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from standard research in routing networks in its attention
to scale, dynamism of the network structure and the lack of

This paper presents a generic scheme for a central, yetcentralized control.

untackled issue in overlay dynamic networks: maintaining

One of the main motivations stimulating this work is re-

stability over long life and against malicious adversaries cent interest in using overlay networks for lookup in peer-
The generic scheme maintains desirable properties of theto-peer (P2P) settings. The routing network is used for stor
underlying structure including low diameter, and efficient ing and searching a distributed hash table. A distributed
routing mechanism, as well as balanced node dispersal.hash service is a fundamental tool for supporting large-peer
These desired properties are maintained in a decentralizedto-peer applications, that may support efficient storagk an
manner without resorting to global updates or periodic sta- retrieval of shared information for cooperating distrimlit
bilization protocols even against an adaptive adversaagth  applications. Examples of contemporary stellar services
controls the arrival and departure of nodes. that may benefit from it are file sharing systems such as
Freenet [4], and music sharing systems, e.g., Gnutella [6].
Work todate on P2P overlay networks (e.g., [5, 9, 11,
13, 12, 14, 16, 18]) employs randomization to achieve uni-
form dispersal of hash values among peers and for building
, , the routing topology. There are several problems thattresul
_ Overl_ay networks are _emP'Oyed In many Settings to pro- ¢rom the reliance on randomization: First, a random dis-
vide Iogu_:al (_:ommumcanon infrastructure overan exgtln tribution of hash values creates with high probability load
communication network. For_ example, Amir et al. use in ;mpalance among peers of up to a logarithmic factor (see
[1] an overlay network for wide area group communica- e.g., [7, 16, 9]). Second, over a long period of time, the de-

Flon; many a_d h‘?c systems ufse overla(i/ routm-g. for _re?u_lat' parture and addition of peers may impair the randomization
ing communication (see [17] for a good exposition); Klein- ¢ injia| selections, and result in poor balance in such sys

be_rg explores in [8] routing phenomena in natural worlds tems. In particular, node departures might be correlated du
using random long-range overlay edges; and recently, mucqo failures or due to the banning of a P2P service from a par-

excitement revolves around peer-to-peer schemes that Ut'iicular organization. Lastly, uniformity by randomizatis

lize an overlay routing network to discover and search re- ;o itive to adversarial intervention through peer rethova
sources in highly dynamic environments, e.g., [5, 9, 11, 13, and/or joins

14, 16, 18]. The exploration of overlay networks deviates Our aim in this work is to enhance the technology for

overlay networks in several important ways. First, our

1 Introduction

*Research supported in part by the Israel Science Founda@ait02).



