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Abstract

The triangle removal lemma states that a simple graph with o(n3) triangles can
be made triangle-free by removing o(n2) edges. It is natural to ask if this widely
used result can be extended to multi-graphs. In this short paper we rule out the
possibility of such an extension by showing that there are multi-graphs with only
n2+o(1) triangles that are still far from being triangle-free. On the other hand, we
show that for some slowly growing function g(n) = ω(1), if a multi-graph has only
g(n)n2 triangles then it must be close to being triangle-free. The proof relies on
variants of the Ruzsa-Szemerédi theorem [15].

1 Introduction

Motivated by a problem in the theory of extremal hypergraphs, Ruzsa and Szemerédi [15]
proved the following two theorems.

Theorem 1 (Ruzsa and Szemerédi [15]) If G is an n vertex graph from which one
should remove at least εn2 edges in order to destroy all triangles, then G contains at least
f(ε)n3 triangles, where f(ε) > 0.

Theorem 2 (Ruzsa and Szemerédi [15]) Suppose S ⊆ [n] is a set of integers contain-
ing no 3-term arithmetic progression. Then there is a graph G = (V, E) with |V | = 6n and
|E| = 3n|S|, whose edges can be (uniquely) partitioned into n|S| edge disjoint triangles.
Furthermore, G contains no other triangles.
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These two theorems turned out to be two of the most influential results in extremal
combinatorics. First, a simple application of these two theorems gives a short proof of
Roth’s Theorem [14] stating that a subset of [n] of size εn contains a 3-term arithmetic
progression. The results in [15] were followed by a long line of investigations leading to
the recent hypergraph removal lemmas [8, 11, 13, 19], that also lead to new proofs of
Szemerédi’s Theorem [17] and some of its extensions.

Besides the above applications to additive number theory and extremal hypergraph
theory, which were the original motivation for Theorems 1 and 2, they also turned out
to have many additional surprising applications. In particular, these theorems also had
applications in extremal combinatorics [4, 7], in the study of probabilistically checkable
proofs and analysis of linearity tests [9], in communication complexity [12], as well as in
testing monotonicity [6] and testing graph properties [1, 2].

Theorem 1, also known as the triangle removal lemma, was originally proved for simple
graphs, that is, graphs containing no parallel edges. The proof of Theorem 1 applies the
regularity lemma [18], which can only handle graphs with constant edge multiplicity1. In
many applications one thus has to be careful and argue that the graph (or hypergraph)
on which one tries to apply Theorem 1 is indeed simple; see [16] for one such example.
It is thus natural to ask if the removal lemma also holds for multi-graphs with possibly
unbounded edge multiplicity. Another way of thinking about this question is whether the
removal lemma holds when the edges of a graph have arbitrary weights. In multigraphs, we
identify triangles by their edge sets as opposed to simple graphs where one can equivalently
identify them with their vertex sets. We first show that the removal lemma does not hold
in multi-graphs.

Theorem 3 There exists a multi-graph G on n vertices, which contains only n22
√

8 log n =
n2+o(1) triangles, and yet one should remove n2 edges from G in order to make it triangle-
free.

We note that the edge multiplicity of the multi-graph we use in the proof of Theorem 3

is 2
√

8 log n = no(1), so we see that the removal lemma fails even when the edge multiplicity
is sub-linear in the size of the graph.

Observe that if we need to remove n2 edges from a graph in order to make it triangle-
free, then it trivially contains at least n2 triangles. While Theorem 3 states that this trivial
lower bound cannot be substantially improved, we can still ask if a minor improvement
is possible. The main motivation is that in some cases (e.g., the original one in [15])
one actually only needs to know that if a graph is far from being triangle free then
it contains asymptotically more than n2 triangles. The following theorem answers this
question positively. We note than in what follows we use the notation f(n) = ω(g(n)) to
denote the fact that f(n)/g(n) goes to inifnity with n.

Theorem 4 If G is an n-vertex multi-graph from which one should remove at least n2

edges in order to destroy all triangles, then G contains ω(n2) triangles.

1The edge multiplicity of a graph is the maximum number of parallel edges between any pair of
vertices.
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We note that because the proof of Theorem 4 applies Theorem 1, the improvement
we obtain is very minor and gives a lower bound of roughly n2(log∗ n)c for some c > 0 on
the number of triangles in the graph.

2 The proofs

For the proof of Theorem 3 we will need to combine Theorem 2 with the following well-
known result of Behrend [3] that was recently slightly improved by Elkin [5].

Theorem 5 (Behrend [3]) For every n, there exists S ⊆ [n] of size n/2
√

8 log n = n1−o(1)

containing no 3-term arithmetic progression.

