
Testing Satisfiability1

Noga Alon 2

Schools of Mathematics and Computer Science, Raymond and Beverly
Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.

Email: noga@math.tau.ac.il.

and

Asaf Shapira 3

School of Computer Science, Raymond and Beverly Sackler Faculty of
Exact Sciences, Tel Aviv University, Tel Aviv, Israel.

E-mail: asafico@math.tau.ac.il

Version: February 9, 2003

Let Φ be a set of general boolean functions on n variables, such that each
function depends on exactly k variables, and each variable can take a value from
[1, d]. We say that Φ is ε-far from satisfiable, if one must remove at least εnk

functions in order to make the set of remaining functions satisfiable. Our main
result is that if Φ is ε-far from satisfiable, then most of the induced sets of
functions, on sets of variables of size c(k, d)/ε2, are not satisfiable, where c(k, d)
depends only on k and d. Using the above claim, we obtain similar results for
k-SAT and k-NAEQ-SAT.

Assume we relax the decision problem of whether an instance of one of the
above mentioned problems is satisfiable or not, to the problem of deciding whether
an instance is satisfiable or ε-far from satisfiable. While the above decision prob-
lems are NP-hard, our result implies that we can solve their relaxed versions,
that is, distinguishing between satisfiable and ε-far from satisfiable instances, in
randomized constant time.

From the above result we obtain as a special case, previous results of Alon

and Krivelevich, and of Czumaj and Sohler, concerning testing of graphs and

hypergraphs colorability. We also discuss the difference between testing with

one-sided and two-sided error.

Key Words: Property Testing, Satisfiability, Hypergraph Coloring.
1A preliminary version of this paper appeared in the Proc. of the 13th Annual ACM-

SIAM SODA, ACM Press (2002), pp. 645-654.
2Research supported in part by a USA-Israeli BSF grant, by the Israel Science Foun-

dation and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv Uni-
versity.

3Research supported by the Deutsch institute.

1

1. INTRODUCTION

A set of boolean functions on n variables is satisfiable, if there is an as-
signment to the n variables, that simultaneously satisfies all the functions
in the set. For fixed integers k and d, and a small ε > 0, let Φ = (V, F)
be a set of boolean functions on n variables, where V is the set of vari-
ables, and F is the set of functions, and where each function depends on
exactly k variables, and each variable can take a value from [1, d]. Sup-
pose that at least εnk functions should be deleted to make Φ satisfiable.
Clearly Φ contains many non-satisfiable subformulas, some of which may
be quite small in order. A natural question is: how many small unsatis-
fiable subformulas are there in Φ ? In what follows we call such boolean
functions f : dk → {0, 1}, (k,d)-functions, and a set Φ of such functions, a
(k,d)-Function-SAT instance.

In order to address the above question quantitatively, let us introduce
a suitable notation. First, we call an instance of (k,d)-Function-SAT, Φ,
on n variables ε-far from satisfiable, if after deleting any subset of less than
εnk functions from Φ, the remaining set of functions is still not satisfiable.
Of course, it follows that Φ itself is not satisfiable. Further, given a subset
of variables R ⊆ V we denote by Φ[R] = (R,F|R) the set of functions that
have all their variables in R. Let SATk,d(n, ε) denote the minimal value,
such that for every instance of (k,d)-Function-SAT on n variables Φ, that
is ε-far from satisfiable, if we pick a random subset of variables R, of size
SATk,d(n, ε), then Φ[R] is not satisfiable with probability at least 3/4.

We can define a similar measure for the problem of d-coloring a k-
uniform hypergraph. Given a hypergraph H = (V, E) and a subset of
vertices R ⊆ V we denote by H[R] = (R,E|R), the hypergraph that has R
as its set of vertices, and all the edges in E that have all their vertices in
R, as its set of edges. A k-uniform hypergraph H is ε-far from d-colorable,
if after removing any subset of edges of size less than εnk, H is still not
d-colorable. Let H = (V, E) be a k-uniform hypergraph, which is not d-
colorable. Now, Let COLk,d(n, ε) denote the minimal value, such that for
every k-uniform hypergraph on n vertices H, that is ε-far from d-colorable,
if we pick a random subset of vertices R of size COLk,d(n, ε), then H[R]
is not d-colorable with probability at least 3/4. We can further define
the corresponding functions for the problems k-CNF, and k-NAEQ-CNF,
as CNFk(n, ε) and NAEQ-CNFk(n, ε), respectively. Note that in these
functions, the variables can take boolean values, thus d is fixed to be 2.
The precise (obvious) definitions of these problems appear in section 3.

Therefore, SATk,d(n, ε) means that if Φ is a set of (k,d)-functions, that is
ε-far from satisfiable, then most of the induced sets of functions, on subsets
of variables of size SATk,d(n, ε), are not satisfiable. Intuitively, it means
that inside Φ there are many proofs of size SATk,d(n, ε) showing that Φ is
not satisfiable, where a proof is in the form of a subset F ′ ⊂ F of functions,
that can not all be satisfied simultaneously. Similarly COLk,d(n, ε) means

2

that if H is a k-uniform hypergraph, that is ε-far from d-colorable, then
most of the induced subgraphs on subsets of vertices of size COLk,d(n, ε),
are not d-colorable. Intuitively, it means that inside H there are many
proofs of size COLk,d(n, ε) showing that H is not d-colorable, where a
proof is in the form of a non-d-colorable subgraph of H.

The somewhat artificial looking definition of SATk,d(n, ε) has a very
natural algorithmic background in terms of property testing. Suppose our
aim is to design an algorithm, which for a given (large enough) integer
n and a (small enough) parameter ε > 0, distinguishes with high proba-
bility between an input (k,d)-Function-SAT instance on n vertices, which
is satisfiable, and one which is ε-far from satisfiable. The algorithm can
query whether a specific function on k variables is in the instance. We
call the problem of distinguishing between these two cases, testing satisfi-
ability, and an algorithm for this problem is an ε-tester. In general, it is
NP-complete to check satisfiability. However, given the assumption that
the input is either satisfiable or ε-far from being such, one may hope to
devise very efficient randomized algorithms, that distinguish between these
two possibilities. We refer the reader to [13] for a discussion on general
property testing, and in particular, on graph property testing, and to the
comprehensive survey of Ron [19] on the field of property testing.

