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1 IntroductionThe problem. Consider a salesperson that must sell some quota of R brushes in order towin a trip to Hawaii. This salesperson has a map (a weighted graph) of n cities in which eachcity has an attached demand specifying the number of brushes that can be sold in that city.What is the best route to take to sell the quota while traveling the least distance possible?Notice that unlike the standard traveling salesman problem, not only do we need to �gureout the order in which to visit the cities, but we must decide the more fundamental question:which cities do we want to visit?R. Ravi, Sundaram, Marathe, Rosenkrantz, and S.S. Ravi [RSM+94] considered the clean-est case of above problem, called the minimum-weight k-tree, or k-MST problem. In thisproblem, one is given a graph on n vertices with non-negative distances on the edges, anda number k � n, and the goal is to �nd a tree of least total cost that spans k vertices.For k = n this is the (easy) minimum spanning tree problem. For general k, however, theproblem is NP-complete and has the same main di�culty faced by the above salesperson:which points to include and which to ignore? In fact, the k-MST problem nicely focuses onjust that issue since once the set is determined, the least weight tree on that set is easy to�nd.Cheung and A.Kumar [CK94] call this problem the \quorum-cast" problem, whose ap-plication are in the domain of communication networks. Other applications for this probleminclude fault-tolerant distributed computing and data management.The bank robber problem is the following: given the map of a city including the amountsof money in each bank, and a car with bounded gas tank, the robber has to rob the maximumamount of money without refueling after �rst robbery (thus avoiding being reported to thepolice). This problem is also called the \orienteering problem" by Golden, Levi, and Vohra[GLV87].Existing work. Ravi et al. [RSM+94] provide an algorithm that achieves an approxima-tion ratio of O(pk) for the k-MST problem on general graphs (i.e., the tree found is atmost O(pk) times heavier than the optimal tree) and ratio O(k1=4) for the special case ofpoints in 2-dimensional Euclidean space. Garg and Hochbaum [GH94] improved the ratiofor the latter case to O(log k), which has since been improved to a constant factor by Blum,Chalasani, and Vempala [BCV95].Heuristics for problems described above have been given by Balas [Bal89] and by Cheungand A.Kumar [CK94].Results of this paper. In this paper, we describe an algorithm that achieves an approx-imation ratio O(log2 k) for the k-MST problem on general graphs, improving the bound of[RSM+94] and coming closer to the bounds for the special case of points in the Euclideanplane. Our results hold for both the rooted and unrooted versions (is there a required \start"vertex?). This result immediately implies an O(log2R) approximation for the quota-drivensalesperson described above (R is the quota): namely, just treat a vertex with \demand" das a cluster of d vertices, �nd the R-MST, and then tour the tree in the standard way. In2



fact, our algorithm actually achieves the somewhat better bound of O(log2(min(R;n))) forthis problem, and does not require the demands to be polynomial in n.Our algorithm also extends easily to a O(log2(min(R;n))) bound for the prize-collectingtraveling salesman problem (PCTSP) due to Balas [Bal89] on undirected graphs. ThePCTSP problem is just like the quota TSP problem but in addition there are non-negativepenalties attached to each city and the salesperson's cost is the sum of the distance traveledplus the penalties on cities not visited. Thus, the quota problem can be thought of as thespecial case in which penalties are 0. The O(log2(min(R;n))) bound for the PCTSP followsimmediately by concatenating the tour found by our algorithm (which ignores the penalties)to a tour found by a 2-approximation algorithm by Goemans and Williamson [GW92] to arelaxed version of the PCTSP in which the quota requirement is removed. (In the originalPCTSP there is also a restriction that each city not be visited more than once; if this isdesired, we can achieve the same bound in the standard way if the graph is a metric space.)We also derive an approximation algorithm with similar bounds for the bank robberproblem.It is worthwhile to point out that our algorithms are easily implementable in distributedenvironment, since they operate on the basis of local information.2 The k-MST problemWe begin by presenting an algorithm for the k-MST problem that achieves an approximationratio of O(log3 k). We then describe an improvement that removes one of the logarithmicfactors to achieve the ratio of O(log2 k). Before presenting the algorithm, however, let uspoint out that the \rooted" and \unrooted" versions of the problem are essentially equivalentfrom the point of view of approximation for the following reason.Given an algorithm for the rooted problem, to solve the unrooted case one can simplytry all possible start vertices and then choose the smallest tree found. Given an algorithmfor the unrooted version, to solve the rooted case when the weight ` of the optimal tree isknown just throw out all vertices of distance greater than ` from the root, solve the unrootedproblem, and then connect the tree to the root for an added cost of at most `. Note thatthe approximation factor may increase by 1. If the optimal cost ` is not known, simply sortthe distances from the root to each of the n points in increasing order, run the algorithm ntimes throwing out the i farthest points in the ith iteration, and pick the best result.In the rest of this section we will use OPT to denote the optimal k-tree and ` to denoteits total weight.Our algorithm and analysis contain two main ideas. The �rst is a measure used forgrouping points into components in a Kruskal's-algorithm-like manner. The second is abucketing technique that allows one to prove this measure to be useful. The measure we use isthe following: given two components Ci, Cj, we examine the ratio: d(Ci; Cj)=min(jCij; jCjj),where d(�; �) is the distance according to the shortest-path metric and j � j is the size in termsof number of points. The general step of the algorithm will be joining together (using theshortest path) the two components for which this ratio is smallest.3



