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diameters, each has a di�erent cost per unit dis-tance which reect an "economy of scale" ("vol-ume discount"). For example diameter of 1 footmay cost $500 per mile, a diameter of 3 feet maycost $750 and a a diameter of 10 feet may cost$1000 per mile. We consider general "volume dis-count" pricing function. (Formal de�nitions fol-low in section 2.) The goal is to design (o�-line)a minimum cost network that would be su�cientto transport the oil to the re�nery, assuming �xedoil supply at each well.In case of linear pricing functions pipes wouldalways go along the shortest path between thewell and the re�nery. More complex methods arenecessary to capture "volume discount" pricing(with economy of scale). An interesting specialcase is the one of step function pricing, namely thecase in which the only available pipes have capac-ity that exceeds the total demand, and thus singlepipe is su�cient between each pair of nodes.We consider the following basic variations ofthe problem:� Single-sink network design: all the wellsmust be connected to the re�nery.For the special case of step function pric-ing, this reduces to Steiner Tree problem, i.e.,minimizing the cost of a tree spanning givenset of points. We comment that this as wellas following variations of the problems areNP-hard.� Multi-sink network design: di�erent wellsare connected to di�erent re�neries (multiplewells may be connected to the same re�nery).



For the special case of step function pricing,this reduces the generalized network connec-tivity problem, solved in [9, 1]. The essenceof this problem is minimizing the cost of asub-graph in which given pairs of points areconnected.� Selective network design: some subset of kwells must be connected to the (single) re�n-ery, so that the total cost is minimized.For the special case of step function pricing,this reduces to the k-MST, or prize collectingsalesman problem (e.g., [5, 8, 10, 14, 3, 7].)The essence of this problem is selecting a sub-set of k points whose Steiner tree has theminimum cost.Same problem comes up in others contexts,e.g., capacity planning for an Internet provider,that buys capacity (in bulk) from a phone com-pany. The provider needs to buy enough capacityto guarantee enough bandwidth connectivity be-tween communicating network nodes. The morecapacity is bought, the less is the price per unitof bandwidth. A possible constraint is that theow between a source and a sink is indivisible,e.g., routed along a single path.In the context of Internet provider, additionalcomplications may come up. One of them is thatthe requests for connections between sinks andsources come online, and the decisions on a routebetween source and sink, as well as decision onpurchasing additional capacity, must be taken atthe time the request is generated, and withoutknowledge of the future requests. This solutionprovided by online algorithm is then comparedagainst optimal o�ine algorithm.1.2 The results in this paperThe main contribution of the paper is pro-viding polynomial-time algorithms that yieldO(log2 n) approximations for all of the aboveproblems in general graphs and general pricingfunctions. Our algorithms are randomized andthe approximation guarantees apply to the ex-pectations over the coin ips of the algorithm.There were no previous sub-linear approxima-tions for any one of these problems. The problem

of e�cient single-sink network design was statedas the open problem in [15].Our solutions for the single-sink and multi-sinkproblems also work in the online setting, withonly constant additional performance degrada-tion.Our algorithms heavily rely on recent funda-mental result of Bartal [6] concerning approxima-tions of metric spaces.1.3 Comparison with existing solutionsSalman, Cheriyan, Ravi and Subramanian [15]formulated single-sink network design problemand provided logarithmic (O(logD), where D isthe total demand) approximation for general pric-ing functions for the special case of (Euclidean)graphs. The case of general pricing for the multi-sink and selective network design were not previ-ously considered in the literature, to the best ofour knowledge.Another interesting special case is that of o�-set linear pricing function, which is the sum ofa linear and a step function. This case, consid-ered by Mansour and Peleg [13], captures the casein which there is only one type of cable and in-stalling an edge has a �xed cost (similar to ourmodel) as well as variable cost per unit ow. Thesolution in this case must be able to trade-o� theweight of the tree with the distances. Mansourand Peleg [13] provide O(logn) approximation al-gorithm for the multi-sink network design, and[15] provides constant approximation ratio, forsingle-sink case.2 De�nitions and notationsWe are given an undirected graph G = (V;E),where jV j = n. Subsets of the nodes are speci-�ed as sources and sinks, each pair may have ademand of demu;v . The edges of G have lengthsl : E ! R+. Without loss of generality we mayassume that for every pair of nodes u; v we can usethe shortest-path distance dist(u; v) as the lengthof the edge between u and v, i.e., take the metriccompletion of the given graph. All the tra�c fromu to v should follow one single path Pu;v (i.e. itis indivisible). The edges of the network must beinstalled by purchasing zero or more copies fromthe set of cables where each cable type i has a