Returning to the definition of the function SATk,d(n, ε), we can pro-
pose the following very simple algorithm for testing satisfiability, where we
assume that given a set S of k variables, we can query some oracle whether
a specific function on these k variables is in Φ. Given an input formula
Φ = (V, F), choose uniformly at random SATk,d(n, ε) variables of Φ and
denote the chosen set by R. Now, check whether the induced subformula
Φ[R] is satisfiable. If the induced set is satisfiable, output ”Φ is satisfiable”,
otherwise output ”Φ is not satisfiable”. To argue that the above algorithm
provides a correct answer with probability at least 3/4, note that if Φ is
satisfiable, then every subformula of it is satisfiable as well. Thus, in this
case we always output a correct answer. On the other hand, if Φ is ε-far
from satisfiable, it follows from the definition of SATk,d(n, ε) that a sample
of size SATk,d(n, ε) induces a non-satisfiable set of functions with prob-
ability at least 3/4. Therefore, in this case we output a correct answer
with probability at least 3/4. As is common in randomized algorithms,
by repeating the algorithm an appropriate constant number of times, the
constant 3/4 can be replaced by any desired constant α < 1.

As we show in this paper, the function SATk,d(n, ε) can be bounded
from above by a function of k, d and ε. Thus, for example, for the problem
of k-CNF, which is a special case of (k,2)-Function-SAT, we get that in
order to distinguish between a satisfiable instance of k-CNF, and one that
is ε-far from satisfiable, all we need to do is sample a subset of variables
of size O(1/ε2), and check if the induced k-CNF instance on this set is
satisfiable. Therefore, for a fixed ε we have a constant time one-sided error
randomized algorithm for distinguishing between satisfiable and ε-far from

3

satisfiable instances. Note that this implies that for dense instances of
k-CNF, i.e. instances that contain Ω(nk) functions, we have a constant
time algorithm that distinguishes between satisfiable instances, and those
in which at most an 1−ε fraction of the instance’s functions can be satisfied.
The same algorithmic aspect also holds for the rest of the testing problems
we discuss in the paper.

Having in mind the above discussion, sometimes later in the paper we
will refer to the problems of bounding the functions SATk,d(n, ε) as the
testing (k,d)-Function-SAT problem.

The problem of estimating SATk,d(n, ε) will be treated in this paper
as an asymptotic one. This means that whenever needed, we will assume
the number of variables n to be large enough, and the parameter ε to be
small enough. It is important to observe that we are interested here only
in formulas with Ω(nk) functions. Indeed, if Φ is a set of functions on n
variables, that is ε-far from satisfiable, it contains at least εnk functions.
It is also important to note that one can not hope to design a randomized
polynomial algorithm, that distinguishes between instances that are sat-
isfiable, and those in which an ε fraction of the functions of the instance
(and not an ε fraction of all the functions) should be deleted in order to
make them satisfiable, as this problem is known to be NP-hard in the case
of 3-CNF for any ε < 1/8, see H̊astad [14].

1.1. Context and previous results

The Satisfiability problem is clearly one of the most studied problems in
theoretical computer science, and the related research is too rich to survey
in this introduction. In the early 70’s, Cook [9] was the first to show that
the 3-CNF problem, which is a special case of the general satisfiability
problem, is NP-Complete. It is also known that the problem of 3-NAEQ-
CNF, is NP-Complete, see [12]. The problem of how well can one efficiently
approximate the fraction of functions that can be simultaneously satisfied,
has been an open problem for many years. H̊astad [14] showed that for the
case of 3-CNF, it is NP-hard to approximate the fraction of clauses that
can be satisfied, to within 7/8 + ε, for any ε > 0. Zwick and Karloff [16]
gave a 7/8 approximation algorithm for the 3-CNF problem, showing that
the constant 7/8 is tight in the case of 3-CNF.

To the best of our knowledge the problem of testing satisfiability with
one sided error has never been addressed in the past. The previous results
relevant to testing satisfiability, are a two-sided error property-tester given
by Andersson and Engebretsen [7] that uses a random set of variables of size
Õ(1/ε5), and a one-sided (implicit) property tester by Frieze and Kannan
[11] which deals only with the case of d = 2 and uses a random set of
variables of size exponential in 1/ε. Recent work by the first author, De-la
Vega, Kannan and Karpniski [3] can be used to obtain a one sided error
property tester, as well as a tester that will also estimate how far from

4

satisfiable a given instance is. While this approach, based on an extension
of some of the techniques in [11], gives an alternative proof to some of our
results here, it is not as efficient if one is only interested in deciding whether
an instance is satisfiable or ε-far from satisfiable.

In section 2 we discuss the fundamental difference between testing with
one-sided error, and two-sided error. Other relevant results to our inves-
tigation in this paper, are those of testing graph and k-uniform hyper-
graph d-colorability with one-sided error, that is, estimating the functions
COL2,d(n, ε) and COLk,d(n, ε). It turned out quite early, that the func-
tion COL2,d(n, ε) can be bounded from above by a function of ε and d only.
This has been proven (implicitly) by Bollobás, Erdős, Simonovits and Sze-
merédi [8] for the case d = 2 and by Rödl and Duke [18] for every d ≥ 3,
see also [2]. All these papers rely on the Regularity Lemma of Szemerédi
[20], and as is the case with most applications of the Regularity Lemma,
the resulting bounds are extremely fast growing functions of 1/ε (towers of
height polynomial in 1/ε).

Motivated by testing d-colorability, Goldreich, Goldwasser and Ron [13]
came up with a completely different approach for bounding COL2,d(n, ε).
Using direct combinatorial arguments (and thus avoiding the Regularity
Lemma), they were able to prove that COL2,2(n, ε) = O(log(1/ε)/ε2) (note
that COL2,2 corresponds to testing bipartiteness of ordinary graphs), and
that for every fixed d ≥ 3 one has COL2,d(n, ε) = O(d2 log d/ε3), a tremen-
dous progress compared to the bounds of [8] and [18]. Improving on these
results, Alon and Krivelevich [4] proved that COL2,d(n, ε) = O(d log d/ε2)
and that COL2,2(n, ε) = O(log4(1/ε) log log(1/ε)/ε). Independent of the
work of [4], Czumaj and Sohler [10] gave a more general result showing
that COLk,d(n, ε) = O(k2d2 log d/ε2).