overlay network maintains its desired properties for effi- tree co-exist simultaneously.
cient routing even againstdversarialremoval and addi- More specifically, we make use of a view suggested orig-
tions of nodes. Second, it maintains load balance amondinally in [13] to represent the overlay construction praces
peers. Both of these desirable goals are achieved with nags adynamic tree The process adds and removes nodes
global coordination, using localized operations with @&s  to a tree, such that inner vertices represent nodes that no
able costs. Third, our techniques are of interest in them-|onger exist (they were split), and the leaves represent cur
selves. They provide an insight that links the issues of loadrent nodes. In order to maintain the dynamic tree, when a
balance and resilience in overlay networks with tree bal- node joins the network, it chooses some location to join and
ancing. Lastly, our techniques are generic, and are applica“splits” it into leaves. To the contrary, when a node leaves
ble to most known network topologies, including the hyper- the network, it finds a full set of siblings and “merges” them
cube, the De Brujin bitonic network, the Butterfly network, into a single parent. The branching factor of the tree is set
and others. We provide a characterization of the families of so that each tree layer corresponds to one merGhenf
graphs that can make use of our approach. the tree is balanced, we can easily overlay the leaves of the
There are thus two concrete angles in which our work tree withG; and be done. Generally, the tree will not be
compares favourably with previous works: The load bal- balanced. In fact, at the very least if the number of nodes
ance and fault tolerance. With respect to load balancing,does not match any tree layer, then the highest tree level is
we first note that any method that preserves initial peer dis-not full. Hence, we need to build an overlay network that,
tribution choices cannot be resilient to adversarial remhov though inspired by the simple-level overlay approach, con-
and addition of nodes. The only previous work that we are nects leaves on different levels.
aware of that allows peer re-positioning is CAN [13]. In In order to maintain an overlay graph over an unbalanced
CAN, a background stabilization process is employed in or- tree, we first need to require that;’s exhibit certain re-
der to recover balance, introducing a constant overhead. Incursive structureG;.; are mapped ont6/; via a parent
contrast, our method does maintain load balance against adfunction, such that the neighboring relatiorGi, ; induced
versarial settings, but incurs only local cost per join/fiea  neighborhoods on the parentsGh. We call such families
operation, and maintains the desired balance properties imof graphschild-neighbor commutativgrecise definition is
mediately. given below). We further connect the edges of every leaf at
The second facet in which our work enhances the tech-leveli to either the parents or the children of its would-be
nology is in its resilience to adversarial scenarios. Oarov ~ €nd-points at level, whichever exists.
lay networks can withstand node removals and additions Using this construction, we prove that the routing prop-
even when done by a malicious adaptive adversary. Mosterties of the overlay network are related directly to gjae
previous works, with the exception of [15, 5], do not attempt in levels in the resulting dynamic tree. Itis worth notingth
to address a malicious adversary. Consequently, their perone could keep the tree balanced (inevitably, up to a high-
formance may be signficantly degraded, e.g., as a result ofest, unfull level) as follows: All entries would occur at the
removal of servers concentrated in one part of the network.'step’ position at the highest level. However, this appfoac
Additionally, random failures and departures are handled, requires serializing all entries and creates an unacckeptab
e.g., in [13, 16], via global overhaul background mecha- contention point for very large systems.
nisms whereas our method has no global operations. The This leads us to construct several strategies for balanc-
censorship resistant network of [15, 5] is designed to copeing the dynamic tree. The first is a localized, deterministic
with malicious removal of up to half of the network nodes. balancing scheme, that guarantees even against a malicious
In contrast to our scheme, it is designed with a rough a- scheduler that the level-gap of the tree remains bounded by
priori knowledge of the numbe¥ of participants, and with  the diameter of the smallest graph that could fit the exist-
the assumption that the actual number of peers is within aing nodes. We further show that the diameter is bounded by
known linear envelope aN. Additionally, randomization  that of the highest tree level, and hence, by the gap bound,
is relied upon in node joining. it is also bounded. The second is a a randomized balancing
Our approach to generic overlay emulation is as follows. strategy. The randomized balancing strategy makes use of
We consider a graph topology to be a family of graphs balanced allocation techniques of Azar et al. [2] and exten-
G = {G1,G>,...} for a monotonically increasing system sion [10] to guarantee probabilistically that the gap ir+lev
sizes. We observe that most families of graphs may be em-€ls is constant. The diameter is consequently appropyiatel
ulated by viewing the dynamic overlay construction pro- bounded. In order to make use of balanced allocation, we
cess as a virtual tree process, in which new nodes join atheed to extend known results to analyze¢hgptiestrather
the leaves. Each membe@¥; of the graphs family naturally ~ than thefullest bin in a balanced allocation process.
maps to layef of the tree. We provide a scheme for keeping ~ Overlay networks are used for reliable and efficient mes-
a dynamic graph in which nodes on different levels of the sage dissemination as well as for routing and searching. For



the latter, we finally show a generic routing strategy that Lemma 2.1 {HC;} and {p;} have the child-neighbor
makes use of the underlying graph-family routing strategy, commutative property.
and finds routes that are within our proven diameter bound.