speci�ed capacity ui and a speci�ed cost ci perunit of length. We make no assumption on the(non-negative) values ui; ci and the ratio ci=ui al-though it is natural to assume that if ui < ujthan ci < cj (otherwise we get rid of type i) andthat cj=uj < ci=ui (which reects the economy ofscale) but this assumption is not really necessaryfor our algorithm.We consider the multi-sink network designproblem where the goal is to design minimumcostnetwork that can simultaneously route all the de-mands. Here a solution can be characterized by� specifying for each pair (u; v) of source andsink a path Pu;v� specifying for each edge of the network in-duced by the paths the combinations of thecables used, zero or more copies of each ca-ble may be installed on each edge. Clearlythe total capacity of the cables installed onan edge must be at least the sum of the de-mands of the pairs that used this edge ontheir path.An important special case is the single-sinknetwork design problem (also called single-sinkedge installation problem) in which all the pathsends at the speci�ed sink. In that case we de-note the supply of each source as demv. Here thepaths of the solution are denoted by Pu.We also consider the more complex problem ofselective network design. In this case we consider,for simplicity a clean problem where the sink re-quires a total demand of k and each of (at least ksources) can supply a demand of 1. Thus we alsoneed to chose which k sources to connect to thesink in addition to selecting the routes and thecables.As claimed in [15] even for the single-sink net-work design the optimal choice of the routing de-pends on the choice of the cables, as they de-termine the cost of the edges. Yet, the optimalchoice of cables on each edge depends on the owon each edge, which is determined by the routingselection. Hence the optimal solution requires toselect the routes and the cables simultaneously.

3 The algorithms and their analysisOur approximation algorithms decouple be-tween the two ingredients of selecting the routesand selecting the cables for each edge. Assumethat we already decides on the routes. Thus weneed to choose the cables for each edge separatelywith total capacity that covers the demand thatows through each edge. We call it the single-edge covering problem. Let us de�ne the func-tion C(dem) as the minimum cost required tocover a total demand of dem for a unit distance.The problem of evaluation C(dem) for some valuedem is an integer min-knapsack problem knownto be NP-hard (see [12]). It is well known thatthe knapsack problem has a polynomial approxi-mation scheme. Similarly, one can derive a poly-nomial approximation scheme for the single-edgecover problem. In fact since we are providing onlyapproximate solution it is easy to provide 2 ap-proximation (linear time) algorithm for evalua-tion C(dem) for each parameter dem which wouldbe used for installing the cables once the routeshave been chosen.Observation 3.1 mini ciddem=uie is a 2 ap-proximation for C(dem) and can be computed inlinear time.Proof: Clearly this is a feasible solution since wemay use cable of type i ddem=uie times. If opti-mal uses one cable we get the exact solution. Ifoptimal uses more than one cable its value is atleast minijui<dem cidem=ui. Our cost is at mosttwice as much since ddem=uje < dem=uj + 1 �2dem=uj where j is the index that the minimumis achieved. Clearly, the value can be computedin linear time.Observation 3.2 The function C(dem) is sub-additive, i.e., C(x+ y) � C(x) + C(y)Proof: The union of the optimal set of cables thatcover a demand x with the optimal set of cablesthat cover a demand y is a cover for a demandx+ y.In fact, our algorithm for choosing the routes isso robust that it does not depend on the exact