1.2. The Main results

Consider the following generalization of k-CNF, which we denote by
(k,d)-CNF. We are given a set of functions on n variables, where each
variable vi is restricted to take a value from [1, d]. Each function is of
the form (v1 6= c1 ∨ . . . ∨ vk 6= ck), and 1 ≤ ci ≤ d. We may write the
clauses of a (k,d)-CNF instance, for short, as (v1,c1 ∨ . . . ∨ vk,ck

). Note
that k-CNF is just (k,2)-CNF, where each variable can take a value from
{1, 2}. For example the 3-CNF clause, (v1 ∨ v2 ∨ v3) is exactly the (3,2)-
CNF clause (v1 6= 1 ∨ v2 6= 2 ∨ v3 6= 1) (which in our notation is written
as (v1,1 ∨ v2,2 ∨ v3,1), just think of 1 as false and of 2 as true). Further
notice that just as one can describe any boolean function whose variables
take boolean values f : {0, 1}k → {0, 1}, as a set of k-CNF clauses, one
can also describe any boolean function, whose variables take non-boolean
values g : [d]k → {0, 1}, as a set of (k,d)-CNF clauses. The formal (simple)
argument for this intuitive fact will be described in section 5.

Denote by f(k, d, ε) the number of variables that suffice to test (k,d)-

5

CNF. This is the analog of SATk,d(n, ε) for instances of (k,d)-CNF. We
drop the parameter n, because as we will prove later, this function is in-
dependent of n. Remember that much like in the context of the function
SATk,d(n, ε), if an instance of (k,d)-CNF is ε-far from satisfiable, then most
of the induced subformulas on sets of size f(k, d, ε) are not satisfiable. Our
first result in the course of the paper is the following theorem

Theorem 1.1.

For every fixed k and d, and sufficiently small ε > 0,

f(k, d, ε) ≤ (100dk−1 log d)/ε2.

Using this theorem we will get the following corollaries, which form the
main part of this paper.

Corollary 1.1.

For every fixed k and d, every sufficiently small ε > 0, and every sufficiently
large n

SATk,d(n, ε) ≤ (100dk−12d2k

log d)/ε2.

Corollary 1.2.

For every fixed k, every sufficiently small ε > 0, and every sufficiently large
n

CNFk(n, ε) ≤ (100 · 2k−1)/ε2.

Corollary 1.3.

For every fixed k, every sufficiently small ε > 0, and every sufficiently large
n

NAEQ-CNFk(n, ε) ≤ (100 · 2k−1)/ε2.

We also get the following result of Czumaj and Sohler [10]:

Corollary 1.4.

For every fixed k and d, every sufficiently small ε > 0, and every sufficiently
large n

COLk,d(n, ε) ≤ (100dk−1 log d)/ε2.

In section 5, we explain briefly how to slightly improve the dependence
on k an d in this last result of [10].

Some of the proof techniques we employ in this paper are motivated by
the d-colorability testing algorithm in Alon and Krivelevich [4], and by the
d-colorability of k-uniform hypergraphs testing algorithm in Czumaj and
Sohler [10], but the analysis here requires several additional arguments.

The rest of the paper is organized as follows: in section 2 we discuss the
difference between testing with one-sided error and testing with two-sided
error. In section 3 we give detailed definitions of the problems we address

6

in this paper. In section 4 we show how to test instances of (k,d)-CNF. In
sections 5, we show how to derive all the above corollaries by reducing the
problems to testing (k,d)-CNF satisfiability. In section 6 we give concluding
remarks and discuss some open problems.

During the course of the proofs we make no serious attempts to optimize
the constants involved. Also, we omit routinely floor and ceiling signs to
simplify the presentation. While proving upper bounds for all the functions,
we sometimes generate a random subset R of size s as a union of random
subsets whose sizes sum to s.

2. ONE-SIDED ERROR VS. TWO-SIDED ERROR

As mentioned earlier, Andersson and Engebretsen [7] have recently de-
vised a two-sided error property tester for (k,d)-Function-SAT that uses a
random set of variables of size Õ(1/ε5). As is evident from the difference
between their testing strategy and ours, testing satisfiability with one-sided
error and two-sided error is probably quite different. In this short section
we describe a testing problem, illustrating a proven difference between one-
sided error and two-sided error property testers.

Consider the problem of testing if a graph G does not contain a copy
of the complete bipartite graph on 2t vertices Kt,t (not necessarily as an
induced subgraph). As the following claims show, the difference between
testing this property with one-sided error and two-sided error, is unavoid-
able.

The proof of the next claim can be found in [17]. As the proof is simple
we give some version of it here for completeness.

Claim 2.1. For any ε and t, and for all sufficiently large n, any graph
with at least εn2 edges contains a copy of Kt,t.

Proof. If G contains εn2 edges, then clearly it contains at least ε
2n

vertices, of degree at least ε
2n. If we count the number of stars of size

t, that is, a vertex that has t neighbours, we get that there are at least
ε
2n

(ε
2 n
t

) ≥ ε
2n

(
εn
2t

)t ≥ (
εn
2t

)t+1
> tnt >

(
n
t

)
(t − 1) stars, thus there is one

set of t vertices, on which at least t stars are sitting, which implies the
existence of a Kt,t.

As the following claim shows, if we are only interested in a two-sided
error property tester for Kt,t-freeness, we can employ a simple sampling
scheme to obtain a test that uses a random set of variables of small size.

Claim 2.2. Testing Kt,t-freeness, with a two-sided error, can be done
using 200/ε vertices.

Proof. By the last claim, if G contains more than 1
4εn2 edges, it contains

a Kt,t. If it contains less than εn2 edges, than it is trivially not ε-far from
Kt,t-free (simply remove all the edges). We uniformly and independently

7

select 100/ε pairs of vertices, and for each pair u, v, we query whether (u, v)
is an edge in G. Let δ be the number of pairs that form edges in G. We
answer yes if and only if δ > 100. Using Chebyschev’s inequality (see e.g.
[6]), we get that if G is ε-far from Kt,t-free, and thus contains at least εn2

edges, then

Prob[δ < 100] ≤ Prob[|δ − 200| > 100] ≤ 200(1− 2ε)
1002

<
1
4

and that if G is Kt,t-free, and thus contains less than 1
4εn2 edges,

Prob[δ > 100] ≤ Prob[|δ − 50| > 50] ≤ 50(1− ε/2)
502

<
1
4

We conclude that the algorithm answers correctly, with probability at
least 3

4 .

