorem 2 we will use pseudorandom spanning sets.

CLAIM 2.1. Let V be a vector space over \mathbb{Z}_2 of dimension d. Then there is a set of 8d nonzero vectors in V such that any 6d of them span V.

Proof. Choose random vectors $v_1, \ldots, v_{8d} \in V \setminus \{0\}$ independently and uniformly. Let U be a subspace of V of dimension d - 1. The probability that a given v_i lies in U is at most 1/2. By Chernoff's bound, the probability that more than 6d of our vectors v_i lie in U is smaller than $\exp(-2(2d)^2/8d) = \exp(-d)$. By the union bound, the probability that there exists a subspace U of dimension d-1 for which the above holds is at most $2^d \exp(-d) < 1$. This completes the proof.

We now describe a function $f : \mathbb{Z}_2^n \to [0, 1]$ which, as we will later prove, has no ϵ -regular subspace of small index. Henceforth set $s = \lfloor 1/16\epsilon \rfloor$. Furthermore, let d_i be the following sequence of integers of tower-type growth:

$$d_{i+1} = \begin{cases} 2^{D_i} & \text{if } i = 1, 2, 3\\ 2^{D_i - 3} & \text{if } i > 3 \end{cases} \quad \text{where } D_i = \sum_{j=1}^i d_j \text{ and } D_0 = 0 .$$

Note that the first values of d_i for $i \ge 1$ are 1, 2, 8, 2^8 , 2^{264} , etc., and it is not hard to see that $d_i \ge \text{twr}(i-1)$ for every $i \ge 1$. Set $n = D_s$ ($\ge \text{twr}(s-1)$). For $x \in \mathbb{Z}_2^n$, partition its coordinates into *s* blocks of sizes d_1, \ldots, d_s , and identify $x = (x^1, \ldots, x^s) \in \mathbb{Z}_2^{d_1+\cdots+d_s} = \mathbb{Z}_2^n$.

Let $1 \le i \le s$. Bijectively associate with each $v \in \mathbb{Z}_{2}^{D_{i-1}} = \mathbb{Z}_{2}^{d_1+\dots+d_{i-1}}$ a nonzero vector $\xi_i(v) \in \mathbb{Z}_{2}^{d_i}$ such that the set of vectors $\{\xi_i(v) : v \in \mathbb{Z}_{2}^{D_{i-1}}\}$ has the property that any subset of 3/4 fraction of its elements spans $\mathbb{Z}_{2}^{d_i}$. The existence of such a set, which is a subset of size $2^{D_{i-1}}$ in a vector space of dimension d_i , follows from Claim 2·1 when i > 3, since then $2^{D_{i-1}} = 8d_i$. When $i \le 3$ the existence of such a set is trivial since $\lceil (3/4)i \rceil = i$, hence any basis would do (and we take $2^{D_{i-1}} = d_i$). With a slight abuse of notation, if $x \in \mathbb{Z}_2^n$ we write $\xi_i(x)$ for $\xi_i((x^1, \dots, x^{i-1}))$.

We define our function $f : \mathbb{Z}_2^n \to [0, 1]$ as

$$f(x) = \frac{\left|\{1 \le i \le s : \langle x^i, \xi_i(x) \rangle = 0\}\right|}{s}$$

The following is our main technical lemma, from which Theorem 2 immediately follows.

LEMMA 2.2. The only ϵ -regular subspace for f is the zero subspace $\{0\}$.

Proof of Theorem 2. The index of $\{0\}$ is $|\mathbb{Z}_2^n/\{0\}| = 2^n \ge \operatorname{twr}(s) = \operatorname{twr}(\lfloor 1/16\epsilon \rfloor)$.

2.2. Proof of Lemma 2.2

Let $H \neq \{0\}$ be a subspace of \mathbb{Z}_2^n . Let $1 \leq i \leq s$ be minimal such that there is $v \in H$ for which $v^i \neq 0$. For any $g \in \mathbb{Z}_2^n$ let

$$\gamma_g = (0, \dots, 0, \xi_i(g), 0, \dots, 0) \in \mathbb{Z}_2^n$$

where only the *i*th component is nonzero. We will show that for more than an ϵ fraction of the translations H + g of H it holds that $\gamma_g \notin H^{\perp}$ yet

$$\widehat{f|_{H+g}}(\gamma_g) > \epsilon$$

This will imply that H is not ϵ -regular for f, thus completing the proof.

First, we argue that $\gamma_g \notin H^{\perp}$ for a noticeable fraction of $g \in \mathbb{Z}_2^n$. We henceforth let $B = \{g \in \mathbb{Z}_2^n : \gamma_g \in H^{\perp}\}$ be the set of "bad" elements.

CLAIM 2.3. $|B| \leq \frac{3}{4} |\mathbb{Z}_2^n|$.

Proof. If $g \in B$ then $\langle \xi_i(g), v^i \rangle = 0$. Hence, $\{\xi_i(g) : g \in B\}$ does not span $\mathbb{Z}_2^{d_i}$. By the construction of ξ_i , this means that $\{(g^1, \ldots, g^{i-1}) : g \in B\}$ accounts to at most $\frac{3}{4}$ fraction of the elements in $\mathbb{Z}_2^{D_{i-1}}$, and hence $|B| \leq \frac{3}{4} |\mathbb{Z}_2^n|$.

