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(See e.g. [20, 17].) One of the classical results in this area is that when theprocess has terminated, the fullest box has, with high probability1, (1 +o(1)) lnn= ln lnn balls in it2.Consider a variant of the process above whereby each ball comes withd possible destinations, chosen independently and uniformly at random.(Hence the d destinations are not necessarily distinct.) The ball is placed inthe least full box among the d possible locations. Surprisingly, even for d = 2,when the process terminates the fullest box has only ln lnn= ln 2+O(1) ballsin it. Thus, this apparently minor change in the random allocation processresults in an exponential decrease in the maximum occupancy per location.The analysis of this process is summarized as followsTheorem 1 Suppose that m balls are sequentially placed into n boxes. Eachball is placed in the least full box, at the time of the placement, among dboxes, d � 2, chosen independently and uniformly at random. Then afterall the balls are placed� With high probability, as n ! 1 and m � n, the number of balls inthe fullest box is (1 + o(1)) ln lnn= lnd+�(m=n).� In particular, with high probability, as n!1 and m = n, the numberof balls in the fullest box is ln lnn= lnd+ �(1).� Any other on-line strategy that places each ball into one of d randomlychosen boxes, results in stochastically more balls3 in the fullest box.It is also interesting to study the in�nite version of the random allocationprocess. There, at each step a ball is chosen uniformly at random andremoved from the system, and a new ball appears. The new ball comes withd possible destinations, chosen independently at random, and it is placedinto the least full box among these d possible destinations.The analysis of the case d = 1 in this in�nite stochastic process is simplesince the location of any ball does not depend on the locations of other ballsin the system. Thus, for d = 1, in the stationary distribution, with highprobability the fullest box has �(logn= log logn) balls. The analysis of thecase d � 2 is signi�cantly harder, since the locations of the current n ballsmight depend on the locations of balls that are no longer in the system. Weprove that when d � 2, in the stationary distribution, the fullest box has1We say that an event E occurs with high probability if Pr(E) = 1� o(1).2G. Gonnet [16] has proven a more accurate result, ��1(n) � 3=2 + o(1).3By this we mean that for any other strategy and any k the probability that the numberof balls in the fullest box is greater than k is at least the probability that the number ofballs in the fullest box is greater than k under the greedy strategy. See Corollary 8.2



ln lnn= lnd+O(1) balls, with high probability. Thus, the same exponentialgap holds in the in�nite process. Theorem 2 is proven in section 4.Theorem 2 Consider the in�nite process with d � 2, starting at time 0in an arbitrary state. There is a constant c such that for any �xed T >cn2 log logn, the fullest box at time T contains, with high probability, lessthan ln lnn= lnd+O(1) balls. Thus, in the stationary distribution, with highprobability, no box contains more than ln lnn= lnd+O(1) balls.Karp, Luby, and Meyer auf der Heide [18] were the �rst to notice adramatic improvement when switching from one hash function to two in thecontext of PRAM simulations. In fact it is possible to use a result from [18]to derive a weaker form of our static upper bound. (For details see [7].)A preliminary version of this paper has appeared in [7]. Subsequently,Adler, Chakrabarti, Mitzenmacher, and Rasmussen [1] analyzed parallel im-plementation of the balanced allocation mechanism and obtained interestingcommunication vs. load tradeo�s.A related question was considered by Broder, Frieze, Lund, Phillips,and Reingold [10]. In their model the set of choices is such that there is aplacement that results in maximum load equal to one. The question theyanalyse is what is the expected maximum load under a random order ofinsertion under the greedy strategy.More recent results, based on the balanced allocation paradigm haveappeared in [23, 24, 25, 12].1.1 ApplicationsOur results have a number of interesting applications to computing prob-lems. We elaborate here on three of them:Dynamic Resource Allocation. Consider a scenario in which a useror a process has to choose on-line between a number of identical resources(choosing a server to use among the servers in a network; choosing a disk tostore a directory; etc.). To �nd the least loaded resource, users may checkthe load on all resources before placing their requests. This process is ex-pensive, since it requires sending an interrupt to each of the resources. Asecond approach is to send the task to a random resource. This approachhas minimum overhead, but if all users follow it, the di�erence in load be-tween di�erent servers will vary by up to a logarithmic factor. Our analysissuggests a more e�cient solution. If each user samples the load of two re-sources and sends his request to the least loaded, the total overhead is small,and the load on the n resources varies by only a O(log logn) factor.3