The rest of this paper is organized as follows. Prelimi- The next example we consider is the de Bruijn network [3].
naries and notation are exhibited in Section 2. The dynamic
graph process is defined in Section 3, and is exemplifiedExample 2 (The de Bruijn graph.) The ~ de  Bruijn
with several families of graphs, including the hypercubd an D Bi =< V;, E; > is a graph with2’ nodes,V; = {0,1}".
the de Bruijn networks. Balancing methods are presented inNode (a1, ...,a;) has an edge to nodgb,...,b;) if
Section 4. The properties of balanced dynamic graphs areand only if for all1 < j < i —1: aj1, = b;. Thus
proven in Section 5. Finally, routing is discussed in Sectio every node (as,...,a;) has two outgoing edges to
6. nodes: (as,...,a;,0) and {(as,...,a;,1) (shuffle, then
choose the last bit). Again, consider the parent function
2 Preliminaries and Notation pillar,-- s aim1,a5) = (ar, ., aiza).

Lemma 2.2 {DB;} and {p;} have the child-neighbor

Consider a family of directed graphgyy = commutative property.
{G1,G2,Gs,...}, whereG; =< V;,E; >. Our in-
terest is in families that have a recursive structure, and For every node: of anyG we define itdevelas the index
hence, we first require that all the nodes of the gragh i of the graphG; it belongs to, formallyl(u) = i & u €
can be mapped to nodes of the graph., using aparent V;. We say thatu in anancestorof v if £(u) < ¢(v) and
functionp; : V; — V,_1. DenoteP = {ps,ps,...} the  pt)—tW)(y) = 4 (wherep*(u) = p(p*~'(u))). We also
set of parent function fog. Since allp;'s have disjoint  say thatu is adescendantf v if v is an ancestor of. The
input domains (likewise, output domains), there should be diameter of a graph G is denotéthm (G).
no confusion when omitting the index of a parent function,
and hence we simply ugs).

Second, we require that for everyevery node: € G;_;
has at least two nodesw € G; such thap(v) = p(w) =
u. Denote the inverse of the parent function, thédd func-
tion asc; : V; — 2+, whereu € ¢;(v) € pip1(u) = v.

3 The Dynamic Graph

In this section, we introduce an algorithm for maintain-
ing a dynamic overlay network that derives its characteris-
We have that/u € V; : |c;(u)| > 2. Here again, we omit tics from a family of static graphg§. Our goal is to make
the index of a child function and simply us@). use of a family of graphs as above in order to maintain a

For a set of node&” C V; definep(X) = |J p(z) dynamic graph that nodes can join and leave. Intuitively,
ande(X) = U, . c(:n)._Define thesiblingsof Zeé V, as this works by having each node join some locatiorGat
s(u) = c(p»(uf)e. For a graph? =< V,E > and a set by splitting it into a set of children af7;, 1, and vice versa
XCV defiZneI“@(X) = {y[3z € X A (w’y) € E}, when for leaving. However, this means that at any moment in
(' is obvious from the context. we omit i’t. ' time, different nodes may be in differe@t’s. We therefore

We will focus on a particular group of graphs and parent specify how to connect nodes from differeifs in our dy-
functions having the following recursive nature: namic overlay network. Unless mentioned otherwise, the

nodes and edges refer to the dynamic graph.

DEFINITION 2.1 (The child-neighbor commutative property.) Given a family of graph¢G } and parent functiongp; }
A family of graphs and child/parent functiof@, P) is said with the chlld-nelg_hbor commutative property as defined
to have the child-neighbor commutative property if foriall ~@bove, we now define the dynamic as follows:

andforallu € V;: T'g,,, =c(lq, . i
" Gi (e(u)) = (T, ({u}) DEFINITION 3.1 (Dynamic graph.)GraphD =< V, E >

Let us consider some example families of graphs to clar- i @ dynamic graptfor a child-neighbor commutative pair
ify the definitions. Note that in the following examples the (9,P) if it has the following properties:
edges arelirected
1. VcCcux, V.
Example 1 (The Hypercube.) The hypercubeHC; =<

Vi, E: > is a graphV; — {0,1}¢ with 2i nodes, namely 2. Ifv € V then no ancestor af exists inV'.

all the binary strings of length. Node(a, ...,a;) has an 3. Forallu € V and for allv such that(u,v) € Ey,
edge tonod¢h,, ..., b;) ifand only if there exist$ < j < then either:

such that; # b; and for allk # j: ai, = b;. Consider the

pal'ent funCtIOI’pz(<(11, e, Qi—1, az>) = <a1, - ,ai_1>. (a) v E V andu has an edge to.



