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Abstract

The essence of the simplest buy-at-bulk network
design problem is buying network capacity "whole-
sale” to guarantee connectivity from all network
nodes to a certain central network switch. Capac-
ity is sold with "volume discount”: the more ca-
pacity is bought, the cheaper is the price per unit
of bandwidth. We provide O(log?n) randomized
approrimation algorithm for the problem. This
solves the open problem in [15]. The only pre-
viously known solutions were restricted to special
cases (Fuclidean graphs) [15].

We solve additional natural variations of the
problem, such as multi-sink network design, as
well as selective network design. These problems
can be viewed as generalizations of the the Gen-
eralized Steiner Connectivity and Prize-collecting
salesman (K-MST) problems.

In the selective network design problem, some
subset of k wells must be connected to the (single)
refinery, so that the total cost is minimized.

1 Introduction
1.1 The basic problem

Consider an oil company that wishes to connect
a network of pipelines to carry oil from several
remote well to a major refinery [15]. The com-
pany may use several types of pipes of various
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diameters, each has a different cost per unit dis-
tance which reflect an ”economy of scale” (”vol-
ume discount”). For example diameter of 1 foot
may cost $500 per mile, a diameter of 3 feet may
cost $750 and a a diameter of 10 feet may cost
$1000 per mile. We consider general ”volume dis-
count” pricing function. (Formal definitions fol-
low in section 2.) The goal is to design (off-line)
a minimum cost network that would be sufficient
to transport the oil to the refinery, assuming fixed
oil supply at each well.

In case of linear pricing functions pipes would
always go along the shortest path between the
well and the refinery. More complex methods are
necessary to capture ”volume discount” pricing
(with economy of scale). An interesting special
case is the one of step function pricing, namely the
case in which the only available pipes have capac-
ity that exceeds the total demand, and thus single
pipe is sufficient between each pair of nodes.

We consider the following basic variations of
the problem:

o Single-sink network design: all the wells
must be connected to the refinery.

For the special case of step function pric-
ing, this reduces to Steiner Tree problem, i.e.,
minimizing the cost of a tree spanning given
set of points. We comment that this as well
as following variations of the problems are

NP-hard.

o Multi-sink network design: different wells
are connected to different refineries (multiple

wells may be connected to the same refinery).



For the special case of step function pricing,
this reduces the generalized network connec-
tivity problem, solved in [9, 1]. The essence
of this problem is minimizing the cost of a
sub-graph in which given pairs of points are
connected.

o Selective network design: some subset of k
wells must be connected to the (single) refin-
ery, so that the total cost is minimized.

For the special case of step function pricing,
this reduces to the k-MST, or prize collecting
salesman problem (e.g., [5, 8, 10, 14, 3, 7].)
The essence of this problem is selecting a sub-
set of k points whose Steiner tree has the
minimum cost.

Same problem comes up in others contexts,
e.g., capacity planning for an Internet provider,
that buys capacity (in bulk) from a phone com-
pany. The provider needs to buy enough capacity
to guarantee enough bandwidth connectivity be-
tween communicating network nodes. The more
capacity is bought, the less is the price per unit
of bandwidth. A possible constraint is that the
flow between a source and a sink is indivisible,
e.g., routed along a single path.

In the context of Internet provider, additional
complications may come up. One of them is that
the requests for connections between sinks and
sources come online, and the decisions on a route
between source and sink, as well as decision on
purchasing additional capacity, must be taken at
the time the request is generated, and without
knowledge of the future requests. This solution
provided by online algorithm is then compared
against optimal offline algorithm.

1.2 The results in this paper

The main contribution of the paper is pro-
viding polynomial-time algorithms that yield
O(log? n) approximations for all of the above
problems in general graphs and general pricing
functions. Our algorithms are randomized and
the approximation guarantees apply to the ex-
pectations over the coin flips of the algorithm.

There were no previous sub-linear approxima-
tions for any one of these problems. The problem

of efficient single-sink network design was stated
as the open problem in [15].