Hashing. The e�ciency of a hashing technique is measured by twoparameters: the expected and the maximum access time. Our approachsuggests a simple hashing technique, similar to hashing with chaining. Wecall it 2-way chaining. It has O(1) expected, and O(log logn) maximumaccess time. We use two random hash functions. The two hash functionsde�ne two possible entries in the table for each key. The key is inserted tothe least full location, at the time of the insertion. Keys in each entry ofthe table are stored in a linked list. Assume that n keys are sequentiallyinserted by this process into a table of size n. As shown in Section 5, theexpected insertion and look-up time is O(1), and our analysis summarizedabove, immediately implies that with high probability the maximum accesstime is ln lnn= ln 2+O(1), versus the �(logn= log logn) time when only onerandom hash function is used.An advantage of our scheme over some other known techniques for re-ducing worst case behavior of hashing (e.g. [14, 13, 11]) is that it uses onlytwo hash functions, it is easy to parallelize, and does not involve re-hashingof data. Other commonly used schemes partition the available memory intomultiple tables, and use a di�erent hash function in each table. For example,the Fredman, Komlos, Szemeredi scheme for perfect hashing [14], uses upto n di�erent hash functions to get O(1) worst case access time (not on-linehowever), and the algorithm of Broder and Karlin [11] uses O(log logn) hashfunctions to achieve O(log logn) maximum access time, on-line, but usingre-hashings.Karp, Luby, and Meyer auf der Heide [18] studied the use of two hashfunctions in the context of PRAM simulations. Other PRAM simulationsusing multiple hash functions were developed and analyzed in [21].Competitive On-line Load Balancing. Consider the following on-line load balancing problem: We are given a set of n servers and a sequenceof arrivals and departures of tasks. Each task comes with a list of serverson which it can be executed. The load balancing algorithm has to assigneach task to a server on-line, with no information on future arrivals anddepartures of tasks. The goal of the algorithm is to minimize the maximumload on any server. The quality of an on-line algorithm is measured by thecompetitive ratio: the ratio between the maximum load it achieves and themaximum load achieved by the optimal o�-line algorithm that knows thewhole sequence in advance. This load balancing problem models for ex-ample, communication in heterogeneous networks containing workstations,I/O devices, etc. Servers correspond to communication channels and tasksto requests for communication links between devices. A network controllermust coordinate the channels so that no channel is too heavily loaded.4



On-line load balancing has been studied extensively against worst-caseadversaries [9, 6, 5, 3, 8, 4]. For permanent tasks (tasks that arrive butnever depart), Azar, Naor and Rom [9] showed that the competitive ratioof the greedy algorithm is logn and that no algorithm can do better. Fortemporary tasks (tasks that depart at unpredictable times), the works ofAzar, Broder and Karlin [6] and Azar, Kalyanasundaram, Plotkin, Pruhsand Waarts [8] show that there is an algorithmwith competitive ratio �(pn)and that no algorithm can do better.It is interesting to compare these high competitive ratios, obtained frominputs generated by an adversary, to the competitive ratio against randomlygenerated inputs. Our results show that under reasonable probabilistic as-sumptions the competitive ratios for both permanent and temporary tasksare signi�cantly better. In the case of permanent tasks, if the set of serverson which a task can be executed is a small set (that is, constant size� 2) cho-sen at random, the competitive ratio decreases from �(logn) to �(log logn).In the case of temporary tasks, if we further assume that at each time stepa randomly chosen existent task is replaced by a new task, then at any �xedtime the ratio between the maximum online load and the maximum o�ineload is �(log logn) with high probability. Further details are presented inSection 6.2 De�nitions and NotationWe consider two stochastic processes: the �nite process and the in�niteprocess.The Finite Process. There are n boxes, initially empty, and m balls. Eachball is allowed to go into d � 1 boxes chosen independently and uniformlyat random. The balls arrive one by one, and a placement algorithm mustdecide on-line (that is, without knowing what choices are available to futureballs) in which box to put each ball as it comes. Decisions are irrevocable.We will subsequently refer to this setup as a (m;n; d)-problem.The In�nite Process. There are n boxes, initially containing n balls inan arbitrary state. (For example, all the balls could be in one box.) Ateach step, one random ball is removed, and one new ball is added; the newball is allowed to go into d � 1 boxes chosen independently and uniformlyat random. Once again, a placement algorithm must decide on-line (thatis, without knowing what choices are available to future balls and withoutknowing which ball will be removed at any future time) in which box to puteach arriving ball. Decisions are irrevocable.5



We use the following notations for the random variables associated witha placement algorithm A. Note that the state at time t refers to the stateimmediately after the placement of the t'th ball.�Aj (t) called the load of box j, is the number of balls in box j at time t,resulting from algorithm A.�Ak (t) is the number of boxes that have load k at time t.�A�k(t) is the number of boxes that have load� k at time t, that is �A�k(t) =Pi�k �Ai (t).hAt called the height of ball t (= the ball that arrives at time t), is thenumber of balls at time t in the box where ball t is placed. In otherwords, the �rst ball to be placed in a particular box has height 1,the second ball has height 2, etc.�Ak (t) is the number of balls that have height k at time t.�A�k(t) is the number of balls that have height � k at time t, i.e. �A�k(t) =Pi�k �Ai (t).We omit the superscript A when it is clear which algorithm we are con-sidering. Constants were chosen for convenience, and we made no attemptsto optimize them.Algorithm greedy assigns ball j to the box that has the lowest loadamong the d random choices that j has. We use the superscript G forgreedy.The basic intuition behind the proofs that follow is simple: Let pi =��i=n. Since the available choices for each ball are independent, and ��i ���i, we roughly have (\on average" and disregarding conditioning) pi+1 �pdi , which implies a doubly exponential decrease in pi, once ��i < n=2. Ofcourse the truth is that ��i+1 is strongly dependent on ��i and a rathercomplex machinery is required to construct a correct proof.3 The Finite ProcessWe use the notation B(n; p) to denote a binomially distributed randomvariable with parameters n and p, and start with the following standardlemma, whose proof is omitted. 6