(b) v ¢ V but someancestor of v exists inV. In
this casen has an edge to.
(c) v ¢ V butv has some descendantslin In this

caseu has an edge to all af's descendants that
are nodes iV

The nodes of the dynamic overlay graph can be thought

of as the leaves of a tree. The inner vertexes represent nod

that no longer exist (they were split), and the leaves repre-
sent current nodes. In order to maintain the tree, when a

node joins the network, it chooses some location to join
and “splits” it into leaves. On the other hand, when a
node leaves the network, it finds a full set of siblings and
“merges”, switches location with one sibling, and merges
the remaining subset into a single parent. In the next sectio

we will present algorithms that use the basic split and merge

operations while keeping the dynamic graph balanced.

More precisely, We now define the dynamic graph as
a process of split and merge operations as follows: The
dynamic graph starts as,. The graph can change from
D=<V,E> into D =< V,E > by one of the two basic
operations:

1. Split: For anyu € V, the nodeu is splitintoc(u), i.e.,
V =V \{u}Uc(u).

2. Merge: For anyw. € V if s(u) C V then all nodes
s(u) merge and form the nodgx). Formally,V =

VA s(u) U {p(u)}
The change fronk to E is as follows:

1. Split of nodeu into nodes:(u) :

(@) For every € c(u), and everyw € g, (v),
connect tow, or tow’s ancestor, or to all o's
descendants (whichever existsin).

(b) For every node: that had an edge to, then if
£(u) > ¢(x) then connect to each node of(u).
Otherwise, if¢(u) < £(x) then due to the child-
neighbor commutative property there exists some
@ € Gy, that is a descendant af such that
(z,u) € Ey). Find the noddz) € c(z) that is
eitheru or an ancestor af and connect to u

2. Merge of nodes(u) into nodeu:

(a) Foreachw € Tg,,,, (u), connectu to w, or w's
ancestor, or all of’s descendants (whichever ex-
ists in D).

(b) For each node that had an edge to a nodec
¢(u), connects to u.

For example, Figure 1 shows a merge and a split opera-

tion on a dynamic hypercube.

It is easy to see that the split and merge operations keep

the dynamic graph properties above.

(S

4 Balancing Strategies

In this section, we introduce strategies for choosing join-
ing and leaving positions in the dynamic graph so as to keep
it balanced. Our goal is to keep the dynamic graph's tree
balanced at all times, i.e., to minimize the level gap among
r%odes that belong to differerdt;’s. Intuitively, the rea-
sons for this are two-fold. First, each; has certain desir-
able characteristics of diameter and routing complexity. B
keeping the level-gap minimized, we can keep these prop-
erties to some degree in the dynamic graph despite the level
gap. Second, the gap in levels also represents gap in load
incurred on each node, e.g., by routing. Naturally, lowleve
gap results in better load balance.

We first introduce some notation. Thecal gap of a
nodev € V is the maximum difference between its level
to the levels of its neighborgap(v) = max;ecr, () [€(i) —
£(v)|. Thelocal gapof a dynamic graptD is the maximum
local gap over all nodes € V. FormallylocalGap(D) =
max,cy gap(v). Similarly, the global gap of the dynamic
graph D is the maximum difference between the levels
of any two nodes and is defined gobalGap(D) =
max; jev |€(i) — £(j)|. We present two algorithms, a de-
terministic algorithm against adversarial additions aad r
movals of peers that maintains a local gap of 1 and a ran-
domized algorithm against a random series of additions of
peers that maintains a global gap@flog logn) w.h.p.

4.1 Deterministic Balancing

Consider the following model: The algorithm and adver-
sary take turns. At the adversary’s turn, he may choose to
add one node and provide an access node, or choose one
node to be removed. At the algorithm’s turn, he may use
some computation and message passing and eventually re-
balance the graph by executing a merge or a split operation.

For simplicity, we present balancing algorithms for bi-
nary dynamic graph trees, i.8u : |c(u)| = 2. The full
paper will include the generalized algorithm for any order
of ¢().