Our solutions for the single-sink and multi-sink
problems also work in the online setting, with
only constant additional performance degrada-
tion.

Our algorithms heavily rely on recent funda-
mental result of Bartal [6] concerning approxima-
tions of metric spaces.

1.3 Comparison with existing solutions

Salman, Cheriyan, Ravi and Subramanian [15]
formulated single-sink network design problem
and provided logarithmic (O(log D), where D is
the total demand) approximation for general pric-
ing functions for the special case of (Euclidean)
graphs. The case of general pricing for the multi-
sink and selective network design were not previ-
ously considered in the literature, to the best of
our knowledge.

Another interesting special case is that of off-
set linear pricing function, which is the sum of
a linear and a step function. This case, consid-
ered by Mansour and Peleg [13], captures the case
in which there is only one type of cable and in-
stalling an edge has a fixed cost (similar to our
model) as well as variable cost per unit flow. The
solution in this case must be able to trade-off the
weight of the tree with the distances. Mansour
and Peleg [13] provide O(logn) approximation al-
gorithm for the multi-sink network design, and
[15] provides constant approximation ratio, for
single-sink case.

2 Definitions and notations

We are given an undirected graph G = (V, E),
where |V| = n. Subsets of the nodes are speci-
fied as sources and sinks, each pair may have a
demand of dem, ,. The edges of G have lengths
l: E — R*. Without loss of generality we may
assume that for every pair of nodes u, v we can use
the shortest-path distance dist(u, v) as the length
of the edge between u and v, i.e., take the metric
completion of the given graph. All the traffic from
u to v should follow one single path P, , (i.e. it
is indivisible). The edges of the network must be
installed by purchasing zero or more copies from
the set of cables where each cable type i has a



specified capacity u; and a specified cost ¢; per
unit of length. We make no assumption on the
(non-negative) values u;, ¢; and the ratio ¢;/u; al-
though it is natural to assume that if u; < u;
than ¢; < ¢; (otherwise we get rid of type ¢) and
that ¢j/u; < ¢;/u; (which reflects the economy of
scale) but this assumption is not really necessary
for our algorithm.

We consider the multi-sink network design
problem where the goal is to design minimum cost
network that can simultaneously route all the de-
mands. Here a solution can be characterized by

e specifying for each pair (u,v) of source and
sink a path P, ,

e specifying for each edge of the network in-
duced by the paths the combinations of the
cables used, zero or more copies of each ca-
ble may be installed on each edge. Clearly
the total capacity of the cables installed on
an edge must be at least the sum of the de-
mands of the pairs that used this edge on
their path.

An important special case is the single-sink
network design problem (also called single-sink
edge installation problem) in which all the paths
ends at the specified sink. In that case we de-
note the supply of each source as dem,. Here the
paths of the solution are denoted by P,.

We also consider the more complex problem of
selective network design. In this case we consider,
for simplicity a clean problem where the sink re-
quires a total demand of k and each of (at least &
sources) can supply a demand of 1. Thus we also
need to chose which k sources to connect to the
sink in addition to selecting the routes and the
cables.

As claimed in [15] even for the single-sink net-
work design the optimal choice of the routing de-
pends on the choice of the cables, as they de-
termine the cost of the edges. Yet, the optimal
choice of cables on each edge depends on the flow
on each edge, which is determined by the routing
selection. Hence the optimal solution requires to
select the routes and the cables simultaneously.

3 The algorithms and their analysis

Our approximation algorithms decouple be-
tween the two ingredients of selecting the routes
and selecting the cables for each edge. Assume
that we already decides on the routes. Thus we
need to choose the cables for each edge separately
with total capacity that covers the demand that
flows through each edge. We call it the single-
edge covering problem. Let us define the func-
tion C(dem) as the minimum cost required to
cover a total demand of dem for a unit distance.
The problem of evaluation C'(dem) for some value
dem is an integer min-knapsack problem known
to be NP-hard (see [12]). It is well known that
the knapsack problem has a polynomial approxi-
mation scheme. Similarly, one can derive a poly-
nomial approximation scheme for the single-edge
cover problem. In fact since we are providing only
approximate solution it is easy to provide 2 ap-
proximation (linear time) algorithm for evalua-
tion C'(dem) for each parameter dem which would
be used for installing the cables once the routes
have been chosen.