Lemma 3 Let X1; X2; : : : ; Xn be a sequence of random variables with valuesin an arbitrary domain, and let Y1; Y2; : : : ; Yn be a sequence of binary randomvariables, with the property that Yi = Yi(X1; : : : ; Xi). IfPr(Yi = 1 j X1; : : : ; Xi�1) � p;then Pr(XYi � k) � Pr(B(n; p) � k)and similarly if Pr(Yi = 1 j X1; : : : ; Xi�1) � p;then Pr(XYi � k) � Pr(B(n; p) � k)2We now turn to the analysis of the �nite process. In what follows, weomit the argument t, when t = m, that is, when the process terminates. Inthe interest of a clearer exposition, we start with the case m = n, althoughthe general case (Theorem 9) subsumes it.Theorem 4 The maximum load achieved by the greedy algorithm on arandom (n; n; d)-problem is less than ln lnn= ln d+O(1) with high probability.Proof: Since the d choices for a ball are independent, we havePr(ht � i+ 1 j ��i(t� 1)) = (��i(t� 1))dnd :Let Ei be the event that ��i(n) � �i where �i will be exposed later. (Clearly,Ei implies that ��i(t) � �i for t = 1; : : : ; n.) Now �x i � 1 and consider aseries of binary random variables Yt for t = 2; : : : ; n, whereYt = 1 i� ht � i+ 1 and ��i(t� 1) � �i:(Yt is 1 if the height of the ball t is � i+1 despite the fact that the numberof boxes that have load � i is less than �i.)Let !j represent the choices available to the j'th ball. ClearlyPr(Yt = 1 j !1; : : : ; !t�1) � �dind def= pi:Thus we can apply Lemma 3 to conclude thatPr(XYt � k) � Pr(B(n; pi) � k): (1)7



Observe that conditioned on Ei, we have ��i+1 =PYt. ThereforePr(��i+1 � k j Ei) = Pr(X Yt � k j Ei) � Pr(PYt � k)Pr(Ei) : (2)Combining equations (1) and (2) we obtain thatPr(��i+1 � k j Ei) � Pr(��i+1 � k j Ei) � Pr(B(n; pi) � k)Pr(Ei) : (3)We can bound large deviations in the binomial distribution with theformula (see for instance [2], Appendix A.)Pr(B(n; pi) � epin) � e�pin; (4)which inspires us to set�i = 8>>>>>><>>>>>>: n; i = 1; 2; : : : ; 5;n2e; i = 6;e�di�1nd�1 ; i > 6:With these choices E�6 = f�6 � n=(2e)g holds with certainty, and from(3) and (4), for i � 6 Pr(:Ei+1 j Ei) � 1n2Pr(Ei) ;provided that pin � 2 lnn. SincePr(:Ei+1) � Pr(:Ei+1 j Ei)Pr(Ei) +Pr(:Ei);it follows that for pin � 2 lnnPr(:Ei+1) � 1n2 +Pr(:Ei): (5)To �nish the proof let i� be the smallest i such that �di�=nd � 2 lnn=n.Notice that i� � ln lnn= lnd+O(1) since�i+6 = ne(di�1)=(d�1)(2e)di � n2di :8



As beforePr(��i�+1 � 6 lnn j Ei�) � Pr(B(n; 2 lnn=n) � 6 lnn)Pr(Ei�) � 1n2Pr(Ei�) ;and thus Pr(��i�+1 � 6 lnn) � 1n2 + Pr(:Ei�): (6)FinallyPr(��i�+2 � 1 j ��i�+1 � 6 lnn) � Pr(B(n; (6 lnn=n)d) � 1)Pr(��i�+1 � 6 lnn)� n(6 lnn=n)dPr(��i�+1 � 6 lnn)by the Markov inequality, and thusPr(��i�+2 � 1) � (6 lnn)dnd�1 +Pr(��i�+1 � 6 lnn) (7)Combining equations (7), (6), and (5), we obtain thatPr(��i�+2 � 1) � (6 lnn)dnd�1 + i� + 1n2 = o(1);which implies that with high probability the maximum load achieved bygreedy is less than i� + 2 = ln lnn= lnd+ O(1). 2We now prove a matching lower bound.Theorem 5 The maximum load achieved by the greedy algorithm on arandom (n; n; d)-problem is at least ln lnn= lnd�O(1) with high probability.Proof: Let Fi be the event that ��i(n(1 � 1=2i)) � i where i will beexposed later. For the time being, su�ces to say that i+1 < i=2. Wewant to compute Pr(:Fi+1 j Fi). To this aim, for t in the range R =fn(1� 1=2i) + 1; : : : ; n(1� 1=2i+1)g, let Zt be de�ned byZt = 1 i� ht = i+ 1 or ��i+1(t � 1) � i+1;and observe that while ��i+1(t � 1) < i+1, if Zt = 1 then the box wherethe t'th ball is placed had load exactly i at time t � 1. This means that allthe d choices that ball t had, pointed to boxes with load � i and at leastone choice pointed to a box with load exactly i.9



Now let !j represent the choices available to the j'th ball. UsingPr(A_ B j C) = Pr(A ^ �B j C) + Pr(B j C)= Pr(A j �B ^ C)Pr( �B j C) + Pr(B j C) � Pr(A j �B ^ C);and in view of the observation above, we derive thatPr(Zt = 1 j !1; : : : ; !t�1;Fi) � �in �d � �i+1n �d � 12 �in �d def= pi: (8)Applying Lemma 3 we getPr�Xt2RZt � k ��� Fi � � Pr(B(n=2i+1; pi) � k)We now choose 0 = n;i+1 = di2i+3nd�1 = n2i+3 �in �d = 12 n2i+1 pi:Since Pr(B(N; p) < Np=2) < e�Np=8, (see for instance [2], Appendix A), itfollows that Pr(B(n=2i+1; pi) � i+1) = o(1=n2) (9)provided that pin=2i+1 � 17 lnn. Let i� be the largest integer for which thisholds. Clearly i� = ln lnn= lnd� O(1).Now observe that by the de�nition of F and Zt, the event fPt2RZt �i+1g implies Fi+1. Thus in view of (8) and (9)Pr(:Fi+1 j Fi) � Pr�Xt2RZt � i+1 ��� Fi� = o(1=n2);and therefore Pr(Fi�) � Pr(Fi� j Fi��1)� Pr(Fi��1 j Fi��2)� � � � �Pr(F1 j F0)�Pr(F0)� (1� 1=n2)i� = 1� o(1=n)which completes the proof. 2 10



