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Abstract

This paper presents a generic scheme for a central, yet
untackled issue in overlay dynamic networks: maintaining
stability over long life and against malicious adversaries.
The generic scheme maintains desirable properties of the
underlying structure including low diameter, and efficient
routing mechanism, as well as balanced node dispersal.
These desired properties are maintained in a decentralized
manner without resorting to global updates or periodic sta-
bilization protocols even against an adaptive adversary that
controls the arrival and departure of nodes.

1 Introduction

Overlay networks are employed in many settings to pro-
vide logical communication infrastructure over an existing
communication network. For example, Amir et al. use in
[1] an overlay network for wide area group communica-
tion; many ad hoc systems use overlay routing for regulat-
ing communication (see [17] for a good exposition); Klein-
berg explores in [8] routing phenomena in natural worlds
using random long-range overlay edges; and recently, much
excitement revolves around peer-to-peer schemes that uti-
lize an overlay routing network to discover and search re-
sources in highly dynamic environments, e.g., [5, 9, 11, 13,
14, 16, 18]. The exploration of overlay networks deviates�Research supported in part by the Israel Science Foundation(195/02).

from standard research in routing networks in its attention
to scale, dynamism of the network structure and the lack of
centralized control.

One of the main motivations stimulating this work is re-
cent interest in using overlay networks for lookup in peer-
to-peer (P2P) settings. The routing network is used for stor-
ing and searching a distributed hash table. A distributed
hash service is a fundamental tool for supporting large peer-
to-peer applications, that may support efficient storage and
retrieval of shared information for cooperating distributed
applications. Examples of contemporary stellar services
that may benefit from it are file sharing systems such as
Freenet [4], and music sharing systems, e.g., Gnutella [6].

Work todate on P2P overlay networks (e.g., [5, 9, 11,
13, 12, 14, 16, 18]) employs randomization to achieve uni-
form dispersal of hash values among peers and for building
the routing topology. There are several problems that result
from the reliance on randomization: First, a random dis-
tribution of hash values creates with high probability load
imbalance among peers of up to a logarithmic factor (see
e.g., [7, 16, 9]). Second, over a long period of time, the de-
parture and addition of peers may impair the randomization
of initial selections, and result in poor balance in such sys-
tems. In particular, node departures might be correlated due
to failures or due to the banning of a P2P service from a par-
ticular organization. Lastly, uniformity by randomization is
sensitive to adversarial intervention through peer removal
and/or joins.

Our aim in this work is to enhance the technology for
overlay networks in several important ways. First, our
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overlay network maintains its desired properties for effi-
cient routing even againstadversarial removal and addi-
tions of nodes. Second, it maintains load balance among
peers. Both of these desirable goals are achieved with no
global coordination, using localized operations with reason-
able costs. Third, our techniques are of interest in them-
selves. They provide an insight that links the issues of load
balance and resilience in overlay networks with tree bal-
ancing. Lastly, our techniques are generic, and are applica-
ble to most known network topologies, including the hyper-
cube, the De Brujin bitonic network, the Butterfly network,
and others. We provide a characterization of the families of
graphs that can make use of our approach.

There are thus two concrete angles in which our work
compares favourably with previous works: The load bal-
ance and fault tolerance. With respect to load balancing,
we first note that any method that preserves initial peer dis-
tribution choices cannot be resilient to adversarial removal
and addition of nodes. The only previous work that we are
aware of that allows peer re-positioning is CAN [13]. In
CAN, a background stabilization process is employed in or-
der to recover balance, introducing a constant overhead. In
contrast, our method does maintain load balance against ad-
versarial settings, but incurs only local cost per join/leave
operation, and maintains the desired balance properties im-
mediately.

The second facet in which our work enhances the tech-
nology is in its resilience to adversarial scenarios. Our over-
lay networks can withstand node removals and additions
even when done by a malicious adaptive adversary. Most
previous works, with the exception of [15, 5], do not attempt
to address a malicious adversary. Consequently, their per-
formance may be signficantly degraded, e.g., as a result of
removal of servers concentrated in one part of the network.
Additionally, random failures and departures are handled,
e.g., in [13, 16], via global overhaul background mecha-
nisms whereas our method has no global operations. The
censorship resistant network of [15, 5] is designed to cope
with malicious removal of up to half of the network nodes.
In contrast to our scheme, it is designed with a rough a-
priori knowledge of the numberN of participants, and with
the assumption that the actual number of peers is within a
known linear envelope ofN . Additionally, randomization
is relied upon in node joining.