Next, we argue that typically $\widehat{f|_{H+g}}(\gamma_g)$ is large. Let $W \leq \mathbb{Z}_2^n$ be the subspace spanned by the last s - i blocks, that is, $W = \{w \in \mathbb{Z}_2^n : w^1 = \cdots = w^i = 0\}$. Note that for any $g \in \mathbb{Z}_2^n, w \in W$ we have $\gamma_{g+w} = \gamma_g$. In particular, $g + w \in B$ if and only if $g \in B$.

CLAIM 2.4. *Fix* $g \in \mathbb{Z}_2^n$ such that $\gamma_g \notin H^{\perp}$. Then

$$\mathbb{E}_{w\in W}\left[\widehat{f|_{H+g+w}}(\gamma_g)\right] = \frac{1}{2s} \ .$$

Proof. Write $f(x) = \frac{1}{s} \sum_{j=1}^{s} B_j(x)$ where $B_j(x) : \mathbb{Z}_2^n \to \{0, 1\}$ is the characteristic function for the set of vectors x satisfying $\langle x^j, \xi_j(x) \rangle = 0$. Hence, for any affine subspace A in \mathbb{Z}_2^n ,

$$\widehat{f|_A}(\gamma_g) = \frac{1}{s} \sum_{j=1}^s \widehat{B_j|_A}(\gamma_g) .$$
(2.1)

Set A = H + g + w for an arbitrary $w \in W$. We next analyze the Fourier coefficient $\widehat{B_j|_A}(\gamma_g)$ for each $j \leq i$, and note that in these cases we have $\xi_j(x) = \xi_j(g)$ for any $x \in A$. First, if j < i then for every $x \in A$ we have $x^j = g^j$, which implies that $B_j|_A$ is constant. Since a nontrivial Fourier coefficient of a constant function equals 0, we have

$$\widehat{B_j|_A}(\gamma_g) = 0, \qquad \forall j < i.$$
(2.2)

Next, for j = i, write $B_i|_A(x) = \frac{1}{2}((-1)^{\langle x^i,\xi_i(x) \rangle} + 1)$. Since $\langle x, \gamma_g \rangle = \langle x^i, \xi_i(x) \rangle$, we have

$$\widehat{B_i|_A}(\gamma_g) = \mathbb{E}_{x \in A}\left[\frac{1}{2}((-1)^{\langle x^i, \xi_i(x) \rangle} + 1) \cdot (-1)^{\langle x^i, \xi_i(x) \rangle}\right] = \mathbb{E}_{x \in A}\left[B_i(x)\right] = \frac{1}{2}.$$
 (2.3)

Finally, for j > i we average over all $w \in W$. Let H + W be the subspace spanned by H, W. Writing $B_i(x) = ((-1)^{\langle x^j, \xi_j(x) \rangle} + 1)/2$, the average Fourier coefficient is

$$\mathbb{E}_{w\in W}\mathbb{E}_{x\in H+g+w}\left[B_j(x)(-1)^{\langle x^i,\xi_i(g)\rangle}\right] = \frac{1}{2}\mathbb{E}_{x\in H+W+g}\left[(-1)^{\langle x^i,\xi_i(g)\rangle+\langle x^j,\xi_j(x)\rangle}\right].$$

Note that for every fixing of x^1, \ldots, x^{j-1} , we have that x^j is uniformly distributed in $\mathbb{Z}_2^{d_j}$ (due to *W*), and that $(-1)^{\langle x^i, \xi_i(g) \rangle}$ is constant. Since $\xi_j(x) \neq 0$, we conclude that

$$\mathbb{E}_{w \in W}\left[\widehat{B_j|_{H+g+w}(\gamma_g)}\right] = 0, \qquad \forall j > i.$$
(2.4)

The proof now follows by substituting $(2 \cdot 2)$, $(2 \cdot 3)$ and $(2 \cdot 4)$ into $(2 \cdot 1)$.

As $\widehat{f}|_{H+g+w}(\gamma_g) \leq 1$, we infer (via a simple averaging argument) the following corollary. COROLLARY 2.5. If $\gamma_g \notin H^{\perp}$ then for more than 1/4s fraction of all $w \in W$,

$$\widehat{f|_{H+g+w}}(\gamma_g) > \frac{1}{4s}$$

We can now conclude the proof of Lemma 2.2. Partition \mathbb{Z}_2^n into translations of W. By Claim 2.3, for at least 1/4 fraction of the translations g + W we have $\gamma_g \notin H^{\perp}$. By Corollary 2.5, for each such g, more than 1/4s fraction of the elements $g + w \in g + W$ satisfy $\widehat{f|_{H+g+w}}(\gamma_g) > 1/4s$. As $1/16s \ge \epsilon$, this means that $f|_{H+x}$ is not ϵ -regular for more than ϵ fraction of all $x \in \mathbb{Z}_2^n$, implying that the subspace H is not ϵ -regular for f.

REFERENCES

- T. GOWERS. Lower bounds of tower type for Szemerédi's uniformity lemma. GAFA 7 (1997), 322– 337.
- [2] B. GREEN. A Szemerédi-type regularity lemma in abelian groups. GAFA 15 (2005), 340-376.
- [3] G. MOSHKOVITZ AND A. SHAPIRA. A short proof of Gowers' lower bound for the regularity lemma. *Combinatorica*, to appear.
- [4] E. SZEMERÉDI. Regular partitions of graphs. Proc. Colloque Inter. CNRS. (1978), 399-401.