We now turn to showing that the greedy algorithm is stochastically op-timal under our model, that is, we assume that each ball has d destinationschosen uniformly at random, and all balls have equal weight. (The optimal-ity is not preserved if either condition is violated.) It su�ces to consider onlydeterministic algorithms since randomized algorithms can be considered asa distribution over deterministic algorithms.We say that a vector �v = (v1; v2; : : : ; vn) majorizes a vector �u, written�v � �u if for 1 � i � n, we have P1�j�i v�(j) � P1�j�i u�(j), where � and� are permutations of 1; : : : ; n such that v�(1) � v�(2) � � � � � v�(n) andu�(1) � u�(2) � � � � � u�(n).Lemma 6 Let �v and �u be two positive integer vectors such that v1 � v2 �� � � � vn and u1 � u2 � � � � � un. If �v � �u then also �v + �ei � �u + �ei, where�ei is the i'th unit vector, that is �ei;j = �i;j.Proof: Let Sj(�x) be the sum of the j largest components of the vector �x.Notice �rst that for all jSj(�x) � Sj(�x+ �ei) � Sj(�x) + 1: (10)By hypothesis, for all j, we have Sj(�v) � Sj(�u). To prove the lemmawe showthat for all j, we also have Sj(�v+ �ei) � Sj(�u+ �ei). Fix j. By equation (10)if Sj(�v) > Sj(�u) then Sj(�v + �ei) � Sj(�u+ �ei). Now assume Sj(�v) = Sj(�u).There are three cases to consider:Case 1: i � j. ThenSj(�v + �ei) = Sj(�v) + 1 = Sj(�u) + 1 = Sj(�u+ �ei):Case 2: i > j and uj > ui. Since uj � ui + 1, it follows that Sj(�u) =Sj(�u+ �ei) and thereforeSj(�v + �ei) � Sj(�v) = Sj(�u) = Sj(�u+ �ei):Case 3: i > j and uj = uj+1 = � � � = ui. Observe �rst that since Sj�1(�v) �Sj�1(�u), Sj(�v) = Sj(�u), and Sj+1(�v) � Sj+1(�u), we havevj � uj and vj+1 � uj+1:Hence vj � vj+1 � uj+1 = uj � vj :11



We conclude that vj = uj = vj+1 = uj+1, and thus Sj+1(�v) = Sj+1(�u).Repeating the argument, we obtain thatvj = uj = vj+1 = uj+1 = � � �= vi = ui;and thereforeSj(�v + �ei) = Sj(�v) + 1 = Sj(�u) + 1 = Sj(�u+ �ei):2Let 
 be the set of all possible nd choices for each ball and 
t be the setof sequences of choices for the �rst t balls.Theorem 7 For any online deterministic algorithm A, and t � 0, there is1-1 correspondence f : 
t ! 
t such that for any !t 2 
t the vector of boxloads associated to greedy acting on !t, written��G(!t) = (�G1 (!t); �G2 (!t); : : : ; �Gn (!t))is majorized by the vector of box loads associated to A acting on f(!t), thatis ��G(!t) � ��A(f(!t)):Proof: To simplify notation we assume d = 2. The proof for larger d isanalogous. The proof proceeds by induction on t, the length of the sequence.The base case (t = 0) is obvious. Assume the theorem valid for t and let ftbe the mapping on 
t. Fix a sequence !t 2 
t. It su�ces to show that wecan re�ne ft to obtain a 1-1 correspondence for all possible 1-step extensionsof !t. Without loss of generality, renumber the boxes such that�G1 (!t) � �G2 (!t) � � � � � �Gn (!t);and let � be a permutation of 1; : : : ; n such that�A�(1)(ft(!t)) � �A�(2)(ft(!t)) � � � � � �A�(n)(ft(!t)):Let (i; j) be two choices for the t+ 1 ball. For every i; j we de�neft+1(!t � (i; j)) = ft(!t) � (�(i); �(j))where \�" represents extension of sequences.Clearly ft+1 is 1-1. We need to show that��G(!t � (i; j))� ��A(ft(!t) � (�(i); �(j))):12



Notice that when the sequence !t is extended by the step (i; j), for anyalgorithm, exactly one component of the vector ��(!t) changes, namely either�i(!t) or �j(!t) increases by one. Assume that i � j; then��G(!t � (i; j)) = ��G(!t) + �ei� ��A(ft(!t)) + �e�(i)� ��A�ft(!t) � (�(i); �(j))�;where the �rst inequality follows from the Lemma 6 and the second is dueto the fact that ��A(ft(!t)) + �e�(i) � ��A(ft(!t)) + �e�(j):2Corollary 8 For any �xed k and any tPr(maxi �Ai (t) > k) � Pr(maxi �Gi (t) > k):We are now ready to discuss the general case of the �nite process.Theorem 9 The maximum load achieved by the greedy algorithm on arandom (m;n; d)-problem, with d � 2 and m � n, is, with high probability,less than (1 + o(1)) ln lnn= lnd+O(m=n).Proof: We start by replaying the proof of Theorem 4, taking into accountthe fact that there are now m balls. So let Ei be the event that ��i(m) � �i,and de�ne pi = �di =nd. Following the proof of Theorem 4 we derive thatPr(��i+1 � k j Ei) � Pr(B(m; pi) � k)Pr(Ei) :Suppose that for some value x we set �x = n2=(2em) and show that Ex holdswith high probability, that isPr��x � n22em�= o(1): (11)Then �i+x = n2di �men �(di�1)=(d�1)�di � n2di ;13