As the next claim shows, if we allow only one-sided error, we can not
get a property tester for Kt,t-freeness that uses a random set of variables
of size that does not grow exponentially with t.

Claim 2.3. For any sufficiently large n and ε < 1
4 , there is a graph

G on n vertices, that is ε-far from being Kt,t-free, such that most induced
subgraphs, on sets of size (1/8ε)t/2, do not contain a Kt,t.

Proof. Consider the random graph G(n, 4ε), that is a graph on n ver-
tices, where each pair of vertices, randomly and independently with prob-
ability 4ε, is an edge in G (see e.g. [6] and [15] for background on ran-
dom graphs). Fix a set T of 2t vertices. The probability that T con-
tains a Kt,t, is at most

(
2t
t

)
(4ε)t2 . Thus, the expected number of copies

of Kt,t is at most
(

n
2t

)(
2t
t

)
(4ε)t2 . Using Markov’s inequality (see e.g. [6]),

we get that the probability that the number of copies of Kt,t in G(n, 4ε)
is more than twice the expectation, is less than 1

2 . Using the Chernoff
bound (see e.g. [6]), we conclude that the probability that G(n, 4ε) con-
tains less than 3

2εn2 edges is also less than 1
2 , thus there is at least one

graph G′, that has no more than twice the expected number of copies
of Kt,t, and is ε-far from Kt,t-free. Now, fix such a G′. We conclude
that the fraction of sets of size 2t that contain a Kt,t in G′, is at most
2
(
2t
t

)
(4ε)t2 ≤ 2 · 4t(4ε)t2 ≤ 2(8ε)t2 . If we choose a random set of vertices,

S, of size (1/8ε)t/2, it contains at most
((1

8ε)
t
2

2t

)
< 1

4

(
1
8ε

)t2 sets of size 2t.
Using the union bound, we get that the probability that S contains a copy
of a Kt,t is less than 1

4

(
1
8ε

)t2 2(8ε)t2 = 1
2 .

It is not difficult to show that there is a one-sided error property tester
for Kt,t-freeness that queries only O(1/εt2) vertices. This follows from the
fact that any graph with at least εn2 edges contains at least Ω(εt2n2t) copies
of Kt,t. In fact, sampling 1/εO(t) vertices suffices, by a special case of a

8

result in [5] improving the estimate in [1]. It is also worth noting that there
are simple graph properties (like the property of containing at least n2/4
edges) that have two-sided error testers of complexity polynomial in 1/ε,
but no one-sided error tester of complexity smaller that Θ(n). The claims
above show that there are natural graph properties that can be tested with
a one-sided error, that use a random set of variables of size much larger
than required for testing with a two-sided error, and yet it is polynomial
in 1/ε.

3. DEFINITIONS

This short section contains the precise definitions of the problems con-
sidered in this paper.

Definition 3.1. k-CNF (or k-SAT)

INPUT: A set of boolean functions on n variables, where each function
is of the form (l1 ∨ . . . ∨ lk), and each literal li is either vi, or vi, for some
variable vi.

An instance, Φ, of k-CNF on a set V of n variables, is said to be
satisfiable, if there is a truth assignment, φ : V → {0, 1}, to the n variables,
that simultaneously satisfies all the functions in Φ. An instance, Φ, of k-
CNF on n variables, is said to be ε-far from satisfiable, if any assignment
does not satisfy at least εnk functions from Φ.

Definition 3.2. (k,d)-CNF

INPUT: A set of boolean functions on n variables, where each function
is of the form (v1,i1 ∨ . . . ∨ vk,ik

), where the literal vt,it is short for vt 6= it,
for 1 ≤ it ≤ d.

An instance, Φ, of (k,d)-CNF on a set V of n variables, is said to be
satisfiable, if there is an assignment, assigning to each variable vi a value
φ(vi), φ : V → [1, d], to the n variables, that simultaneously satisfies all
the functions in Φ. An instance, Φ, of (k,d)-CNF on n variables is said
to be ε-far from satisfiable, if any assignment does not satisfy at least εnk

functions from Φ.

Definition 3.3. (k,d)-Function-SAT.

INPUT: A set of general boolean functions on n variables, where each
function depends on exactly k variables, and each variable can take a value
from [1, d].

An instance, Φ, of (k,d)-Function-SAT on a set V of n variables, is said
to be satisfiable, if there is an assignment φ : V → [1, d], to the n variables,
that simultaneously satisfies all the functions in Φ. An instance, Φ, of k-
CNF on n variables, is said to be ε-far from satisfiable, if any assignment
does not satisfy at least εnk functions from Φ.

9

Definition 3.4. k-NOT-ALL-EQUAL-CNF (k-NAEQ-CNF)

Exactly like k-CNF, only now a satisfying assignment is one in which
for each clause, at least one literal evaluates false, and at least one literal
evaluates true.

Definition 3.5. k-Hypergraph d-Colorability

INPUT: A k-uniform Hypergraph (k-Hypergraph) on n vertices.
A k-Hypergraph, H, is said to be d-colorable, if one can color the ver-

tices of H using d colors, such that no edge of H is monochromatic. A
k-Hypergraph H is ε-far from d-colorable, if any coloring of its vertices
results in at least εnk monochromatic edges.

In all the function problems k-CNF, (k,d)-CNF, k-Function-SAT and
k-NAEQ-SAT, given an instance of one of the problems Φ, and a subset of
variables S, we denote by Φ[S], the induced sub-formula of Φ on S, that
is, the set of all the functions in Φ, that have all the variables they depend
on in S. For the case of k-Hypergraph d-colorability, given a k-uniform
Hypergraph H, and a subset of vertices S, we denote by H[S], the induced
sub-graph on S, that is, the k-uniform Hypergraph that has S as its set of
vertices, and all the edges in H that have all their vertices in S as its set
of edges. Notice that in all the above definitions, an alternative, yet equal,
definition to ε-farness, is that one must remove at least εnk functions/edges
in order to make the set of functions/Hypergraph satisfiable/d-colorable,
respectively.

