Probability in 2D problem set 1 Due date: November 28, 2016

- 1. Independently orient each vertical edge of \mathbb{Z}^2 upwards with probability $\frac{1}{2}$ and downwards with probability $\frac{1}{2}$, and each horizontal edge of \mathbb{Z}^2 left with probability $\frac{1}{2}$ and right with probability $\frac{1}{2}$. Show that with probability 1 there is no simple infinite oriented path starting from the origin.
- 2. Consider bond-percolation on \mathbb{Z}^2 with $p = \frac{1}{2}$. Show that there exists a constant c > 0 such that for any integer $n \ge 1$ the probability that the origin is connected to $\mathbb{Z}^2 \setminus [-n, n]^2$ is at least $\frac{1}{2\sqrt{n}}$.
- 3. Show that there exist constants $C < \infty$ and c > 0 such that for all n the probability of the event from the last question is at most Cn^{-c} .
- 4. Consider bond-percolation on \mathbb{Z}^2 with $p = \frac{1}{2}$ and let $\alpha(n)$ be a positive integer sequence such that $\alpha(n)/n \to 0$. Show that the probability of a horizontal open crossing of n by $n + \alpha(n)$ rectangle tends to $\frac{1}{2}$.