Observation 3.1 min; ¢;[dem/u;] is a 2 ap-
prozimation for C(dem) and can be computed in
linear time.

Proof: Clearly this is a feasible solution since we
may use cable of type ¢ [dem/u;| times. If opti-
mal uses one cable we get the exact solution. If
optimal uses more than one cable its value is at
least min;jy, <gem cidem/u;. Our cost is at most
twice as much since [dem/u;] < dem/u; +1 <
2dem/u; where j is the index that the minimum
is achieved. Clearly, the value can be computed
in linear time. [

Observation 3.2 The function C(dem) is sub-
additive, t.e., C(x +y) < C(z) +C(y)

Proof: The union of the optimal set of cables that
cover a demand z with the optimal set of cables
that cover a demand y is a cover for a demand
z+y. [ |

In fact, our algorithm for choosing the routes is
so robust that it does not depend on the exact



function C(dem) but only on the fact that it is
sub-additive. In other words we provide one ap-
proximate solution for the routes that does not
depend on the types of the cables. Of course,
once we have chosen the routes we should install
the cables as described above by a simple linear
algorithm for each edge.

For choosing the routes we use the notion of
probabilistic metric approximations [11, 2, 6]. We
Let V

a set of n points and M a metric space over V

use the following notations following [6].

where the distance between u and v is denoted

by dar(u,v).

Definition 3.1 A metric space N over V, dom-
inates a metric space M over V if for every
w,veV, dN(u: ’U) > dM(u: ’U).

Definition 3.2 A metric space N over V, a-
approzimates a a metric space M over V, if it
dominates M and for every u,v € V, dy(u,v) <
adpr(u,v).

We are interested with the following notion

Definition 3.3 A set of metric spaces S over V,
a-probabilistically-approximates a metric space a
metric space M over V, if every metric space in
S dominates M and there exists a probability dis-
tribution over the metric spaces N € S such that
for every u,v € V, E(dn(u,v)) < adpr(u,v).

We use the following a simplified version of the
main theorem of [6]:

Theorem 3.1 Fvery weighted connected graph
G can be a-probabilistically-approzimated by a set
of trees where a = O(log?n) by polynomially
computable probability distribution.

We use the above metric approximations for
our main theorem:

Theorem 3.2 Consider a graph G and the set
of trees which a-probabilistically-approximate it.
Then there is a feasible solution to all network
design problems on the set of trees whose expected
cost (over the distribution on the trees) is at most
a times the optimal cost in G.

Proof: The optimal solution uses a path @, in
G to route the demand between u and v. Let f.
be the demand that flows through an edge e, i.e

fo= X

(u,'u) |e€Qu,u

dem, ,

Clearly the value of the optimal solution is

Y. Ue)C(Fe).

ecE(G)

Consider some edge e = (z, y) in the graph G. We
associate with this edge in each tree T' € S a path
T. between z and y of length dr(z,y) = l(e)ar
where E(ar) = O(c). The cost of designing a
path T, with a flow of f. on each edge ¢' € T,
satisfies

> 1NC(fe) = dr(z,y)C(f.) = l(e)erC(fe).

eleTe

If we design a network in T for all paths T, for
all e € E(G) each with demand f, then the flow
fli on each edge ¢’ € E(T) is

fé’ = Z fe

ecE(G)le'eTe

and its cost is (by the fact that the function C is
sub-additive)

> U
e'€E(T)
= Y UHor Y f)

e'cE(T) e€cE(G)le'eT.

< DU DY Cf)

e'cE(T) ecE(G)le'eTe

= > Y. UeHC(f)

e'€E(T)ecE(G)|e'eT.

= > DU

e€E(G)e'eT.