Our approach to generic overlay emulation is as follows.
We consider a graph topology to be a family of graphsG = fG1; G2; :::g for a monotonically increasing system
sizes. We observe that most families of graphs may be em-
ulated by viewing the dynamic overlay construction pro-
cess as a virtual tree process, in which new nodes join at
the leaves. Each memberGi of the graphs family naturally
maps to layeri of the tree. We provide a scheme for keeping
a dynamic graph in which nodes on different levels of the

tree co-exist simultaneously.
More specifically, we make use of a view suggested orig-

inally in [13] to represent the overlay construction process
as adynamic tree. The process adds and removes nodes
to a tree, such that inner vertices represent nodes that no
longer exist (they were split), and the leaves represent cur-
rent nodes. In order to maintain the dynamic tree, when a
node joins the network, it chooses some location to join and
“splits” it into leaves. To the contrary, when a node leaves
the network, it finds a full set of siblings and “merges” them
into a single parent. The branching factor of the tree is set
so that each tree layer corresponds to one memberGi. If
the tree is balanced, we can easily overlay the leaves of the
tree withGi and be done. Generally, the tree will not be
balanced. In fact, at the very least if the number of nodes
does not match any tree layer, then the highest tree level is
not full. Hence, we need to build an overlay network that,
though inspired by the simple-level overlay approach, con-
nects leaves on different levels.

In order to maintain an overlay graph over an unbalanced
tree, we first need to require thatGi’s exhibit certain re-
cursive structure:Gi+1 are mapped ontoGi via a parent
function, such that the neighboring relation inGi+1 induced
neighborhoods on the parents inGi. We call such families
of graphschild-neighbor commutative(precise definition is
given below). We further connect the edges of every leaf at
level i to either the parents or the children of its would-be
end-points at leveli, whichever exists.

Using this construction, we prove that the routing prop-
erties of the overlay network are related directly to thegap
in levels in the resulting dynamic tree. It is worth noting that
one could keep the tree balanced (inevitably, up to a high-
est, unfull level) as follows: All entries would occur at the
‘step’ position at the highest level. However, this approach
requires serializing all entries and creates an unacceptable
contention point for very large systems.

This leads us to construct several strategies for balanc-
ing the dynamic tree. The first is a localized, deterministic
balancing scheme, that guarantees even against a malicious
scheduler that the level-gap of the tree remains bounded by
the diameter of the smallest graph that could fit the exist-
ing nodes. We further show that the diameter is bounded by
that of the highest tree level, and hence, by the gap bound,
it is also bounded. The second is a a randomized balancing
strategy. The randomized balancing strategy makes use of
balanced allocation techniques of Azar et al. [2] and exten-
sion [10] to guarantee probabilistically that the gap in lev-
els is constant. The diameter is consequently appropriately
bounded. In order to make use of balanced allocation, we
need to extend known results to analyze theemptiest, rather
than thefullest, bin in a balanced allocation process.

Overlay networks are used for reliable and efficient mes-
sage dissemination as well as for routing and searching. For
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the latter, we finally show a generic routing strategy that
makes use of the underlying graph-family routing strategy,
and finds routes that are within our proven diameter bound.

The rest of this paper is organized as follows. Prelimi-
naries and notation are exhibited in Section 2. The dynamic
graph process is defined in Section 3, and is exemplified
with several families of graphs, including the hypercube and
the de Bruijn networks. Balancing methods are presented in
Section 4. The properties of balanced dynamic graphs are
proven in Section 5. Finally, routing is discussed in Section
6.

2 Preliminaries and Notation

Consider a family of directed graphsG =fG1; G2; G3; : : :g, whereGi =< Vi; Ei >. Our in-
terest is in families that have a recursive structure, and
hence, we first require that all the nodes of the graphGi
can be mapped to nodes of the graphGi�1 using aparent
function pi : Vi ! Vi�1. DenoteP = fp2; p3; : : :g the
set of parent function forG. Since allpi’s have disjoint
input domains (likewise, output domains), there should be
no confusion when omitting the index of a parent function,
and hence we simply usep().

