Random walks on random fractals - list of notation and theorems for week 2

$\{x \leftrightarrow y\}-x$ is connected to y by an open path.
$\{x \stackrel{r}{\leftrightarrow} y\}-x$ is connected to y by an open path of length at most r.
$\{x \stackrel{\underset{~}{=}}{\stackrel{r}{r}} y\}-x$ is connected to y by an open path, the length of the shortest open path equals r.
$\{x \stackrel{r}{\leftrightarrow} y\} \circ\{w \stackrel{\ell}{\longleftrightarrow} z\}$ - there exists two edge disjoint open paths of length at most r and ℓ connecting x to y and w to z, respectively.

$$
\mathcal{C}(0):=\{z: 0 \leftrightarrow z\} \quad B(0, r):=\{z: 0 \stackrel{r}{\leftrightarrow} z\} \quad \partial B(0, r):=\{z: 0 \stackrel{=r}{\leftrightarrow} z\} .
$$

Theorem 0 (BK-inequality) (v.d. Berg, Kesten '85) On any graph G and any $p \in[0,1]$ we have

$$
\mathbf{P}_{p}(\{x \stackrel{r}{\leftrightarrow} y\} \circ\{w \stackrel{\ell}{\leftrightarrow} z\}) \leq \mathbf{P}_{p}(x \stackrel{r}{\leftrightarrow} y) \mathbf{P}_{p}(w \stackrel{\ell}{\leftrightarrow} z) .
$$

Theorem A (Triangle condition) (Hara, Slade '90) For \mathbb{Z}^{d} with $d \geq 19$ we have

$$
\sum_{x, y \in \mathbb{Z}^{d}} \mathbf{P}_{p_{c}}(0 \leftrightarrow x) \mathbf{P}_{p_{c}}(x \leftrightarrow y) \mathbf{P}_{p_{c}}(y \leftrightarrow 0)<\infty .
$$

Note: we will use the "open" triangle condition: there exists $K \geq 1$ such that if u, v are vertices such that $|u-v| \geq K$, then

$$
\sum_{x, y \in \mathbb{Z}^{d}} \mathbf{P}_{p_{c}}(u \leftrightarrow x) \mathbf{P}_{p_{c}}(x \leftrightarrow y) \mathbf{P}_{p_{c}}(y \leftrightarrow v) \leq \frac{1}{10} .
$$

Theorem B (Aizenman, Barsky '91) For \mathbb{Z}^{d} with $d \geq 19$ we have

$$
\mathbf{P}_{p_{c}}(|\mathcal{C}(0)| \geq n) \approx \frac{1}{\sqrt{n}} .
$$

Theorem C (Hara, v.d. Hofstad, Slade '03 \& Hara '08) For \mathbb{Z}^{d} with $d \geq 19$ we have

$$
\mathbf{P}_{p_{c}}(x \leftrightarrow y) \approx|x-y|^{2-d} .
$$

Theorem D (v.d. Hofstad, Járai '04) For \mathbb{Z}^{d} with $d \geq 19$ the limit

$$
\mathbf{P}_{\mathrm{IIC}}(F):=\lim _{|x| \rightarrow \infty} \mathbf{P}_{p_{c}}(F \mid 0 \leftrightarrow x),
$$

exists for any cylinder event F.
For a subgraph $G \subset E\left(\mathbb{Z}^{d}\right)$ perform percolation with parameter $p_{c}\left(\mathbb{Z}^{d}\right)$ and write $\partial B(0, r ; G)$ for the set of vertices x such that $0 \stackrel{=r}{\longleftrightarrow} x$. When $G=\mathbb{Z}^{d}$ we have $\partial B(0, r ; G)=\partial B(0, r)$. Lastly, define

$$
\Gamma(r)=\sup _{G \subset E\left(\mathbb{Z}^{d}\right)} \mathbf{P}_{p_{c}\left(\mathbb{Z}^{d}\right)}(\partial B(0, r ; G) \neq \emptyset) .
$$

Theorem 1 For \mathbb{Z}^{d} with $d \geq 19$ there exists a constant $C>0$ such that
(a) $\mathbb{E}_{p_{c}}|B(0, r)| \leq C r$
(b) $\Gamma(r) \leq C r^{-1}$.

Remark. The reason for defining $\Gamma(r)$ is that the event $\partial B(0, r) \neq \emptyset$ is not monotone with respect to adding edges. Open problem: Show that the supremum in the definition of $\Gamma(r)$ is attained when $G=\mathbb{Z}^{d}$.