Proof of Theorem 3: Since the multigraph of Theorem 3 is derived from the graph
of Theorem 2, we wish to quickly review this graph. We define a 3-partite graph G on
vertex sets A, B and C, of sizes n, 2n and 3n respectively, where we think of the vertices
of the sets A, B and C as representing the sets of integers [n], [2n] and [3n]. For every
1 ≤ i ≤ n and s ∈ S we put a triangle Ti,s in G containing the vertices i ∈ A, i + s ∈ B
and i + 2s ∈ C. It is easy to see that the above n|S| triangles are edge disjoint, because
every edge determines i and s. To see that G does not contain any more triangles, let us
observe that G can only contain a triangle with one vertex in each set. If the vertices of
this triangle are a ∈ A, b ∈ B and c ∈ C, then we must have b = a + s1 for some s1 ∈ S,
c = b + s2 = a + s1 + s2 for some s2 ∈ S, and a = c − 2s3 = a + s1 + s2 − 2s3 for some
s3. This means that s1, s2, s3 ∈ S form an arithmetic progression, but because S is free of
3-term arithmetic progressions it must be the case that s1 = s2 = s3 implying that this
triangle is one of the triangles Ti,s defined above.

Let, therefore, G′ be the graph of Theorem 2 when taking S ⊆ [n] to be a 3AP -free set

of size n/2
√

8 log n as guaranteed by Theorem 5. Let G be the graph obtained by replacing

every edge of G′ with n/|S| = 2
√

8 log n parallel edges. Observe that as G′ contains n|S|
edge disjoint triangles, one must remove at least n|S| edges from it in order to make it
triangle-free. As G contains n/|S| parallel edges for every edge of G′ we infer that one
must remove n2 edges from G in order to make it triangle-free. Finally, as G′ contains

only n|S| triangles, we infer that G contains only n|S|(n/|S|)3 = n222
√

8 log n triangles, as
needed.

Proof of Theorem 4: Given a multi-graph G, let T be the simple graph on the same
vertex set that contains an edge (u, v) if and only if G has at least one but at most g2(n)
edges connecting u and v for some function g(n) = ω(1) to be chosen shortly. Let’s first
consider the case that one needs to remove at least 1

2g2(n)
n2 edges from T in order to make

it triangle-free. In this case, by Theorem 1, we know that T contains at least f( 1
2g2(n)

)n3

triangles. Let us now choose a function g(n) = ω(1) such that f( 1
2g2(n)

)n3 = ω(n2). This

is clearly possible no matter how fast f(ε) goes to 0 with ε. Specifically, given the known
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bounds on f(ε) in Theorem 1 (see, e.g., [10]), one can take g(n) = (log∗ n)c for some
constant c > 0. Fixing this choice of g(n) guarantees that in this case T contains ω(n2)
triangles and so G contains at least this many triangles as well.

So we can assume that we can remove from T a set of edges E of size 1
2g2(n)

n2 and
thus make it triangle-free. Let us now remove from G all the edges connecting pairs
of vertices that are connected by E in T . Note that we thus remove from G at most
g2(n) · 1

2g2(n)
n2 ≤ n2/2 edges, hence, by the hypothesis of the theorem, the new graph we

obtain, let’s call it G′, has the property that we should remove at least n2/2 edges from
it in order to make it triangle-free. Furthermore, each edge in G′ has multiplicity at least
g2(n).

Let T ′ be the simple graph underlying G′, that is, the graph on the same vertex set,
with an edge (u, v) if and only if G′ has an edge between u and v. Assume first that T ′

contains at least n2/g(n) edges that belong to a triangle. In this case T ′ contains at least
n2/3g(n) triangles, and as the edge multiplicity of G′ is at least g2(n) this means that
G′ contains at least n2g(n)/3 triangles. As G′ is a subgraph of G we infer that G also
contains n2g(n)/3 triangles.

So we can now assume that T ′ has at most n2/g(n) edges that belong to a triangle.
Let E ′ be a set of minimal size whose removal from G′ makes it triangle-free. Let B
denote the set of pairs (u, v) for which E ′ contains at least one edge connecting u and
v, and note that by our assumption on T ′ we have that |B| ≤ n2/g(n). For each pair
of vertices (u, v) ∈ B let mu,v be the number of edges connecting u and v that belong
to E ′. We claim that for every (u, v) there are at least mu,v paths of length exactly 2
connecting u and v. Indeed, if G′ contains less than mu,v such paths, then we can remove
the mu,v edges connecting u and v from E ′ and replace them by one edge from each of
the paths of length 2 connecting u and v. The new set has fewer edges and it still makes
G′ triangle-free, which contradicts the minimality of E ′. We thus conclude that for every
pair u, v the graph G′ has at least m2

u,v triangles containing u and v. Recall that G′ still
has the property that one should remove at least n2/2 edges from it in order to make it
triangle-free. Therefore we have

∑
mu,v = |E ′| ≥ n2/2. Combining the above facts, and

using Cauchy-Schwartz, we conclude that the number of triangles in G′ (and so also in
G) is at least

∑

(u,v)∈B

m2
u,v ≥

1

|B|


 ∑

(u,v)∈B

mu,v




2

≥ 1

4|B|n
4 ≥ 1

4
g(n)n2 ,

thus completing the proof.
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T. Szönyi eds.), János Bolyai Math. Soc., Budapest (1996), 295–352.
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