Second, we require that for everyi, every nodeu 2 Gi�1
has at least two nodesv; w 2 Gi such thatp(v) = p(w) =u. Denote the inverse of the parent function, thechild func-
tion as
i : Vi ! 2Vi+1 , whereu 2 
i(v) , pi+1(u) = v.
We have that8u 2 Vi : j
i(u)j � 2. Here again, we omit
the index of a child function and simply use
().

For a set of nodesX � Vi definep(X) = Sx2X p(x),
and
(X) = Sx2X 
(x). Define thesiblingsof u 2 Vi ass(u) = 
(pi(u)). For a graphG =< V;E > and a setX � V define�G(X) = fyj9x 2 X ^ (x; y) 2 Eg, whenG is obvious from the context, we omit it.

We will focus on a particular group of graphs and parent
functions having the following recursive nature:

DEFINITION 2.1 (The child-neighbor commutative property.)
A family of graphs and child/parent functions(G;P) is said
to have the child-neighbor commutative property if for alli
and for allu 2 Vi: �Gi+1(
(u)) = 
(�Gi(fug)).

Let us consider some example families of graphs to clar-
ify the definitions. Note that in the following examples the
edges aredirected.

Example 1 (The Hypercube.)The hypercubeHCi =<Vi; Ei > is a graphVi = f0; 1gi with 2i nodes, namely
all the binary strings of lengthi. Nodeha1; : : : ; aii has an
edge to nodehb1; : : : ; bii if and only if there exists1 � j � i
such thataj 6= bj and for allk 6= j: ak = bk. Consider the
parent functionpi(ha1; : : : ; ai�1; aii) = ha1; : : : ; ai�1i.

Lemma 2.1 fHCig and fpig have the child-neighbor
commutative property.

The next example we consider is the de Bruijn network [3].

Example 2 (The de Bruijn graph.) The de BruijnDBi =< Vi; Ei > is a graph with2i nodes,Vi = f0; 1gi.
Node ha1; : : : ; aii has an edge to nodehb1; : : : ; bii if
and only if for all 1 � j � i � 1: aj+1 = bj . Thus
every node ha1; : : : ; aii has two outgoing edges to
nodes: ha2; : : : ; ai; 0i and ha2; : : : ; ai; 1i (shuffle, then
choose the last bit). Again, consider the parent functionpi(ha1; : : : ; ai�1; aii) = ha1; : : : ; ai�1i.
Lemma 2.2 fDBig and fpig have the child-neighbor
commutative property.

For every nodeu of anyG we define itslevelas the indexi of the graphGi it belongs to, formallỳ (u) = i , u 2Vi. We say thatu in an ancestorof v if `(u) < `(v) andp`(v)�`(u)(v) = u (wherepk(u) = p(pk�1(u))). We also
say thatu is adescendantof v if v is an ancestor ofu. The
diameter of a graph G is denoteddiam(G).
3 The Dynamic Graph

In this section, we introduce an algorithm for maintain-
ing a dynamic overlay network that derives its characteris-
tics from a family of static graphsG. Our goal is to make
use of a family of graphs as above in order to maintain a
dynamic graph that nodes can join and leave. Intuitively,
this works by having each node join some location atGi
by splitting it into a set of children atGi+1, and vice versa
for leaving. However, this means that at any moment in
time, different nodes may be in differentGi’s. We therefore
specify how to connect nodes from differentGi’s in our dy-
namic overlay network. Unless mentioned otherwise, the
nodes and edges refer to the dynamic graph.

Given a family of graphsfGig and parent functionsfpig
with the child-neighbor commutative property as defined
above, we now define the dynamic as follows:

DEFINITION 3.1 (Dynamic graph.)GraphD =< V;E >
is a dynamic graphfor a child-neighbor commutative pair(G;P) if it has the following properties:

1. V � [1i=1Vi.
2. If v 2 V then no ancestor ofv exists inV .

3. For all u 2 V and for all v such that(u; v) 2 E`(u)
then either:

(a) v 2 V andu has an edge tov.
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(b) v =2 V but someancestor̂v of v exists inV . In
this caseu has an edge tôv.