and continuing as before, we obtain thatPr(� � x+ ln lnn= lnd+ 2) = o(1):It remains to show that x can be taken to be O(m=n) + o(ln lnn= lnd).First assume that m=n � w(n) where w(n) is an increasing function of n,but w(n) = o(ln lnn= lnd). Then we claim that we can take x = dem=ne.Consider a placement algorithm, denoted R, that always puts a ball inthe box corresponding to the �rst choice o�ered. This is entirely equivalentwith the case d = 1, the classical occupancy problem. The load withina box under this process is a binomial random variable B(m; 1=n), andtherefore (via (4)), the probability that the load within a box exceeds em=nis bounded by e�m=n. Now consider the height of the t'th ball, denotedhRt . The probability that the box into which the t'th ball is placed has loadgreater than em=n is less than e�m=n and therefore the expected number ofballs of height � em=n satis�esE(�R�em=n) � me�m=n:Hence by Markov's inequalityPr��R�em=n � n22em�� 2em2n2 e�m=n = o(1);since m=n!1.We claim that Theorem 7 impliesPr��G�k � r�� Pr��R�k � r�: (12)Indeed, suppose that there is an outcome !t for which greedy has exactlyi boxes with load greater than or equal to k. As in the proof of Theorem 7,renumber the boxes such that�G1 (!t) � �G2 (!t) � � � � � �Gn (!t):Let ft(!t) be the corresponding outcome for algorithm R and let � be apermutation of 1; : : : ; n such that�R�(1)(ft(!t)) � �R�(2)(ft(!t)) � � � � � �R�(n)(ft(!t)):Then �G�k(!t) = X1�j�i(�Gj (!t)� (k � 1))14



and �R�k(ft(!t)) � X1�j�i(�R�(j)(ft(!t))� (k � 1)):But Theorem 7 implies thatX1�j�i�Rj (f(!t)) � X1�j�i �Gj (!t);and by considering all outcomes we obtain equation (12).Therefore, Pr��G�em=n � n22em�� Pr��R�em=n � n22em�;and since Pr��G�em=n � n22em�� Pr��G�em=n � n22em�;we have that for x = dem=ne equation (11) is satis�ed.To remove the assumption m=n � w(n), we can simply imagine thatthe number of balls is increased to max(m;nw(n)). Then the correspondingvalue of x becomes O(max(m;nw(n))=n) = O(m=n) + o(ln lnn= lnd). 24 The In�nite ProcessIn this section we consider the in�nite process. Analogously to Theorem7 it is possible to show that the greedy algorithm minimizes the expectedmaximum load on any box. We analyze its performance below. The maintheorem of this section isTheorem 10 Assume that the in�nite process starts in an arbitrary state.Under greedy, with d � 2, there is a constant c such that for any �xedT � cn2 log logn,Pr(9j; �j(T ) � ln lnn= lnd+ O(1)) = o(1):Thus in the stationary distribution the maximum load is ln lnn= lnd+O(1)with high probability.Proof: For simplicity of presentation we state and prove the results onlyfor d = 2. The proof assumes that at time T � cn2 log logn the process is inan arbitrary state and therefore we can let T = cn2 log logn with no loss ofgenerality. 15



By the de�nition of the process, the number of balls of height at least icannot change by more than 1 in a time step, that is j��i(t+1)���i(t)j � 1.The random variable ��i(t) can be viewed as a random walk on the integersl, 0 � l � n. The proof is based on bounding the maximum values taken bythe variables ��i(t) by studying the underlying process.We de�ne an integer i� and a decreasing sequence �i, for 200 � i � i�+1as follows:�200 = n200 ;�i = 100�2i�1n ; for i > 200 and �i�1 � pn log2 n;�i� = 100 log2 n; i� = the smallest i for which�i�1 < pn log2 n;�i�+1 = 100:Clearly i� � ln lnn= ln 2 + O(1). For future reference, observe also that for200 < i � i� + 1 �i � 100�2i�1n (13)We also de�ne an increasing sequence of times: t200 = 0 and ti = ti�1+n2for i > 200. Thus ti�+1 = O(n2 log logn) = O(T ).Let f��i[t�; t+] � �g denote the event that ��i(t) � � for all t, suchthat t� < t � t+, and similarly, let f��i[t�; t+] > �g denote the event that��i(t) > � for all t, such that t� < t � t+. We de�ne the events Ci asfollows: C200 = f��200[t200; T ] � 2�200g � f��200[0; T ]� n=100g;Ci = f��i[ti; T ] � 2�ig; for i > 200:Note that C200 always holds, and for i > 200, the event C � i implies that��i[ti; T ] � 2�i.We shall prove inductively that for all i = 200; : : : ; i� + 1Pr(:Ci) � 2in2 : (14)This implies that the event f��i�+1[ti�+1; T ] � 200g occurs with probability1 � o(1), and therefore with high probability, for every j, �j(T ) � i� +201 = ln lnn= ln 2+O(1) which completes the proof of the main part of theTheorem. 16