1. Re-balancing a node addition, given a new npdad
an access node. Begin at nodeu, as long as there
is an edge toward a lower level node follow that node,
until a nodewv is reached with gap at most 1 and no
lower level neighbors. Add the new nogéy splitting
nodewv.

Re-balancing a node removal, given the removed node
u. Begin at node:, as long as there is an edge toward a
higher level node, or there is a sibling node on a higher
level, follow that node. Eventually, two siblings, s,

at the same level with no higher level edges will be



Merge of P010 and P011 into PO1

_— >
P01
P0O00 P0OO1 P010 PO11 P100 P101 P110 P111 P0O00 PO01 P100 P1OIPPIL

Split of PO1 into P010 and PO10

1

3

PO11 P111 P111
PO10 P110 PO1 P110
PO01 P110 PO01 P110
P0O00 P100 PO00 P100

Figure 1. Example of a merge and split on a dynamic hypercube: view of the dynamic graph as a tree
(above) and the graph itself (bottom).

found (possibly at the highest level). Change the loca- Proof: Inre-balancing of node addition (respectively node
tion of s; to that ofu, and change the location ef to removal) each message searches for a node in lower (respec-
p(s2) (i.e., mergesy, s2). tively higher) level on a dynamic graph with a local gap of
1. H
Since nodes that get split (respectively merged) are ina  Once the balancing algorithm determines which node to
locally minimal (respectively maximal) level the local gap split or merge, the new nodes may efficiently locate the
of the dynamic graph remains 1 at all times. nodes to whom to maintain their connections in a decen-
In section 5, we show that a dynamic graph withodes tralized manner using the routing scheme of the existing
and a local gap of 1 has a global gap that is bounded byoverlay network (the routing scheme is described later in
the diameter of4o, ,. So for dynamic networks that are section 6).
built from a family {G;} with a logarithmic diameter this
balancing scheme maintains a logarithmic global gap. 4.2 Randomized Balancing

Lemma 4.1 The number of nodes examined during re- A different approach to randomizing the dynamic graph
balancing is at most the global gap. is to use balanced allocation techniques during joining in



order to keep the tree balanced. The randomized balanc- We are now ready to proof the lemma. Assume that all
ing strategy is parameterized by an additional paraméter the leaves of the tree are at levelr more. We would like to
Given a parameted, a node that wants to enter the net- compute the number of items that are needed to be inserted
work choosesl infinite strings, looks at the nodes defined until all the leaves of the tree reach a level of at lgastl
by the strings (their respective longest prefixes) and amos with high probability. Clearly, the process can be modeled
to split the one that is closest to the root. by balls assigned t@’ bins and hence in timé®(2(1 +

As in the deterministic algorithm, the underlying decen- M)) all the leaves are of level at least 1 with high
tralized routing network is used for locating the nodes that probapility. We conclude that in time
correspond to the infinite strings and for building the new
edge connections of the dynamic graph (routing is discussed i . In(2¢/d In(2"/d
o eeion 6 ynamicaraph (fouting Yo+ ME/D)) - gy M2/,

This model is interesting primarily against an oblivi- =0
ous adversary. In order to show bounds on the quality of )| the leaves are of level of at least By choosingr =
this balancing we reduce it to the well known balls in bins 1461, — log((logn)/d) — ©(1) we conclude that happens
model. We have the following two lemmas. with high probability in at most steps as needed. [

Lemma 4.2 The dynamic grapliZ constructed by the ran- _
domized balancing process above maintains w.h.p. minimalLlemma 4.4 The dynamic grapli# constructed by the ran-

level of at leastog n — log(logn/d) — ©(1) of any leaf. domized balancing process above maintains w.h.p. maximal
heightlogn + Inlnn/Ind + O(1) of any leaf.

Proof: We start with the following lemma on the balls into
bins model. Proof: We will use the following theorem from [2].