4. TESTING (K,D)-CNF

Let Φ = Φ(V, C) be an instance of (k,d)-CNF, where V and C are
respectively the sets of variables and clauses in Φ (we call the functions of
a (k,d)-CNF instance clauses, because of their resemblance to clauses in
k-CNF). Given a subset of variables V0 ⊆ V , Let Φ[V0] denote the induced
formula on V0. (Notice that V0 is a set of variables, not literals). In this
section we prove Theorem 1.1, namely that testing (k,d)-CNF can be done
by inspecting the induced subformula on a random subset of variables, of
size at most (100dk−1 log d)/ε2.

It will be convenient to generate a random subset of variables R ⊂ V of
size |R| = s = (100dk−1 log d)/ε2 in s rounds, each time choosing uniformly
at random a single variable vj ∈ V . This in principle may result in choosing
one variable several times and thus getting a set of cardinality less than s.
We remind the reader that each clause is of the form (v1,c1 ∨ . . . ∨ vk,ck

)
where the literal vi,ci is short for vi 6= ci, and that an assignment φ satisfies
a clause (v1,c1 ∨ . . . ∨ vk,ck

), if for some i, φ(vi) 6= ci, otherwise the clause
is false. Further, remember that each variable vi can take a value from [d].

First we need to introduce some notations. We may write vi ∈ R for
some variable vi, as well as vi,ci ∈ R for some literal vi,ci , where the first

10

notation is clear, and the second means that vi,ci
is a literal created from

some variable vi ∈ R.
Suppose Φ = (V,C) is a formula on n variables. Given a pair (S, φ),

of a subset S ⊆ V and an assignment φ : S → [d] which satisfies Φ[S],
for every vi ∈ V \ S let L(vi) = L(S,φ)(vi) denote the possible assignments
to vi that will not create a false clause with k − 1 literals from S, that
were not satisfied by φ (a literal vi,ci is satisfied if and only if φ(vi) 6= ci).
Define, in a similar manner, for every 2 ≤ j ≤ k − 1, and every set of j
variables {v1, . . . , vj} ⊆ V \ S, the set L(v1, . . . , vj) = L(S,φ)(v1, . . . , vj) to
be the set of assignmets that can be assigned to v1, . . . , vj that will not
create a false clause with k − j literals from S, that were not satisfied
by φ. An important observation is that {c1, . . . , cj} /∈ L(v1, . . . , vj), if
and only if for some clause (v1,c1 ∨ . . . ∨ vj,cj ∨ u1,t1 ∨ . . . ∨ uk−j,tk−j

) we
have {u1, . . . , uk−j} ⊆ S, and also φ(u1) = t1, . . . , φ(uk−j) = tk−j . For
1 ≤ j ≤ k − 1, let Lj denote the collection of all sets L(v1, . . . , vj), for
every {v1, . . . , vj} ⊆ V . We call a clause containing k − j literals from S,
that were not satisfied by φ, and a set of j literals {v1,c1 , . . . , vj,cj} ⊆ V \S
a witness to the fact that {c1, . . . , cj} /∈ L(v1, . . . , vj).

If S = ∅, we set L(v1, . . . , vj) = [d]j for every {v1, . . . , vj} ⊆ V . If
a satisfying assignment c : V → [d] of Φ, coincides with φ on S, then
for every {v1, . . . , vj} ⊆ V \ S the assignment of {v1, . . . , vj} in c belongs
to L(v1, . . . , vj). For this reason, the set L(v1, . . . , vj) is called the set of
feasible assignments for {v1, . . . , vj}. Further, denote by Conflict the set of
variables, v, for which L(v) = ∅.

Given a variable v, denote by δ(v, t, j), the number of feasible assign-
ments that are deleted from Lj , if we add v to S and assign it the value t.
We further define,

δ(v) = min
t∈L(v)

k−1∑

j=1

δ(v, t, j)nk−j−1.

We call a variable heavy if δ(v) > εnk−1/5, and denote by Heavy the
set of heavy variables.

Claim 4.1. If Φ is ε-far from satisfiable, then for any (S, φ), we have
|Conflict ∪Heavy| ≥ εn/5.

Proof. Assuming the contrary, we give an algorithm that deletes less
than εnk clauses from Φ, and gets a satisfiable subfurmula of Φ, contra-
dicting the fact that Φ is ε-far from satisfiable. The algorithm consists of
two phases. In phase one the algorithm goes sequentially over all variables
in V \(Conflict∪Heavy), and for each variable v, assigns v the assignment
t from L(v), that minimizes the sum

∑k−1
j=1 δ(v, t, j)nk−j−1. The algorithm

also removes all the clauses that are witnesses to the fact that some as-
signments should be deleted from L1, . . . , Lk−1. After we assign a value to
some variable we update all the sets L(v1, . . . , vj), if needed. If for some

11

variable v ∈ V \ (Conflict ∪ Heavy), we have L(v) = ∅, the algorithm
halts. In phase two we assign all the variables in Conflict ∪ Heavy the
value 1, and remove any false clause that was created.

Notice that by definition of the algorithm, as it never creates a false
clause, if it terminates, it gets a satisfiable subformula of Φ, Φ′, and an
assignment that satisfies Φ′. The only step in which the algorithm can halt,
is if in phase one we had for some variable v, L(v) = ∅. We argue that
this is impossible. Indeed, for every variable v, in V \ (Conflict∪Heavy),
we initially had L(v) 6= ∅. As the algorithm deletes any clause that is a
witness to the fact that we should delete some feasible assignment from
some set L(v1, . . . , vj), and in particular from L(v), we conclude that this
event can not occur.

We claim that for every v, t and j, the value of δ(v, t, j) never increases.
Indeed, assume some δ(v, t, j) increases, thus assigning v the value t deletes
from Lj an assignment from some L(v1, . . . , vj), which it did not delete
before. This can only happen if v and v1, . . . , vj , co-occur in some clause c,
with a literal u 6= p, and u was assigned the value p. But in this case c is a
witness to the fact that we must delete one assignment from L(v, v1, . . . , vj),
thus it should have been removed when u was assigned a value. Note that
as the values of δ(v, t, j) never increase, so do the values of δ(v).