function C(dem) but only on the fact that it issub-additive. In other words we provide one ap-proximate solution for the routes that does notdepend on the types of the cables. Of course,once we have chosen the routes we should installthe cables as described above by a simple linearalgorithm for each edge.For choosing the routes we use the notion ofprobabilistic metric approximations [11, 2, 6]. Weuse the following notations following [6]. Let Va set of n points and M a metric space over Vwhere the distance between u and v is denotedby dM(u; v).De�nition 3.1 A metric space N over V , dom-inates a metric space M over V if for everyu; v 2 V , dN (u; v)� dM (u; v).De�nition 3.2 A metric space N over V , �-approximates a a metric space M over V , if itdominates M and for every u; v 2 V , dN(u; v) ��dM(u; v).We are interested with the following notionDe�nition 3.3 A set of metric spaces S over V ,�-probabilistically-approximates a metric space ametric space M over V , if every metric space inS dominates M and there exists a probability dis-tribution over the metric spaces N 2 S such thatfor every u; v 2 V , E(dN(u; v)) � �dM(u; v).We use the following a simpli�ed version of themain theorem of [6]:Theorem 3.1 Every weighted connected graphG can be �-probabilistically-approximated by a setof trees where � = O(log2 n) by polynomiallycomputable probability distribution.We use the above metric approximations forour main theorem:Theorem 3.2 Consider a graph G and the setof trees which �-probabilistically-approximate it.Then there is a feasible solution to all networkdesign problems on the set of trees whose expectedcost (over the distribution on the trees) is at most� times the optimal cost in G.

Proof: The optimal solution uses a path Qu;v inG to route the demand between u and v. Let febe the demand that ows through an edge e, i.efe = X(u;v)je2Qu;v demu;vClearly the value of the optimal solution isXe2E(G) l(e)C(fe):Consider some edge e = (x; y) in the graph G. Weassociate with this edge in each tree T 2 S a pathTe between x and y of length dT (x; y) = l(e)�Twhere E(�T ) = O(�). The cost of designing apath Te with a ow of fe on each edge e0 2 Tesatis�esXe02Te l(e0)C(fe) = dT (x; y)C(fe) = l(e)�TC(fe):If we design a network in T for all paths Te forall e 2 E(G) each with demand fe then the owf 0e0 on each edge e0 2 E(T ) isf 0e0 = Xe2E(G)je02Te feand its cost is (by the fact that the function C issub-additive)Xe02E(T ) l(e0) C(f 0e0)= Xe02E(T ) l(e0)C( Xe2E(G)je02Te fe)� Xe02E(T ) l(e0) Xe2E(G)je02TeC(fe)= Xe02E(T ) Xe2E(G)je02Te l(e0)C(fe)= Xe2E(G) Xe02Te l(e0)C(fe)= Xe2E(G) l(e)�TC(fe)= �T Xe2E(G) l(e)C(fe)This implies that the expected cost over all treesis at most � times the optimal cost. A path Qu;v



inG is associated with a (maybe non-simple) pathQT;(u;v) in T which consists of concatenating thepaths in T associated with the edges of Qu;v andf 0e0 = Xe2E(G)je02Te fe= Xe2E(G)je02Te X(u;v)je2Qu;v demu;v= X(u;v)je02Te;e2Qu;v demu;v= X(u;v)je02QT;(u;v) demu;vwhich implies that the network that we design foreach T is feasible solution for the demand.We de�ne the following algorithm for the multi-sink (and thus single-sink) network design prob-lem. Choose at random tree T 2 S from theset which �-probabilistically-approximate G ac-cording to the probability distribution. Then theroute Pu;v is the route on the tree. Once therouted have been selected we choose the cableson each edge as described in the single-edge coverproblem.Theorem 3.3 The randomized algorithm above�-approximates the multi-sink network design(and thus for the single-sink network design).Proof: Since our algorithm is optimal for eachtree than by using theorem 3.2 the cost is as re-quired.Theorem 3.4 There is a randomized algorithmwhich �-approximates the selective network de-sign problem.Proof: Similar to the previous theorem, it isenough to design an algorithm for a tree. Wechoose the sink s to be the root of the tree. We�rst describe the solution for binary trees. Then,we easily show how to transform every tree to bi-nary tree. At each node u we compute a table Auof the minimum cost of connecting to u exactly isources 0 � i � k in the subtree of u. The desiredvalue is As(k) (it will be easy to see that not only