Finally, we show that in the stationary distributionPr(8j; �j � log logn+ O(1)) = 1� o(1):Indeed, let S be the set of states such that 8j; �j(t) � log logn + O(1).Let s(t) be the state of the chain at time t. Then the previous observationimplies that Pr(s(t + T ) =2 S j s(t)) = o(1):Let � be the stationary distribution; thenXi=2S �i =Xj Pr(s(t+ T ) =2 S j s(t) = j) � �j =Xj �jo(1) = o(1);which completes the proof of the Theorem assuming equation (14). To proveit, we show that conditioned on Ci�1:a. With high probability ��i(t) becomes less than �i before time ti. (Thisis shown in Lemma 11.)b. If ��i(t) becomes less than �i at any time before T , then from thenon until T , with high probability, it does not become larger than 2�i.(This is shown in Lemma 12.)The two facts above imply that if Ci�1 holds, then with high probability��i[ti; T ] � 2�i, that is Ci holds as well.Base Case: The base case is trivial since Pr(:C200) = Pr(:f��200[0; T ]�n=100g) = 0.Induction: Suppose thatPr(:Ci�1) � 2(i� 1)n2 ; (15)where 200 < i � i� + 1.Let s(t) be the state at time t. It is easy to verify the following boundson the underlying transition probabilities. For any t,Pr(��i(t+ 1) > ��i(t) j s(t)) �  ��(i�1)(t)n !2 �  ��(i�1)(t)n !2 (16)andPr(��i(t+ 1) < ��i(t) j s(t)) � ��i(t)n 0@1�  ��(i�1)(t)n !21A � ��i(t)2n(17)17



>From equations (16) and (17) we obtain that the transition probabilitiessatisfyPr(��i(t+ 1) > ��i(t) j ��i�1(t) � 2�i�1)� �2�i�1n �2 def= q+i ;and Pr(��i(t+ 1) < ��i(t) j ��i(t) � �i) � �i2n def= q�i :Thus in view of (13) q+i � �i25n:We de�ne two new binary random variables for 0 < t � T as follows:Xt = 1 i� ��i(t) > ��i(t� 1) and ��i�1(t � 1) � 2�i�1;and Yt = 1 i� ��i(t) < ��i(t� 1) or ��i(t� 1) � �i:Clearly Pr(Xt = 1) � q+i and Pr(Yt = 1) � q�i (18)We also de�ne Fi to be the eventFi def= f9t� 2 [ti�1; ti] s.t. ��i(t�) � �ig;thus :Fi is the event :Fi = f��i[ti�1; ti] > �ig:Two lemmas are necessary in order to conclude that Pr(:Ci) � 2i=n2.Lemma 11 Under the inductive hypothesisPr(:Fi j Ci�1) � 1n2 :Proof: Notice that conditioned on Ci�1, the sumPt2[ti�1;ti]Xt is the num-ber of times ��i(t) increased in the interval [ti�1; ti]; similarly, if withinthis interval ��i did not become less than �i, then Pt2[ti�1;ti] Yt equals thenumber of times ��i(t) decreased in this interval. We conclude thatPr(:Fi j Ci�1) � Pr� Xt2[ti�1;ti]Yt � Xt2[ti�1;ti]Xt � n ��� Ci�1�� 1Pr(Ci�1)Pr� Xt2[ti�1;ti] Yt � Xt2[ti�1;ti]Xt � n�18



In view of equation (18) and Lemma 3, Cherno� type bounds imply thatfor every i � i� + 1Pr� Xt2[ti�1;ti]Xt > 2n2q+i � � Pr�B(n2; q+i ) � 2n2q+i �� e�
(n2q+i ) = o(1=nc);and Pr� Xt2[ti�1;ti]Yt < 12n2q�i � � Pr(B(n2; q�i ) � 12n2q�i )� e�
(n2q�i ) = o(1=nc);for any constant c. On the other hand, in view of (13),12n2q�i � 2n2q+i � 14n�i � 225n�i � n�i10 � n;and therefore we conclude thatPr(:Fi j Ci�1) � 1ncPr(Ci�1) ;for any constant c. Taking c = 3 and using the inductive hypothesis on Ci�1(equation (15)) completes the proof. 2Lemma 12 Under the inductive hypothesisPr(:Ci j Ci�1; Fi) � 1n2 :Proof: Since Pr(A j B ^ C) � Pr(A ^BjC) we get thatPr(:Ci j Ci�1; Fi)� Pr(:Ci ^ Fi j Ci�1)� Pr(9t1; t2 2 [ti�1; T ]s.t. ��i(t1) = �i; ��i(t2) = 2�i; ��i[t1; t2] � �i j Ci�1)� Xti�1�t1<t2�T Pr(��i(t1) = �i; ��i(t2) = 2�i; ��i[t1; t2] � �i j Ci�1)� Xti�1�t1<t2�T Pr( Xt2[t1;t2]Xt � Xt2[t1;t2]Yt � �i j Ci�1)� 1Pr(Ci�1) Xti�1�t1<t2�T Pr( Xt2[t1;t2]Xt � Xt2[t1;t2]Yt � �i):Fix t1 and t2 and let � = t2 � t1. We now consider 4 cases.19