(c) v =2 V but v has some descendants inV . In this
caseu has an edge to all ofv’s descendants that
are nodes inV .

The nodes of the dynamic overlay graph can be thought
of as the leaves of a tree. The inner vertexes represent nodes
that no longer exist (they were split), and the leaves repre-
sent current nodes. In order to maintain the tree, when a
node joins the network, it chooses some location to join
and “splits” it into leaves. On the other hand, when a
node leaves the network, it finds a full set of siblings and
“merges”, switches location with one sibling, and merges
the remaining subset into a single parent. In the next section
we will present algorithms that use the basic split and merge
operations while keeping the dynamic graph balanced.

More precisely, We now define the dynamic graph as
a process of split and merge operations as follows: The
dynamic graph starts asG1. The graph can change fromD =< V;E > into D̂ =< V̂ ; Ê > by one of the two basic
operations:

1. Split: For anyu 2 V , the nodeu is split into
(u), i.e.,V̂ = V n fug [ 
(u).
2. Merge: For anyu 2 V if s(u) � V then all nodess(u) merge and form the nodep(u). Formally, V̂ =V n s(u) [ fp(u)g
The change fromE to Ê is as follows:

1. Split of nodeu into nodes
(u) :

(a) For everyv 2 
(u), and everyw 2 �G`(u)(v),
connectv tow, or tow’s ancestor, or to all ofw’s
descendants (whichever exists inD).

(b) For every nodex that had an edge tou, then if`(u) � `(x) then connectx to each node of
(u).
Otherwise, if`(u) < `(x) then due to the child-
neighbor commutative property there exists some�u 2 G`(x) that is a descendant ofu such that(x; u) 2 E`(x). Find the node�(x) 2 
(x) that is
either�u or an ancestor of�u and connectx to �u

2. Merge of nodes
(u) into nodeu:

(a) For eachw 2 �G`(u)(u), connectu to w, orw’s
ancestor, or all ofw’s descendants (whichever ex-
ists inD).

(b) For each nodex that had an edge to a node�u 2
(u), connectx to u.

For example, Figure 1 shows a merge and a split opera-
tion on a dynamic hypercube.

It is easy to see that the split and merge operations keep
the dynamic graph properties above.

4 Balancing Strategies

In this section, we introduce strategies for choosing join-
ing and leaving positions in the dynamic graph so as to keep
it balanced. Our goal is to keep the dynamic graph’s tree
balanced at all times, i.e., to minimize the level gap among
nodes that belong to differentGi’s. Intuitively, the rea-
sons for this are two-fold. First, eachGi has certain desir-
able characteristics of diameter and routing complexity. By
keeping the level-gap minimized, we can keep these prop-
erties to some degree in the dynamic graph despite the level
gap. Second, the gap in levels also represents gap in load
incurred on each node, e.g., by routing. Naturally, low level
gap results in better load balance.

We first introduce some notation. Thelocal gap of a
nodev 2 V is the maximum difference between its level
to the levels of its neighbors,gap(v) = maxi2�D(v) j`(i)�`(v)j. Thelocal gapof a dynamic graphD is the maximum
local gap over all nodesv 2 V . Formallylo
alGap(D) =maxv2V gap(v). Similarly, the global gap of the dynamic
graphD is the maximum difference between the levels
of any two nodes and is defined asglobalGap(D) =maxi;j2V j`(i) � `(j)j. We present two algorithms, a de-
terministic algorithm against adversarial additions and re-
movals of peers that maintains a local gap of 1 and a ran-
domized algorithm against a random series of additions of
peers that maintains a global gap ofO(log logn) w.h.p.

4.1 Deterministic Balancing

Consider the following model: The algorithm and adver-
sary take turns. At the adversary’s turn, he may choose to
add one node and provide an access node, or choose one
node to be removed. At the algorithm’s turn, he may use
some computation and message passing and eventually re-
balance the graph by executing a merge or a split operation.

For simplicity, we present balancing algorithms for bi-
nary dynamic graph trees, i.e.8u : j
(u)j = 2. The full
paper will include the generalized algorithm for any order
of 
().