Let us estimate the number of clauses that were removed. Note that
for every j, t and v 6∈ S, there are at most

(
n

k−j−1

)
clauses containing v,

that are witnesses to the fact that some assignment {c1, . . . , cj} should be
removed from L(v1, . . . , vj), when we assign v the value t, and add it to
S. (This is because any assignment creates at most n false literals). Thus,
for every variable v, assigning it the value t, results in deleting at most∑k−1

j=1 δ(v, t, j)
(

n
k−j−1

) ≤ ∑k−1
j=1 δ(v, t, j)nk−j−1 clauses. In phase one we

deal with variables that do not belong to Heavy, thus from the definition
of the function δ(v), and from the fact that it does not increase while the
algorithm proceeds, we conclude that we can assign each variable in its
turn a value, for which we will delete at most εnk−1/5 clauses. As there
are at most n variables, in phase one we do not remove more than εnk/5
clauses. In phase two as we assume that |Conflict ∪ Heavy| ≤ εn/5, we
remove in this phase at most εn/5 · (n

k−1

) ≤ εnk/5 clauses. All together we
remove less than εnk clauses, as claimed.

Let now Φ be a formula on n variables, which is ε-far from satisfiable.
While exposing random variables r1, . . . , rs of R we construct an auxiliary
tree T . Each vertex t of T is labeled by a quadruple (S, φ, x, σ), where
S is a subset of V , φ is an assignment that satisfies Φ[S], x is a variable
in V \ S, and σ ∈ {“open”, “closed”} is the state of the vertex. We refer
to the labels of t as S(t), φ(t), x(t) and σ(t), respectively. The value of
x(t) may be not set yet, in which case we say that x(t) is void. Initially
T has only the root t0 with S(t0) = ∅, φ(t0) = ∅, x(t0) being void, and
σ(t0) = “open”.

12

Suppose now that j − 1 variables of R have already been exposed,
and let T be the current tree. Let t be an open leaf of T , labeled by
(S, φ, ’void’, “open”). The pair (S, φ) defines the sets Conflict(t) and
Heavy(t), and the lists of feasible assignments L1, . . . , Lk−1 as described
above. We say that round j is successful for t if rj belongs to Conflict(t)∪
Heavy(t). If rj ∈ Conflict(t), we set x(t) = rj and σ(t) = “closed”. If
rj ∈ Heavy(t), we set x(t) = rj and for each assignment a ∈ L(rj) cre-
ate in T a son of t, labeled by (S ∪ {rj}, φ′, ’void’, “open”), where φ′ is
obtained by extending φ : S → [d] by φ′(rj) = a. If rj misses the set
Conflict(t) ∪ Heavy(t), we do nothing related to t. If t is a closed leaf,
then round j is successful for t for any choice of rj . It is important to note
that for a fixed leaf t of T , round j is successful with probability at least
ε/5, given any history, by claim 4.1.

Claim 4.2. The depth of T is at most 5dk−1/ε.

Proof. First, notice that at the beginning the size of each Lj , is at
most

∑
{v1,...,vj}⊆V dj =

(
n
j

)
dj ≤ dj

j! n
j . Therefore, the initial value of

W =
∑k−1

j=1 |Lj | · nk−j−1 is at most
∑k−1

j=1
dj

j! n
j · nk−j−1 ≤ dk−1nk−1. If

we create a new son for some t ∈ T at step `, then the random variable r`

belongs to Heavy(t). This means by the definition of the set Heavy(t) that
for any assignment p in L(r`), we have

∑k−1
j=1 δ(r`, p, j)nk−j−1 > εnk−1/5,

and hence, the value of W decreases by at least εnk−1/5. Thus we can not
make more than 5dk−1/ε steps down from the root of T .

Claim 4.3. If after round j all leaves of the tree T are labelled ”closed”,
then the induced formula Φ[{r1, . . . , rj}] is not satisfiable.

Proof. Note first that by the construction of T at any round j for any
vertex t ∈ T with a label (S, φ, x, σ) one has S(t) ⊆ {r1 . . . , rj}, x(t) ∈
{r1, . . . , rj}.

Let now c : V → [d] be an assignment to V . In order to show that c
creates some false clause in the induced formula of Φ on {r1, r2, . . . , rj}, we
start with the root t0 of T and traverse T guided by c.

Suppose we are at a vertex t of T , labelled by (S, φ, x, σ). Based on the
pair (S(t), φ(t)) define the lists of feasible assignments L(x) as described
above. Now, if c(x(t)) ∈ L(x(t)), we choose the son of t in which x(t) is
assigned c(x(t)) and move to it. Suppose now that at a vertex t we have
for the first time c(x(t)) 6∈ L(x(t)). This means that some set of variables
{u1, . . . , uk−1} ⊆ S(t) co-occurs with x(t) in Φ and creates a false clause
(`1 ∨ . . . ∨ `k), where `i are literals created from u1, . . . , uk−1, x(t) respec-
tively. But it is easy to see that φ(t) and c coincide on S(t). Therefore, un-
der c all k literals of the clause (`1∨. . .∨`k) ∈ C(Φ) are evaluated false, thus
creating a false clause. As S(t) ⊆ {r1, . . . , rj} and x(t) ∈ {r1, . . . , rj} we
get that c is not a proper assignment of the induced formula Φ[{r1, . . . , rj}].

13

Recall that by the construction of T we have L(x(t)) = ∅ for every
closed leaf t ∈ T . As we assume that after round j all leaves of T are
closed, the above described traversal procedure eventually ends up in a
vertex t with c(x(t)) 6∈ L(x(t)). Hence, c is not a satisfying assignment for
Φ[{r1, . . . , rj}].

Claim 4.4. After (100dk−1 log d)/ε2 rounds, all leaves of T are closed
with probability at least 3/4.

Proof. As every vertex of T has at most d sons and by Claim 4.2 T
has depth at most 5dk−1/ε, it can be embedded naturally in the d-ary tree
Td,5dk−1/ε of depth 5dk−1/ε. Moreover, this embedding can be prefixed even
before exposing R and T . Note that the number of leaves of Td,5dk−1/ε is
at most d5dk−1/ε.