A. � � n and i � i�.Pr� Xt2[t1;t2]Xt � �i� �  ��i!(q+)�i � �e��i � �i25n��i � n�100:B. � � n logn and i = i� + 1.Pr� Xt2[t1;t2]Xt � �i�+1� �  ��i�+1!(q+)�i�+1 �  e��i�+1 � 4�2i�n2 !�i�+1�  en logn100 � 4 � 1002 log2 nn2 !100 � n�100:C. � � n and i � i�.Using again large deviation bounds and the fact that �i� � 100 lognwe obtain thatPr� Xt2[t1;t2] Yt � 12q��� � e�q��=8 = e��i�=(16n) � n�6:1and thatPr� Xt2[t1;t2]Xt � 12q��� �  2eq+�q�� !q��=2 � �4e25��i�=(4n) � n�25:D. � � n logn and i = i� + 1.The same proof as case C using the fact that �i�+1� � 100 logn.Thus in all four cases,Pr� Xt2[t1;t2]Xt � Xt2[t1;t2]Yt � �i� � 1n6:1 ;therefore, under the induction hypothesis,1Pr(Ci�1) Xti�1�t1<t2�T Pr� Xt2[t1;t2]Xt � Xt2[t1;t2]Yt � �i� � 2T 2n6:1 � 1n2 :2 20



Returning to the proof of equation (14), by using the induction hypoth-esis, Lemmas 11 and 12, and the law of total probability, we can completethe induction as follows:Pr(:Ci) = Pr(:Ci j Ci�1) �Pr(Ci�1)+Pr(:Ci j :Ci�1) �Pr(:Ci�1) Now apply IH� Pr(:Ci j Ci�1) + 2(i� 1)=n2= Pr(:Ci j Ci�1; Fi) �Pr(Fi j Ci�1) Now apply Lemma 12+Pr(:Ci j Ci�1;:Fi) �Pr(:Fi j Ci�1) Now apply Lemma 11+ 2(i� 1)=n2� 1=n2 + 1=n2 + 2(i� 1)=n2 = 2i=n2:25 HashingWe de�ne a simple hashing algorithm, called 2-way chaining, by analogywith the popular direct chaining method. We use two random hash func-tions. For each key, the two hash functions de�ne two indices in a table.Each table location contains a pointer to a linked list. When a new keyarrives, we compare the current length of the two lists associated to thekey, and key is inserted at the end of the shortest list. (The direct chainingmethod corresponds to having only one associated random index.)For searching, the two hash values are computed, and two linked listsare searched in alternate order. (That is, after checking the i'th element ofthe �rst list, we check the i'th element of the second list, then element i+1of the �rst list, and so on.) When the shorter list is exhausted, we continuesearching the longer list until it is exhausted as well. (In fact, if no deletionsare allowed we can stop after checking only one more element in the longerlist. For the analysis below, this is immaterial.)Assume that n keys are sequentially inserted by this process to a table ofsize n. Theorem 1 analysis implies that with high probability the maximumaccess time, which is bounded by twice the length of the longest list, is2 lnn lnn= ln 2 +O(1), versus the �(logn= log logn) time when one randomhash function is used. More generally, if m keys are stored in the tablewith d hash functions, then the maximum access time under this scheme is2(1 + o(1)) ln lnn= lnd+�(m=n).Next we show that the average access time of 2-way chaining is no morethan twice the average access time of the standard direct chaining method.21



As customary, we discuss the average access time separately for successfulsearches and unsuccessful searches. The latter, denoted C0G, is boundedby twice the expected cost of checking a list chosen uniformly at random.Therefore C0G(m;n) � 2 + 2mn :For successful searches, the cost CG, is given byCG(m;n) � 2m X1�i�m hi = 2m X1�j�n �j + 12 !;where all the notations are as in Section 2. Since we know that �k eventuallydecreases doubly exponentially, we can bound CG via the inequalityCG(m;n) � 2m Xk>0 k��k :However we can achieve better bounds, using the majorization Theorem 7.We start from the following:Lemma 13 Let �v = (v1; v2; : : : ; vn) and �u = (u1; v2; : : : ; un) be two positiveinteger vectors. If �v � �u thenX1�i�n v2i � X1�i�n u2i :This lemma is a special case of a well-known theorem frommajorization (seee.g. [22]), but for completeness we present a proof.Proof: Let �x be a n-vector and let (�x; �u) denote the inner product of �x and�u. Consider the linear programMaximize (�x; �u) subject to �x � �v and �x � 0.It is easy to check that �x = �u is a feasible point and that the optimalsolution is �x = �v. Hence (�u; �u) � (�v; �u). Now consider the same programwith the objective function (�x; �v). Then again �x = �u is a feasible point andthe optimal solution is �x = �v. Hence (�u; �u) � (�u; �v) � (�v; �v). 2Consider now the standard direct chaining method. In our terminology itcorresponds to the random placement algorithmR and it therefore majorizesG. It is well known that the cost for successful search for direct chaining is[19, ex. 6.4.34]CR(m;n) = 1m X1�j�n �Rj + 12 ! = 1 + m� 12n :22