1. Re-balancing a node addition, given a new nodep and
an access nodeu. Begin at nodeu, as long as there
is an edge toward a lower level node follow that node,
until a nodev is reached with gap at most 1 and no
lower level neighbors. Add the new nodep by splitting
nodev.

2. Re-balancing a node removal, given the removed nodeu. Begin at nodeu, as long as there is an edge toward a
higher level node, or there is a sibling node on a higher
level, follow that node. Eventually, two siblingss1; s2
at the same level with no higher level edges will be
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P000 P001 P010 P011 P100 P101 P110 P111 P000 P001 P100 P101 P110 P111

P01

Split of P01 into P010 and P010

Merge of P010 and P011 into P01

P010

P110P110

P000 P100

P111P011 P111

P110P110

P001

P100P000

P001

P01

Figure 1. Example of a merge and split on a dynamic hypercube: view of the dynamic graph as a tree
(above) and the graph itself (bottom).

found (possibly at the highest level). Change the loca-
tion of s1 to that ofu, and change the location ofs2 top(s2) (i.e., merges1; s2).

Since nodes that get split (respectively merged) are in a
locally minimal (respectively maximal) level the local gap
of the dynamic graph remains 1 at all times.

In section 5, we show that a dynamic graph withn nodes
and a local gap of 1 has a global gap that is bounded by
the diameter ofGlogn. So for dynamic networks that are
built from a family fGig with a logarithmic diameter this
balancing scheme maintains a logarithmic global gap.

Lemma 4.1 The number of nodes examined during re-
balancing is at most the global gap.

Proof: In re-balancing of node addition (respectively node
removal) each message searches for a node in lower (respec-
tively higher) level on a dynamic graph with a local gap of
1 .

Once the balancing algorithm determines which node to
split or merge, the new nodes may efficiently locate the
nodes to whom to maintain their connections in a decen-
tralized manner using the routing scheme of the existing
overlay network (the routing scheme is described later in
section 6).

4.2 Randomized Balancing

A different approach to randomizing the dynamic graph
is to use balanced allocation techniques during joining in
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order to keep the tree balanced. The randomized balanc-
ing strategy is parameterized by an additional parameterd.
Given a parameterd, a node that wants to enter the net-
work choosesd infinite strings, looks at the nodes defined
by the strings (their respective longest prefixes) and chooses
to split the one that is closest to the root.

As in the deterministic algorithm, the underlying decen-
tralized routing network is used for locating the nodes that
correspond to the infinite strings and for building the new
edge connections of the dynamic graph (routing is discussed
in section 6).

This model is interesting primarily against an oblivi-
ous adversary. In order to show bounds on the quality of
this balancing we reduce it to the well known balls in bins
model. We have the following two lemmas.

Lemma 4.2 The dynamic graphG constructed by the ran-
domized balancing process above maintains w.h.p. minimal
level of at leastlogn� log(logn=d)��(1) of any leaf.

Proof: We start with the following lemma on the balls into
bins model.

Lemma 4.3 Suppose that�(n(1 + ln(n=d)d )) balls are se-
quentially placed inton bins. For each ball we choosed
bins uniformly at random and assign the ball to an empty
bin if found. Then at the end of the process there are no
empty bins with high probability.

Proof: First we compute the expected time from moving
from i non-empty bins toi + 1 non-empty bins. Clearly
once we havei non-empty bins the probability to move toi + 1 non-empty bins is1 � (i=n)d for each step. Hence,
the expected time is 11�(i=n)d . Thus, the total expected time
from the state that all bins are empty until the state that no
bins are empty isn�1Xi=0 11� (i=n)d = �(n) + n�1Xi=n�n=d 11� (i=n)d= �(n) + n=dXj=1 11� (1� j=n)d� �(n) + n=dXj=1 11� (1� jd=(2n))= �(n) + n=dXj=1 2njd= �(n+ nd log(n=d))= �(n(1 + ln(n=d)d )):
Now, we claim that by standard Chernoff bounds it is
easy to see that with high probability one would need only�(n(1 + ln(n=d)d )) balls to fill all bins.