the value of the optimal solution can be found butthe solution itself). Clearly Au(0) = 0 for all u.The computation is done from the leaves to theroot. We start with the leaves. If it is a sourcethan Au(1) = 1 and Au(i) = 1 for i > 1. If it isnot a source Au(i) = 1 for i � 1. Assume thatwe computed the table for the two children x andy of a node u than we can compute Au as follows:If u is not a source node than its value of entry iis Au(i) = min0�j�iAu(j) + l(u; x)C(j)+ Au(i� j) + l(u; y)C(i� j)which is considering all choices of j source in thesubtree of x and i � j in the subtree of y plusthe cost of the edges from x and y to u. If u is asource node than its value of entry i isAu(i) = min0�j�i�1Au(j) + l(u; x)C(j)+ Au(i� j � 1) + l(u; y)C(i� j � 1)since we would always use u as a source. Thecorrectness of the table follows from its de�nition.To complete the proof we need to deal with non-binary trees. If a node has only one child than adda non-source leaf as a second child. If a node hasd > 2 children then we replace it with a binarytree with d � 1 internal binary nodes where thedistances in that tree are zeros, the root is u thed leaves are the children of u. All internal nodes(except maybe u) are not sources. Clearly, thistransformation preserves the distances in the treeand at most double the size of the tree.4 Online algorithms for single-sink andmulti-sink problemsSurprisingly, the algorithms for the multi-sink(and thus single-sink network design) are almoston-line algorithms.Theorem 4.1 There in an on-line randomizedalgorithm for the multi-sink network design (andthus for the single-sink network design) whosecompetitive ratio is O(�).



Proof: Since our o�-line algorithm chooses a treeand then route all path on the tree than choosingthe routes is done on-line. The only thing thatwe have to show that we can chose which cable toinstall in an on-line fashion. In fact we show thatfor each edge separately, we have an on-line algo-rithm which is constant competitive for installingthe cables on one edge, i.e., for the bulk coveringproblem. Therefore the overall algorithm remainsO(�) competitive.The algorithm for bulk covering problem issimple and similar to the algorithm of [4]. Whena new cable is needed to cover the demand thealgorithm buys a cable with the minimum ci=uiamong the types i such that ci is at most twicethe total cost of the cables spent on that edge.The �rst cable of an edge is the cheapest cable.It can be shown that this is a constant competi-tive strategy.References[1] A. Agrawal, P. Klein, and R. Ravi. Whentrees collide: An approximation algorithmfor the generalized Steiner problem in net-works. In Proceedings of the 23rd ACM Sym-posium on Theory of Computing, pages 134{144, 1991.[2] Noga Alon, Richard M. Karp, David Peleg,and Douglas West. A graph-theoretic gameand its applications to the k-server problem.SIAM J. on Computing, 24:78{100, 1995.[3] B. Awerbuch, Y. Azar, A. Blum, and S. Vem-pala. Improved approximation guarantees forminimum-weight k-trees and prize-collectingsalesmen. In Proc. 27th ACM Symp. on The-ory of Computing, pages 277{283, 1995.[4] Y. Azar, Y. Bartal, E. Feuerstein, A. Fiat,S. Leonardi, and A. Ros�en. On capital invest-ment. In Proceedings of ICALP 96, 1996.[5] E. Balas. The prize collecting traveling sales-man problem. Networks, 19:621{636, 1989.[6] Y. Bartal. Probabilistic approximations ofmetric spaces and its algorithmic applica-
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