Applying the Lemma above we obtain that the cost of successful search in2-way chaining satis�es CG(m;n) � 2 + m� 1n :6 Competitive Online Load Balancing6.1 PreliminariesThe online load balancing problem is de�ned as follows. Let M be a set ofservers (or machines) that is supposed to run a set of tasks that arrive anddepart in time. Each task j has associated to it a weight, or load, w(j) � 0,an arrival time �(j), and a set M(j) � M of servers capable of running it.We distinguish among two variants of this problem: the case of permanenttasks, tasks that arrive but never depart, and the case of temporary tasks,that depart the system at a time unknown in advance.As soon as it arrives, each task must be assigned to exactly one of theservers capable of running it, and once assigned, it can not be transferred toa di�erent server. The assigned server starts to run the task immediately,and continues to run it until the task departs.When task j arrives, an assignment algorithm must select a server i 2M(j), and assign task j to it.The load on server i at time t, denoted LAi (t), is the sum of the weightsof all the tasks running on server i at time t under assignment algorithm A.Let � be a sequence of task arrivals and departures, and let j�j be thetime of the last arrival. Then the cost, CA(�), of an assignment algorithmA on the sequence �, is de�ned asCA(�) = max0�t�j�j;i2M LAi (t):An on-line assignment algorithm must assign an arriving task j at time�(j) to a server in M(j) knowing only w(j), M(j), the current state of theservers, and the past { the decision is made without any knowledge aboutfuture arrivals or departures. The optimal o�-line assignment algorithm,denoted opt, assigns arriving tasks knowing the entire sequence of taskarrivals and departures and does so in a way that minimizes its cost.The worst case behavior of an on-line algorithm A is characterized bythe competitive ratio de�ned as the supremum over all sequences � of theratio CA(�)=Copt(�). 23



To characterize the average behavior of A, let CA(P) (resp. Copt(P))be the expected cost of algorithmA (resp. opt) on sequences � generated bythe distribution P . The competitive ratio of an on-line algorithm A againstdistribution P is de�ned as the ratio CA(P)=Copt(P).Finally, the greedy algorithm is formally de�ned as follows:Algorithm greedy: Upon arrival of a task j assign it to the server inM(j) with the current minimum load (ties are broken arbitrarily).6.1.1 Permanent TasksFor permanent tasks, Azar, Naor and Rom [9] showed that the competitiveratio of the greedy algorithm is �(logn) and that no algorithmcan do better.To bring this problem in our framework, we present our results for thecase where for each task j the set of servers that can run it,M(j), consists ofd � 2 servers chosen uniformly at random (with replacement), the numberof requests j�j equals n, and all weights are equal. Let Pd be the associatedprobability distribution on request sequences.Lemma 14 With probability 1� O(1=n), Copt(Pd) = O(1).Proof: We show that with high probability there is an assignment withcost 10 for the case d = 2. A fortiori the result is true for d > 2.The problem can be reduced to showing that in a random n by n bipartitegraph (U; V; E) where each node in U , has two random edges to V , there isan assignment of value 10. Arbitrarily break U into 10 pieces of size n=10each. We show that each of these pieces contains a perfect matching. ByHall's theorem, the probability that there is no such assignment is boundedby the probability that there is a set of size k in one of the pieces of U whoseneighborhood has size less than k. Ipso facto, this probability is at most10 Xk�n=10 nk � 1! n=10k ! �k � 1n �2!k :Using standard approximations to the binomial coe�cients, this is at most10 Xk�n=10� enk � 1�k�1 � en10k�k  �k � 1n �2!k :24



Finally, rewriting and simplifying yields10n Xk�n=10 k � 1e  e2n2(k� 1)210k(k� 1)n2!k = 10n Xk�n=10 k � 1e  e210!k = O� 1n� :2(A more delicate analysis [15] shows that the maximum load achievedby the o�-line case is 2 with high probability, for d � 2 and m � 1:6n.)Lemma 15 With high probability, Cgreedy(Pd) = O(log logn= logd)Proof: Follows immediately from Theorem 4. 2Thus, we obtain the following theorem.Theorem 16 The competitive ratio of the greedy algorithm against thedistribution Pd is O(log logn= logd) and no algorithm can do better.Proof: Follows from Lemma 14, Lemma 15, and Corollary 8. 26.1.2 Temporary TasksFor temporary tasks, the results of Azar, Broder and Karlin [6], and Azar,Kalyanasundaram, Plotkin, Pruhs and Waarts [8], showed that there is analgorithm with competitive ratio �(pn) and that no algorithm can do bet-ter.It is di�cult to construct a natural distribution of task arrivals and de-partures. As an approximation, we consider the following stochastic processS: First, n tasks arrive; for each task, the set of servers that can run itconsists of d � 2 servers chosen uniformly at random (with replacement).Then the following repeats forever: a random task among those present de-parts, and a random task arrives, which again may be served by any one ofd random servers. Clearly, in such an in�nite sequence, eventually there willbe n tasks which can only be served by one server, and so for trivial reasonsthe competitive ratio for long enough sequences is 1. However we can statea competitiveness result in the following way:Theorem 17 Let LA[t] be the maximum load on any server at time t, fortasks arriving according to the stochastic process S, and assigned using al-gorithm A, that is, LA[t] = maxi2M LAi (t). Then for any �xed t > 0, withhigh probability, Lgreedy[t]Lopt[t] = O(log logn):Proof: Follows from Lemma 14, and Theorem 10. 225



7 Experimental resultsThe bound proven in Theorem 4 for the O(1) term in the formula for theupper bound on the maximum load is rather weak (� 8), so it might bethe case that for practical values of n, the constant term dominates theln lnn= lnd term. However experiments seem to indicate that this is notthe case, and in fact even for small values of n the maximum load achievedwith d = 2 is substantially smaller than the maximum load achieved withd = 1. For the values we considered, 256 � n � 16777216, increasing dbeyond 2 has only limited further e�ect. For each value of n and d we run100 experiments. The results are summarized in Figure 1.Acknowledgment. We wish to thank Martin Dyer, Alan Frieze, and GregNelson for several very useful discussions.
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