Fix a leaf t of Td,5dk−1/ε. The probability that t is an open leaf of T after
(100dk−1 log d)/ε2 rounds is at most the probability that the total number
of successful rounds on the path from the root of T to t is less than 5dk−1/ε.
For the path from the root to t, each round has probability of success at
least ε/5, given any history, by claim 4.1. Therefore, the probability that t
is an open leaf after (100dk−1 log d)/ε2 steps can be bounded from above by
the probability that the Binomial random variable B(100dk−1 log d/ε2, ε/5)
is less than 5dk−1/ε. Using the Chernoff bound (see e.g. [6]), the latter
probability is at most

exp

−

(
20dk−1 log d

ε − 5dk−1

ε

)2

40dk−1 log d
ε

≤ exp

−

(
15dk−1 log d

ε

)2

40dk−1 log d
ε

<

e−
5.5dk−1 log d

ε < d−
5.5dk−1

ε .

Thus, by the union bound we conclude that the probability that some leaf
of T is open after (100dk−1 log d)/ε2 steps, is at most d5dk−1/εd−5.5dk−1/ε <
1/4.

Proof of Theorem 1.1. Follows immediately from claims 4.3 and 4.4.

5. APPLICATIONS

In this section we show how to obtain all the corollaries mentioned in
the introduction, by reducing these problems to testing (k,d)-CNF. We
remind the reader that we denote by f(k, d, ε) the number of variables that
suffice for testing (k,d)-CNF, as described in section 1.

Claim 5.1. (k,d)-Function-SAT can be tested using a randomly chosen
subset of f(k, d, ε/2dk

) variables.

14

Proof. We divide the proof into two parts. First we show how to reduce
general functions into an equivalent set of (k,d)-CNF clauses, and then show
how to use the (k,d)-CNF tester. Let f : dk → {0, 1} be a general boolean
function on k variables, where each variable can take a value from [d].
Clearly we may represent f as an instance of (k,d)-CNF, where we have a
clause (v1 6= a1 ∨ . . .∨ vk 6= ak), for each assignment (a1, . . . , ak) that does
not satisfy f . Now, given an instance, Φ, of (k,d)-Function-SAT, we can
implicitly create an instance, Φ′, of (k,d)-CNF by representing each function
as a set of (k,d)-CNF as described above. We also remove any duplication
from Φ′. Now we turn to show how to use the (k,d)-CNF tester, in order
to test (k,d)-Function-SAT. We claim that choosing f(k, d, ε/2dk

) suffices.
Clearly if Φ is satisfiable so is Φ′, as well as any induced subformula of Φ′.
So assume Φ is ε-far from satisfiable, we show that Φ′ is ε/2dk

-far from
satisfiable. Assume there is some assignment that does not satisfy less
than ε/2dk

nk clauses in Φ′, and notice that as there are no more than 2dk

boolean functions on k variables taking values from [d], we conclude that
the same assignment does not satisfy less than εnk functions in Φ, which
is a contradiction, as we assumed that Φ is ε-far from satisfiable. Now,
choosing f(k, d, ε/2dk

) variables and taking all the functions that include
them, is equivalent to picking f(k, d, ε/2dk

) random variables from Φ′ and
looking at the induced formula on Φ′, and thus ensures, by theorem 1.1,
that the induced formula on Φ is not satisfiable with probability at least
3
4 , as needed. This proves corollary 1.1.

Claim 5.2. k-CNF can be tested using a randomly chosen subset of
f(k, 2, ε) variables.

Proof. Follows from theorem 1.1 with d = 2. This proves corollary
1.2.

Claim 5.3. k-NAEQ-SAT can be tested using a randomly chosen subset
of f(k, 2, ε) variables.

Proof. Given an instance Φ of k-NAEQ-SAT, implicitly create an in-
stance of k-CNF, Φ′, where for each clause, c, in Φ, put c in Φ′, plus
another clause that has the same set of variables as c, but all the signs of
the literals are flipped (that is for the clause c = (v1∨v2∨v3) we put c and
the clause (v1 ∨ v2 ∨ v3)). The proof of correctness follows trivially from
theorem 1.1. This proves corollary 1.3.

Claim 5.4. k-hypergraph d-colorability can be tested using a randomly
chosen subset of vertices of size f(k, d, ε).

Proof. Given a k-uniform hypergraph, H, we implicitly create a (k,d)-
CNF instance, Φ, such that Φ contains a variable for each vertex in H. For
each edge (v1, . . . , vk) we put d clauses in Φ, (v1 6= 1∨. . .∨vk 6= 1), . . . , (v1 6=
d∨ . . .∨ vk 6= d). Clearly if H is d-colorable, Φ is satisfiable. Assume there

15

is some assignment that does not satisfy less than εnk clauses. For each
variable v that was assigned the value i, we color the vertex v with the color
i. Clearly under this coloring no more than εnk edges are not properly
colored. We conclude that if H is ε-far from d-colorable, then φ is ε-far
from satisfiable. Now in order to test if H is d-colorable, we pick f(k, d, ε)
vertices, and for every induced edge, we create the d corresponding clauses.
This is equal to picking f(k, d, ε) variables from Φ, thus from theorem 1.1,
with probability at least 3

4 , the resulting formula is not satisfiable. This
proves corollary 1.4.

Note that for the case of testing graph d-colorability, that is the case
of k = 2, our result matches the result of Alon and Krivelevich [4]. For
general k we get the same result as that of Czumaj and Sohler [10], but
with a larger dependence on k and d. In fact, if one changes the definition
of a heavy vertex in the proof of [10], to the way we define a heavy variable,
one can slightly improve the result of [10], and show that COLk,d(n, ε) =
O(kd log d/ε2). We omit the details.

6. CONCLUDING REMARKS AND OPEN PROBLEMS

We have shown how to obtain one-sided error property-testers for a
number of satisfiability problems. As a byproduct, we have obtained as a
consequence, previously known results about testing colorability of graphs
and k-uniform hypergraphs. All the results use a random set of vari-
ables/vertices of size O(1/ε2). There is still a gap between the trivial lower
bound of Ω(1/ε) and our upper bounds.