= Z l(e)aTC(fe)

ecE(G)

= ar Z l(e)C(fe)

ecE(G)

This implies that the expected cost over all trees
is at most o times the optimal cost. A path Q. ,



in G is associated with a (maybe non-simple) path
QT (u) in T which consists of concatenating the
paths in T associated with the edges of @, , and

fé’ = Z Je

ecE(G)le'eTe

— Z Z demy, ,
e€E(G)le'€Te (u,v)|e€Qu,v
= Z dem, ,

(u,'u) |eI€Teye€Qu,u

- ¥

(uyv) |eI€QT,(u,u)

dem, ,

which implies that the network that we design for
each T is feasible solution for the demand. [

We define the following algorithm for the multi-
sink (and thus single-sink) network design prob-
lem. Choose at random tree T € S from the
set which o-probabilistically-approximate G ac-
cording to the probability distribution. Then the
route P,, is the route on the tree. Once the
routed have been selected we choose the cables
on each edge as described in the single-edge cover
problem.

Theorem 3.3 The randomized algorithm above
a-approximates the multi-sink network design
(and thus for the single-sink network design).

Proof: Since our algorithm is optimal for each
tree than by using theorem 3.2 the cost is as re-
quired. [ |

Theorem 3.4 There is a randomized algorithm
which a-approzrimates the selective network de-
sign problem.

Proof: Similar to the previous theorem, it is
enough to design an algorithm for a tree. We
choose the sink s to be the root of the tree. We
first describe the solution for binary trees. Then,
we easily show how to transform every tree to bi-
nary tree. At each node u we compute a table A,
of the minimum cost of connecting to u exactly
sources 0 < ¢ < k in the subtree of u. The desired
value is A,(k) (it will be easy to see that not only

the value of the optimal solution can be found but
the solution itself). Clearly A,(0) = 0 for all .
The computation is done from the leaves to the
root. We start with the leaves. If it is a source
than A4,(1) =1 and A,(¢) = oo for ¢ > 1. If it is
not a source A,(¢) = oo for ¢ > 1. Assume that
we computed the table for the two children z and
y of a node u than we can compute A, as follows:
If u is not a source node than its value of entry 2
is

Ay()) = min Ay(5) + (v, 2)C(5)

0<5<i

which is considering all choices of j source in the
subtree of # and 7 — j in the subtree of y plus
the cost of the edges from  and y to u. If uis a
source node than its value of entry ¢ is

A (G) = min  A,(7) + {(u, z)C(j)

0<i<i-1
+ A(i—-7-1)+lu,y)CE-7—-1)

since we would always use u as a source. The
correctness of the table follows from its definition.
To complete the proof we need to deal with non-
binary trees. If a node has only one child than add
a non-source leaf as a second child. If a node has
d > 2 children then we replace it with a binary
tree with d — 1 internal binary nodes where the
distances in that tree are zeros, the root is u the
d leaves are the children of u. All internal nodes
(except maybe u) are not sources. Clearly, this
transformation preserves the distances in the tree
and at most double the size of the tree. [

4 Online algorithms for single-sink and
multi-sink problems

Surprisingly, the algorithms for the multi-sink
(and thus single-sink network design) are almost
on-line algorithms.

Theorem 4.1 There in an on-line randomized
algorithm for the multi-sink network design (and
thus for the single-sink network design) whose
competitive ratio is O(c).



Proof: Since our off-line algorithm chooses a tree
and then route all path on the tree than choosing
the routes is done on-line. The only thing that
we have to show that we can chose which cable to
install in an on-line fashion. In fact we show that
for each edge separately, we have an on-line algo-
rithm which is constant competitive for installing
the cables on one edge, i.e., for the bulk covering
problem. Therefore the overall algorithm remains
O(a) competitive.

The algorithm for bulk covering problem is
simple and similar to the algorithm of [4]. When
a new cable is needed to cover the demand the
algorithm buys a cable with the minimum ¢;/u;
among the types ¢ such that ¢; is at most twice
the total cost of the cables spent on that edge.
The first cable of an edge is the cheapest cable.
It can be shown that this is a constant competi-
tive strategy. [ |
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