We are now ready to proof the lemma. Assume that all
the leaves of the tree are at leveli or more. We would like to
compute the number of items that are needed to be inserted
until all the leaves of the tree reach a level of at leasti + 1
with high probability. Clearly, the process can be modeled
by balls assigned to2i bins and hence in time�(2i(1 +ln(2i=d)d )) all the leaves are of level at leasti+ 1 with high
probability. We conclude that in timerXi=0 �(2i(1 + ln(2i=d)d )) = �(2r(1 + ln(2r=d)d ))
all the leaves are of level of at leastr. By choosingr =logn � log((log n)=d) � �(1) we conclude that happens
with high probability in at mostn steps as needed.

Lemma 4.4 The dynamic graphG constructed by the ran-
domized balancing process above maintains w.h.p. maximal
heightlogn+ ln lnn= ln d+O(1) of any leaf.

Proof: We will use the following theorem from [2].

Theorem 1 Suppose thatn balls are sequentially placed
into n bins. Each ball is placed in the least full bin, at
the time of the placement, amongd bins, d � 2, chosen
independently and uniformly at random. Then after all the
balls are placed with high probability, the number of balls
in the fullest bin isln lnn= ln d+O(1).
We can simulate our process of splitting the leaves by the
process of placing the balls in the bins such that the number
of balls in the highest bin is an upper bound for the number
of levels that a leaf can reach above thelogn level in the
tree. Specifically, we fix a virtual binary tree of depthlogn.
Each leaf of the virtual tree corresponds to a bin. For each
ball, we choosed random infinite strings, we consider first
only the prefix string of sizelogn. Each such prefix corre-
sponds to a leaf in the virtual tree. If one of these nodes is
still not a node in the real tree then certainly the node that
is split in the real tree will be of depth at mostlogn. We
view this as if the bin that corresponds to the chosen string
was empty and remained empty. In case all thed string
chosen corresponds to real nodes then the new node will
be a descendant of one of them. If we add a new ball to
the least full bin (this is not necessarily were the node was
split) still by induction the number of balls in each bin is
an upper bound on the depth (minuslogn) of the deepest
leaf which is a descendant of the node that corresponds to
the bin. By the above theorem no bin will have more thenln lnn= ln d + �(1) balls hence the level of the leaves will
be bounded bylogn+ ln lnn= ln d+O(1).
Puttingd to be logarithmic inn, we obtain that the random-
ized balancing algorithm obtains constant global level-gap
w.h.p.
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4.3 A combined balancing approach

We can also define a combined strategy where we first
randomly choosed strings, use the deterministic balancing
algorithm on each string, and finally choose to split the node
with the lowest level found.

From a practical point of view combining the two ap-
proaches is advantageous. Theoretically it strives to min-
imize the global gap using both algorithms. This strategy
works both against a random sequence and an adaptive ad-
versary. When peer dynamism is random the global gap
remains constant w.h.p., and even if a malicious adversary
adaptively tries to enlarge the global gap, the local gap re-
mains at most 1. As we shall show in the next section, a
constant local gap bounds the global gap as a function of
the size of the network and the diameter of the underlying
family fGig (see Corollary 5.4).

5 Dynamic Graph Properties

5.1 Paths in the dynamic graph

DEFINITION 5.1 A pathP = u1; u2; : : : u` will be called
a descendant pathof a pathQ = v1; v2; : : : vm (andQ an
ancestor pathof pathP ) if P can be partitioned intom con-
secutive nonempty subsequencesS1; : : : Sm, s.t. for eachi,
all nodes ofSi are descendants ofvi. Theextensionof a
descendant pathP ofQ is defined asjP j � jQj = l �m.

The child-neighbor commutativity naturally extends to
paths. If(u; v) 2 Ei then for anyj > i let U; V � Vj be
the sets of all the descendants ofu andv inGj , respectively.
ThenU � �Gj (V ) and so from any�u 2 U there exists an
edge to some�v 2 V . Thus if �u is a node of the dynamic
graph and a descendant ofu then there exists some node�v
of the dynamic graph that is a descendant ofv such that�u
has an edge to�v in the dynamic graph. The following is a
direct result:

Lemma 5.1 Let ` be the lowest level of the dynamic graph,
fix any two nodesu; v in the dynamic graph and let̂u; v̂ be
their ancestors inG` then:

1. Every path betweenu andv in the dynamic graph has
an ancestor path between̂u andv̂ in G`

2. Every pathQ between̂u andv̂ in G` has a descendant
pathP in the dynamic graph betweenu and some de-
scendant~v of v in the dynamic graph with extension 0
(jP j = jQj).