In(n/d) _
:E;nn?:@iéggg?steoihﬁ gn(llfot ea gh b)zillbv?/isc%rgossz Theorem 1 Suppose that balls are sequentially placed
' into n bins. Each ball is placed in the least full bin, at

bins uniformly at random and assign the ball to an empt . .
y g Py the time of the placement, amorgins,d > 2, chosen

bin if found. Then at the end of the process there are no. .
empty bins with high probability. independently and uniformly at random. Then after all the

balls are placed with high probability, the number of balls
Proof:  First we compute the expected time from moving in the fullest bin idnInn/Ind + O(1).

from i non-empty bins ta + 1 non-empty bins. Clearly . -

once we havé non-empty bins the probability to move to We can simulate our process of splitting the leaves by the

i + 1 non-empty bins id — (i/n)¢ for each step. Hence, Process of placing the balls in the bins such that the number

the expected time |§1_ Thus, the total expected time ~ Of balls in the highest bin is an upper bound for the number
_(z/.n)d ’ . .

from the state that all bins are empty until the state that no ©f levels that a leaf can reach above thgn level in the

bins are empty is tree. Specifically, we fix a virtual binary tree of depaig .
I - Each leaf of the virtual tree corresponds to a bin. For each
Z 1 — o)+ Z 1 ball, we choosel random infinite strings, we consider first
—~1- (i/n)d ) /a 1—(i/n)d only the prefix string of sizéog n. Each such prefix corre-
= =Nn—n

sponds to a leaf in the virtual tree. If one of these nodes is

n/d 1 still not a node in the real tree then certainly the node that
= O(n)+ Z T_]‘/n)d is split in the real tree will be of depth at mdszn. We
=1 view this as if the bin that corresponds to the chosen string
n/d 1 was empty and remained empty. In case all #hstring
< On)+ Z 1—(1—jd/(2n) chosen corresponds to real nodes then the new node will
i=1 J be a descendant of one of them. If we add a new ball to
n/d m the least full bin (this is not necessarily were the node was
= O(n)+ Z 1 split) still by induction the number of balls in each bin is
=/ an upper bound on the depth (minleg n) of the deepest
- O+ n log(n/d)) leaf which is a descendant of the node that corresponds to
the bin. By the above theorem no bin will have more then
_ oM+ ln(n/d))) Inlnn/Ind + ©(1) balls hence the level of the leaves will
d ' be bounded bjogn + Inlnn/Ind + O(1). O

Now, we claim that by standard Chernoff bounds it is Puttingd to be logarithmic im, we obtain that the random-
easy to see that with high probability one would need only ized balancing algorithm obtains constant global leved-ga

O(n(1 + 2/Dyy palis to fill all bins. O  whp.



4.3 A combined balancing approach Proof: Consider a source nodeon the lowest level
and any target nodeon the highest level in the dynamic

We can also define a combined strategy where we firstgraph, let: be the ancestor d@fin G,. Consider the shortest

randomly choosé strings, use the deterministic balancing pathQ in G, from¢ € V; to s. From lemma 5.1 there exists

algorithm on each string, and finally choose to split the node a descendant patf) with extension O froms to ¢ in the

with the lowest level found. dynamic graph. Sinck(u)| > 2 we havel < logn. |
From a practical point of view combining the two ap-

proaches is advantageous. Theoretically it strives to min-Corollary 5.3 For a dynamic graph witl nodes and local

imize the global gap using both algorithms. This strategy gap 1, the global gap, is at mostdiam(Gioeg ») and the

works both against a random sequence and an adaptive achighest level is at mostiam (Gog n) + logn.

versary. When peer dynamism is random the global gap

remains constant w.h.p., and even if a malicious adversaryTheorem 2 For a dynamic graph witln nodes and global

adaptively tries to enlarge the global gap, the local gap re-gapg, the diameter is

mains at most 1. As we shall show in the next section, a

constant local gap bounds the global gap as a function of min{2diam(Giog n), diam(Giogn+9)} -

the size of the network and the diameter of the underlying Proof:

family {G;} (see Corollary 5.4). The 2diam(Ghog ) bound follows directly from

lemma5.2

For thediam(Gog n+4) bound, denote the highest level
h <logn + g. For anys,t € V, fix any descendars of
s in V3. Due to the commutative property, any path frem
to t in the dynamic graph is an ancestor of some path from
stotin G}, wheret is some descendant bfn V},.Thus the
shortest path froms to ¢ in the dynamic graph is bounded
by the diameter of7,. |