Theorem 2 For any $\epsilon>0$ there exists $C \geq 1$ such that for all $r \geq 1$

$$
\mathbf{P}_{\text {IIC }}\left(\frac{|B(0, r)|}{r^{2}} \in\left[C^{-1}, C\right] \text { and } \frac{R_{\mathrm{eff}}(0, \partial B(0, r))}{r} \in\left[C^{-1}, 1\right]\right) \geq 1-\epsilon .
$$

Theorem 3 For any $\epsilon>0$ there exists $C \geq 1$ such that for all $r \geq 1$

$$
\mathbf{P}_{\mathrm{IIC}}\left(\frac{\left|\mathbb{E} \tau_{r}\right|}{r^{3}} \in\left[C^{-1}, C\right] \text { and } r^{2} p_{r^{3}}(0,0) \in\left[C^{-1}, C\right]\right) \geq 1-\epsilon
$$

Random walks on random fractals - exercises for week 2

1. Show that Theorem C implies the open triangle condition, that is, for any $\epsilon>0$ there exists $K \geq 1$ such that if $|u-v| \geq K$ then

$$
\sum_{x, y \in \mathbb{Z}^{d}} \mathbf{P}_{p_{c}}(u \leftrightarrow x) \mathbf{P}_{p_{c}}(x \leftrightarrow y) \mathbf{P}_{p_{c}}(y \leftrightarrow v) \leq \epsilon .
$$

2. Show that Theorem 1 implies that $\mathbf{P}_{p_{c}}(|\mathcal{C}(0)| \geq n) \leq c n^{-1 / 2}$ (that is, Theorem 1 implies the upper bound of Theorem B).
3. Assume that there exists an $C>0$ such that for all $\epsilon>0$ we have $\mathbb{E}_{p_{c}-\epsilon}|\mathcal{C}(0)| \leq C \epsilon^{-1}$. Show that this implies part (a) of Theorem 1. (Remark: the assumption is known to hold for \mathbb{Z}^{d} with $d \geq 19$ so this gives an alternate proof of part (a) of Theorem 1 and is due to Artem Sapozhnikov).
4. Prove the corresponding lower bounds for Theorem 1. That is, that there exists a constant $c>0$ such that $\mathbb{E}_{p_{c}}|B(0, r)| \geq c r$ and that $\Gamma(r) \geq c r^{-1}$.
5. Let $S_{r}=\left\{x \in \mathbb{Z}^{d}:|x| \geq r\right\}$, show that $\mathbf{P}_{p_{c}}\left(0 \leftrightarrow S_{r}\right) \geq c r^{-2}$ for some constant $c>0$.
6. Show that there exists some constant $c>0$ such that for all $A \geq 1$ we have
(a) $\mathbf{P}_{\text {IIC }}\left(|B(0, r)| \geq A r^{2}\right) \leq e^{-c A}$.
(b) $\mathbf{P}_{\text {IIC }}\left(|B(0, r)| \leq A^{-1} r^{2}\right) \leq e^{-c A}$.
[Hint for part (a): bound the moments $\left.\mathbb{E}_{p_{c}}|B(0, r)|^{k}\right]$
7. Show that there exists some constant $c>0$ such that for all $A \geq 1$ we have

$$
\mathbf{P}_{\mathrm{IIC}}\left(R_{\mathrm{eff}}(0, \partial B(0, r)) \leq A^{-1} r\right) \leq e^{-c A^{c}}
$$

8. Conclude from the last two problems that $\mathbf{P}_{\text {IIC }}$-almost-surely $d_{f}=2$ and $d_{s}=4 / 3$, where

$$
d_{f}=\lim _{r \rightarrow \infty} \frac{\log |B(0, r)|}{\log r} \quad d_{s}=-2 \lim _{t \rightarrow \infty} \frac{\log p^{t}(0,0)}{\log t} .
$$

9. For a vertex x in the IIC write $d_{\mathrm{IIC}}(0, x)$ for the graph distance between 0 and x in the IIC. Let $\left\{X_{n}\right\}$ be the simple random walk on the IIC in \mathbb{Z}^{d} with $d \geq 19$. Show that $\mathbf{P}_{\text {IIC }}$-almost-surely

$$
\lim _{n \rightarrow \infty} \frac{\log d\left(0, X_{n}\right)}{\log n}=1 / 3, \quad\left\{X_{n}\right\} \text {-almost-surely }
$$