5.2 Diameter

Lemma 5.2 Fix any nodes on the lowest level̀ then the
distance froms to any node in the dynamic graph is at mostdiam(Glogn).

Proof: Consider a source nodes on the lowest level̀
and any target nodet on the highest levelh in the dynamic
graph, let̂t be the ancestor oft in G`. Consider the shortest
pathQ in G` from t̂ 2 V` to s. From lemma 5.1 there exists
a descendant pathQ with extension 0 froms to t in the
dynamic graph. Sincej
(u)j � 2 we havè � logn.

Corollary 5.3 For a dynamic graph withn nodes and local
gap 1, the global gapg, is at mostdiam(Glogn) and the
highest level is at mostdiam(Glogn) + logn.

Theorem 2 For a dynamic graph withn nodes and global
gapg, the diameter isminf2diam(Glogn); diam(Glogn+g)g :
Proof: The 2diam(Glogn) bound follows directly from
lemma 5.2

For thediam(Glogn+g) bound, denote the highest levelh � logn + g. For anys; t 2 V , fix any descendant�s ofs in Vh. Due to the commutative property, any path froms
to t in the dynamic graph is an ancestor of some path from�s to �t in Gh where�t is some descendant oft in Vh.Thus the
shortest path froms to t in the dynamic graph is bounded
by the diameter ofGh.

Corollary 5.4 If for all i the diameter ofGi is at mosti,
then a dynamic graph onn nodes, with local gap 1, has a
diameter of at most than2 logn.

For the examples above, these results imply the follow-
ing: The diameter of the dynamic hypercube or de Bruijn
graphs is at most2 logn, and their global gap is at mostlogn.

Thus the onus of creating a good network lies on the
choice of a good familyfGig sincediam(Gi) is crucial
to the diameter of the dynamic network.

6 Routing on dynamic graphs

The dynamic graph binary tree naturally induces a bi-
nary labeling, i.e., each left branch adds a postfix of ’0’ and
each right branch adds a postfix of ’1’. A routing target is
given as an infinite seriest1; t2; :::, and the goal is to find a
network node that matches a prefix of the target.

In order to find a certain target, each node must be able
to route the lookup request to a neighboring node until the
target is reached. A locally computable routing function
needs to compute the ‘next’ node to traverse to. We will say
that a routing functionR : V � f0; 1g� ! V is k bounded
onG if the following properties hold onG = (V;E):

1. Routing function gives an existing edge(u;R(u; t)) 2E.
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2. If R(v; t) = v thenv is a prefix oft.
3. DefineRj(u; t) = R(Rj�1(u; t); t) thenRk(u; t) =Rk+1(u; t).
We will now show that if routing functions with some re-

cursive properties exist for eachGi then the dynamic graph
has a routing function.

DEFINITION 6.1 Given a graphG = (V;E) and a routing
functionR, for any nodeu 2 V and targett we define the
pathPR(u; t) as the sequence of nodes which are traversed
using the routing functionR when routing fromu to the
node who is a prefix oft.
DEFINITION 6.2 A family of routing functionsR =fR1; R2; : : :g is k fully recursive for a commutative fam-
ily (G;P) if for anyu 2 Vi and for any childv 2 
(u) we
have thatPRi+1(v; t) is a descendant path with extensionk
of the pathPRi(u; t).

Given fully recursive routing functionsR =fR1; R2; : : :g for (G;P), we define a local routingR
on the dynamic graph, given a nodeu 2 V and a target
binary stringt as follows:

1. Leth = maxv2�D(u) `(v) be the highest level of all ofu’s neighbors.

2. Choose any descendant�u of u in Vh and computeRh(�u; t) = v.

3. Return eitherv or some ancestor ofv that is a neighbor
of u.

Theorem 3 Given a fully recursive routing(G;P ;R)
whereRi is f(jVij) bounded. On a dynamic graph onn
nodes with a global gap ofg the routingR is af(jVlogn+g j)
bounded routing function.