5 Dynamic Graph Properties
5.1 Pathsinthe dynamic graph

DEFINITION 5.1 A pathP = wuq,us, - ..u, wWill be called
a descendant pathf a path@Q = vy, v9,...v, (@NdQ an
ancestor patbf pathP) if P can be partitioned inten con-
secutive nonempty subsequen§es . . S,,, S.t. for each;,
all nodes ofS; are descendants af;. Theextensionof a
descendant patf of Q is defined a$P| — |Q| =1 — m.

The child-neighbor commutativity naturally extends to
paths. If(u,v) € E; then for anyj > i letU,V C V; be For the examples above, these results imply the follow-
the sets of all the descendantsiindv in G;, respectively.  ing: The diameter of the dynamic hypercube or de Bruijn
ThenU C Tg, (V) and so from anyi € U there exists an ~ graphs is at mos2logn, and their global gap is at most
edge to some € V. Thus ifu is a node of the dynamic  logn.
graph and a descendantwothen there exists some node Thus the onus of creating a good network lies on the
of the dynamic graph that is a descendant sfuch thatz choice of a good family{G;} sincediam(G;) is crucial
has an edge t6 in the dynamic graph. The following is a  to the diameter of the dynamic network.
direct result:

Lemma 5.1 Let¢ be the lowest level of the dynamic graph, & Routing on dynamic graphs

fix any two nodes, v in the dynamic graph and leét, © be

their ancestors irG, then: The dynamic graph binary tree naturally induces a bi-
nary labeling, i.e., each left branch adds a postfix of '0’ and
each right branch adds a postfix of '1’. A routing target is
given as an infinite serigs, ¢, ..., and the goal is to find a
2. Every path betweeni ando in G, has a descendant network node that matches a prefix of the target.

Corollary 5.4 If for all i the diameter of7; is at mosti,
then a dynamic graph on nodes, with local gap 1, has a
diameter of at most tha®log n.

1. Every path betweemnandwv in the dynamic graph has
an ancestor path betweénandv in G,

path P in the dynamic graph betweenand some de- In order to find a certain target, each node must be able
scendant of v in the dynamic graph with extension O to route the lookup request to a neighboring node until the
(I1P] = 1Q)). target is reached. A locally computable routing function
_ needs to compute the ‘next’ node to traverse to. We will say
5.2 Diameter that a routing functior? : V' x {0,1}* — V is k bounded

on( if the following properties hold o = (V, E):
Lemma 5.2 Fix any nodes on the lowest level then the

distance frons to any node in the dynamic graph is atmost 1. Routing function gives an existing edge R(u,t)) €
diam(Glogn)- E.



2. If R(v,t) = v thenv is a prefix oft.

3. DefineR/(u,t) = R(R’~'(u,t),t) thenR¥(u,t) =
RFF(u,t).

We will now show that if routing functions with some re-
cursive properties exist for eacky then the dynamic graph
has a routing function.

DEFINITION 6.1 Given a graphG = (V, E) and a routing
functionR, for any node: € V' and targett we define the

6.1 Examples of routing on dynamic networks

Routing on the dynamic hypercube. Consider the rout-
ing function R; that ‘fixes’ the left most bit that does not
equal the target, clearlyR;} is recursive. Remember that
the lowest level of such a graph with nodes is2logn.
Now consider the routing functioR on a dynamic hyper-
cube with local gaf. Each move fixes one bit, so after at
most2 log n steps the correct node will be found.

Routing on the dynamic butterfly. We consider the but-

path Pg(u, t) as the sequence of nodes which are traversed terfly network as a further example. In the butterfly family

using the routing functiorz when routing fromu to the
node who is a prefix af

DEFINITION 6.2 A family of routing functionsR =
{R1, R», ...} is k fully recursive for a commutative fam-
ily (G, P) if for anyu € V; and for any childv € c(u) we
have thatPg,,, (v, t) is a descendant path with extensibon
of the pathPg, (u, t).