A natural question that can be asked, is whether one can devise a more
efficient test, if the functions are restricted to be of a specific type. Two
natural types of functions are linear equations and multivariate polyno-
mials, over GF (d) (for a prime power d). As the following claims show,
designing much better tests for these special cases would not be easy.

Claim 6.1. Testing graph 2-colorability is not harder than testing linear
equations on two variables over GF (2).

Proof. Given a graph G = (V, E), where |V | = n, consider the set of
equations, Φ, on the variables x1, . . . , xn, over GF (2), where for every edge
(vi, vj) ∈ E, Φ contains the equation xi+xj = 1. Clearly if G is 2-colorable,
Φ is satisfiable, and also if G is ε-far from satisfiable, so is Φ.

Alon and Krivelevich [4] found a complicated proof for the existence of
a test for graph 2-colorability, which chooses a random subset of vertices
of size Θ̃(1/ε). Thus getting a test for general linear equations, that uses
a set of variables of size O(1/ε), would improve the result of [4] by a poly-
logarithmic factor, and does not seem to be easy.

Claim 6.2. For any prime power p, testing (k,p)-CNF is not harder
than testing k-variate polynomials over GF (p).

16

Proof. Given an instance of (k,p)-CNF, Φ = (V, C), with |V | = n,
consider the following set of k-variate polynomials over GF (p), on a set of
variables x1, . . . , xn, which we denote by Φ′. For every clause (v1 6= c1∨. . .∨
vk 6= ck) in Φ, Φ′ contains the k-variate polynomial Πk

i=1Πt∈{1,...,p}\ci
(xi−

t) = 0. Clearly if Φ is satisfiable so is Φ′, and also if Φ is ε-far from
satisfiable, so is Φ′.

By claim 5.1, testing general boolean functions (which we call (k,d)-
Function-SAT), is as easy as testing (k,d)-CNF, thus getting a test for k-
variate polynomials over GF (d), which would use o(1/ε2) variables, would
imply an equivalent result for testing (k,d)-Function-SAT (at least for a
prime power d). As even for the very special case of testing 3-colorability
of graphs, we do not know how to get a test which uses o(1/ε2) vertices,
this also seems a hard task.

Another open problem that should be addressed is a slight variation of
the problem we have addressed in this paper. Notice that for the case of
k-hypergraph d-colorability we show that if an instance H is ε-far from
being d-colorable, then almost all the induced k-hypergraphs on sets of
size roughly 1/ε2 are not d-colorable. The other question that can be
asked is what is the size of the smallest induced k-hypergraph that is not
d-colorable, that must be included in any H, that is ε-far from d-colorable.
See [4] and [8] for a discussion on these questions and some results for the
case of graphs. The analogous questions for satisfiability and its variants
are also interesting.

REFERENCES

[1] N. Alon, Testing subgraphs in large graphs, Proc. 42nd IEEE FOCS,
IEEE (2001), 434-441.

[2] N. Alon, R. A. Duke, H. Lefmann, V. Rödl and R. Yuster, The al-
gorithmic aspects of the Regularity Lemma, Proc. 33rd IEEE FOCS,
Pittsburgh, IEEE (1992), 473-481. Also: J. of Algorithms 16 (1994),
80-109.

[3] N. Alon, W. F. de la Vega, R. Kannan and M. Karpinski, Random
Sampling and Approximation of MAX-CSP Problems, Proc. of the
34th ACM STOC, ACM Press (2002), 232-239.

[4] N. Alon and M. Krivelevich, Testing k-colorability, SIAM J. Discrete
Math. 15 (2002), 211-227.

[5] N. Alon and A. Shapira, Testing subgraphs in directed graphs, Proc.
of the 35th ACM STOC, ACM Press (2003), to appear.

[6] N. Alon and J. H. Spencer, The probabilistic method, Second Edi-
tion, Wiley, New York, 2000.

17

[7] G. Andersson and L. Engebretsen, Property testers for dense con-
straint satisfaction programs on finite domains, Random Structures
and Algorithms 21 (2002), 14-32.

[8] B. Bollobás, P. Erdös, M. Simonovits and E. Szemerédi, Extremal
graphs without large forbidden subgraphs, Annals of Discrete Mathe-
matics 3 (1978), 29–41.

[9] S. Cook, The complexity ot theorem-proving procedures, In Confer-
ence Record of Third Annual ACM Symposium on Theory of Comput-
ing, pages 151-158, 1971.

[10] A. Czumaj and C. Sohler: Testing Hypergraph Coloring. ICALP 2001:
493-505.

[11] A. Frieze and R. Kannan, Quick approximation to matrices and ap-
plications, Combinatorica, 19, (1999), 175-220.

[12] M.R. Garey and D.S. Johnson, Computers and Intractability , Freeman
and Company, San Francisco, 1979.

[13] O. Goldreich, S. Goldwasser and D. Ron, Property testing and its con-
nection to learning and approximation, Proceedings of the 37th Annual
IEEE FOCS (1996), 339–348. Also: Journal of the ACM, 45(1998),
653-750.

[14] J. H̊astad, Some optimal inapproximability results, In Proc. 29th Ann.
ACM Symp. on Theory of Comp., pages 1–10. ACM, 1997.

[15] S. Janson, T. ÃLuczak and A. Ruciński, Random Graphs, Wiley, New
York, 2000.

[16] Howard Karloff, Uri Zwick, A 7/8-approximation algorithm for MAX
3SAT? In Proc. of 38th FOCS (1997), 406–415.

[17] T. Kővári, V. T. Sós and P. Turán, On a problem of K. Zarankiewicz,
Colloquium Math., 3, (1954), 50-57.

[18] V. Rödl and R. Duke, On graphs with small subgraphs of large chro-
matic number, Graphs and Combinatorics 1 (1985), 91–96.

[19] D. Ron, Property testing, in: P. M. Pardalos, S. Rajasekaran, J. Reif
and J. D. P. Rolim, editors, Handbook of Randomized Computing, Vol.
II, Kluwer Academic Publishers, 2001, 597–649.

[20] E. Szemerédi, Regular partitions of graphs, In: Proc. Colloque Inter.
CNRS (J. C. Bermond, J. C. Fournier, M. Las Vergnas and D. Sotteau,
eds.), 1978, 399–401.

18

