Probability in 2D problem set 1 Due date: November 28, 2016

1. Independently orient each vertical edge of \mathbb{Z}^{2} upwards with probability $\frac{1}{2}$ and downwards with probability $\frac{1}{2}$, and each horizontal edge of \mathbb{Z}^{2} left with probability $\frac{1}{2}$ and right with probability $\frac{1}{2}$. Show that with probability 1 there is no simple infinite oriented path starting from the origin.
2. Consider bond-percolation on \mathbb{Z}^{2} with $p=\frac{1}{2}$. Show that there exists a constant $c>0$ such that for any integer $n \geq 1$ the probability that the origin is connected to $\mathbb{Z}^{2} \backslash[-n, n]^{2}$ is at least $\frac{1}{2 \sqrt{n}}$.
3. Show that there exist constants $C<\infty$ and $c>0$ such that for all n the probability of the event from the last question is at most $C n^{-c}$.
4. Consider bond-percolation on \mathbb{Z}^{2} with $p=\frac{1}{2}$ and let $\alpha(n)$ be a positive integer sequence such that $\alpha(n) / n \rightarrow 0$. Show that the probability of a horizontal open crossing of n by $n+\alpha(n)$ rectangle tends to $\frac{1}{2}$.