Given fully recursive routing functionsR
{Ry,Rs,...} for (G,P), we define a local routingR
on the dynamic graph, given a nodee V and a target
binary stringt as follows:

1. Leth = max,er, (u) £(v) be the highest level of all of
u’s neighbors.

. Choose any descendamtof « in V;, and compute
Ry(a,t) = v.

. Return eitherv or some ancestor efthat is a neighbor
of u.

Theorem 3 Given a fully recursive routing(G,P,R)
whereR; is f(|V;|) bounded. On a dynamic graph on
nodes with a global gap afthe routingR is a f (| Viog n+4|)
bounded routing function.

Proof: Consider the paty taken by the above routing
originating at node: and ending at node that matches the
prefix of . Denote the highest levél < logn + g. Now
examine the pat# taken on grapli’;, from any descendant
of uw in V}, to the descendarit € V}, of v that matches the
prefix of t using the routing functioR;,. Due to the child-
neighbor commutative property, and the fully recursive na-
ture of R;, the real pattf) taken on the dynamic graph is an
ancestor path of patR and thug@| < |P]. O

Corollary 6.1 Given alog(n) bounded recursive routing
function for eaclty; a dynamic graph on nodes, with local
gap 1 has & log n bounded routing function.

B = {By1, By, Bs, ...} every graphB; hasi2i~! nodes, so
some nodes need to split into more than 2 children in order
to maintain the child-neighbor commutative property. Thus
the encoding of nodes is nontrivial.

DEFINITION 6.3 Each B; is a triplet (V;, E;, L;), s.t.
(Vi, E;) is a graph andL; C V;. L; will be called the
lower nodes of the graplB;. We now defing3; recur-
sively. By is a single node grapl; = {e} andL, = V;.

B4y, is defined as follows:L; = Li_; x {01,00}, V; =

Vi—1 X {10, 11} U Lg. Anyu = <u1, .. .,u2k> eV \Lk is
connectedt®'s, , (u1,...,usr—o) X {usx_1usk}, @and any
w=(uy,...,us) € Ly isconnected t§u,,...,us_o} X

{10,11}.

The parent function is defined as follows: for amy=
(ut, ..., ua) € Vi, p(u) = (u1,...,usp—2). From the
recursive nature of the definition it is clear that the child-
neighbor commutative property holds. Note that any node
in L; splits into 4 children nodes, and any node nofin
splits into two nodes. For this encoding of nodes we provide
a fully recursive routing family based on a standatdg n
routing (details in the full paper) and thus it is possible to
route to any target on a dynamic butterfly emodes with
alocal gap of 1 irO(log n) steps.

Routing on the dynamic de Bruijn network.

DEFINITION 6.4 A family of routing functionsR is par-
tially recursive for a commutative familig, P) if for any
u € V; there exists a child € c(u) such thatPg, ,, (v,t) is
a descendant path of the palt, (u, t).

In general, we do not have a routing strategy for the
dynamic graph of a family with partially recursive routing
only. For such routing functions a node must know which
child to choose to be used in the routing algorithm.

However, in the case of the de Bruijn network introduced
above, we have a partially recursive routing that can be used
for the dynamic graph, as follows: The functi; for the
de Bruijn networkG; computes the ‘next’ node in the fol-
lowing simple manner: given a nodewith a binary iden-
tifier (vq,...,v;) and a target = (t;,1o,...), find the



minimal j such thatv = (v1,...,vj,t1,...,tk—;). The
‘next’ node is the neighbofvs,...,vj,t1,. .., ts—ji1).
This routing is partially recursive:

DEFINITION 6.5 Routing on a dynamic de Bruijn network

with local gap 1: Consider a node = (vy,...,v;) €
V and a targett = (t1,t2,...), find the minimalj
such thatv = (vi,...,vj,t1,...,tk—;) . Compute

Rp+1(vtg—j+1,t) = w and route tou, or to p(u), or to
p(p(u)) whichever exists in the dynamic graph.

The lowest level of a dynamic de Bruijn network an
nodes is at mos2logn. Routing on the lowest level and
thus on the dynamic graph is boundedXigg n.
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