Proof: Consider the pathQ taken by the above routingR
originating at nodeu and ending at nodev that matches the
prefix of t. Denote the highest levelh � logn + g. Now
examine the pathP taken on graphGh from any descendant
of u in Vh to the descendant̂v 2 Vh of v that matches the
prefix of t using the routing functionRh. Due to the child-
neighbor commutative property, and the fully recursive na-
ture ofRi, the real pathQ taken on the dynamic graph is an
ancestor path of pathP and thusjQj � jP j.
Corollary 6.1 Given a log(n) bounded recursive routing
function for eachGi a dynamic graph onn nodes, with local
gap 1 has a2 logn bounded routing function.

6.1 Examples of routing on dynamic networks

Routing on the dynamic hypercube. Consider the rout-
ing functionRi that ‘fixes’ the left most bit that does not
equal the target, clearlyfRig is recursive. Remember that
the lowest level of such a graph withn nodes is2 logn.
Now consider the routing functionR on a dynamic hyper-
cube with local gap1. Each move fixes one bit, so after at
most2 logn steps the correct node will be found.

Routing on the dynamic butterfly. We consider the but-
terfly network as a further example. In the butterfly familyB = fB1; B2; B3; : : :g every graphBi hasi2i�1 nodes, so
some nodes need to split into more than 2 children in order
to maintain the child-neighbor commutative property. Thus
the encoding of nodes is nontrivial.

DEFINITION 6.3 Each Bi is a triplet (Vi; Ei; Li), s.t.(Vi; Ei) is a graph andLi � Vi. Li will be called the
lower nodes of the graphBi. We now defineBi recur-
sively.B1 is a single node graphV1 = feg andL1 = V1.Bk is defined as follows:Lk = Lk�1 � f01; 00g, Vk =Vk�1�f10; 11g[Lk. Anyu = hu1; : : : ; u2ki 2 Vk nLk is
connected to�Bk�1(u1; : : : ; u2k�2)�fu2k�1u2kg, and anyu = hu1; : : : ; u2ki 2 Lk is connected tofu1; : : : ; u2k�2g�f10; 11g.

The parent function is defined as follows: for anyu =hu1; : : : ; u2ki 2 Vk, p(u) = hu1; : : : ; u2k�2i. From the
recursive nature of the definition it is clear that the child-
neighbor commutative property holds. Note that any node
in Li splits into 4 children nodes, and any node not inLi
splits into two nodes. For this encoding of nodes we provide
a fully recursive routing family based on a standard3 logn
routing (details in the full paper) and thus it is possible to
route to any target on a dynamic butterfly onn nodes with
a local gap of 1 inO(log n) steps.

Routing on the dynamic de Bruijn network.

DEFINITION 6.4 A family of routing functionsR is par-
tially recursive for a commutative family(G;P) if for anyu 2 Vi there exists a childv 2 
(u) such thatPRi+1(v; t) is
a descendant path of the pathPRi(u; t).

In general, we do not have a routing strategy for the
dynamic graph of a family with partially recursive routing
only. For such routing functions a node must know which
child to choose to be used in the routing algorithm.

However, in the case of the de Bruijn network introduced
above, we have a partially recursive routing that can be used
for the dynamic graph, as follows: The functionRi for the
de Bruijn networkGi computes the ‘next’ node in the fol-
lowing simple manner: given a nodev with a binary iden-
tifier hv1; : : : ; vki and a targett = ht1; t2; : : :i, find the
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minimal j such thatv = hv1; : : : ; vj ; t1; : : : ; tk�ji. The
‘next’ node is the neighborhv2; : : : ; vj ; t1; : : : ; tk�j+1i.
This routing is partially recursive:

DEFINITION 6.5 Routing on a dynamic de Bruijn network
with local gap 1: Consider a nodev = hv1; : : : ; vki 2V and a target t = ht1; t2; : : :i, find the minimalj
such that v = hv1; : : : ; vj ; t1; : : : ; tk�ji . ComputeRk+1(vtk�j+1; t) = u and route tou, or to p(u), or top(p(u)) whichever exists in the dynamic graph.

The lowest level of a dynamic de Bruijn network onn
nodes is at most2 logn. Routing on the lowest level and
thus on the dynamic graph is bounded by2 logn.
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