The bulk of the argument will be for proving correctness of an algorithm for the followingslight relaxation of our goal, which is similar to the \maximal dense" tree concept in [AAG93].Given k, we will �nd a tree on at least k=4 points whose weight is at most O(log2 k) timesthe weight of the minimum k-tree. With this algorithm in place, it will be easy to removethe relaxation and solve our original problem. The Kruskal-like algorithm for this relaxedproblem is as follows:Algorithm Merge-Cluster:1. Begin with n components, one for each point.2. Join (using the shortest path) the two components such that the ratio of the distancebetween the components to the number of points in the smaller one is least. That is,join the pair Ci; Cj that minimize d(Ci; Cj)=min(jCij; jCjj).3. Repeat Step (2) until some component has size at least k=4.Theorem 1 The weight of the largest component produced by Algorithm Merge-Cluster isat most 4(log2 k)2 times the weight of the optimal k-tree.The proof of Theorem 1 follows immediately from Lemmas 1 and 2 below.Lemma 1 If at any time the largest ratio used by algorithm Merge-Cluster so far is r,then any component of p points will have total weight at most rp log2 p.Lemma 2 Algorithm Merge-Cluster never uses a ratio larger than (8` log2 k)=k where `is the weight of the optimal k-tree.To prove Theorem 1 from these lemmas, just note that the only way in which the largestcomponent produced could have size greater than k=2 is for the additional vertices to beincluded \for free" in the shortest path that makes up the �nal connection. Thus combiningthe bounds of the two lemmas yields the theorem.We begin with a proof of the simpler lemma.Proof of Lemma 1. Consider a joining of two components. Since the length of theconnection used is at most r times the number of points in the smaller component, we can\pay for" the connection by charging a cost of at most r to each of the points in the smallercomponent. Any time a point is charged, the size of the component it belongs to at leastdoubles. So, any point in a component of p points has been charged a total cost at mostr log2 p. Since the weight of a component is at most the total charge to points inside it, thisproves the lemma.Proof of Lemma 2. In contradiction, suppose at some time all components producedby the algorithm have size less than k=4 and the distance between any two is greater thanr = (8` log2 k)=k times the number of points in the smaller. Group the components intobuckets based on size, where the ith bucket contains those components with between k=2i4



and k=2i+1 points (i = 2; 3; : : :). Now, throw out all components that do not intersect theoptimal k-tree. Clearly the optimal k-tree can have at most k=4 + k=8 + : : : < k=2 pointsinside buckets that contain only one component. So, there is some bucket containing atleast 2 components such that OPT has at least k=(2 log2 k) points inside that bucket. Sayall components in this bucket have size between s and 2s. This means that the balls ofradius rs=2 about each component do not touch each other and OPT must intersect atleast k=(4s log2 k) components. Therefore OPT must have a connection cost greater thanrk=(8 log2 k) = `, a contradiction.AlgorithmMerge-Cluster immediately gives us a simple O(log3 k) approximation algo-rithm for the k-MST problem as follows. For simplicity, we consider the rooted version. Also,for the moment suppose that we know the weight ` of the optimal k-tree. In the procedurebelow, we view AlgorithmMerge-Cluster as taking \k" as an argument.Algorithm Connect-Clusters:1. Mark as \to be ignored" all vertices of distance greater than ` from the root.2. While k > 0 do the following:(a) Run algorithm Merge-Cluster on the unmarked vertices. (By this we meanthat the distance between two components is still the shortest path distance inthe original graph, but only unmarked vertices are considered in computing acomponent's size.)(b) Let s be the size of the component that was found and mark its vertices as \tobe ignored".(c) Set k = k � s (number of vertices we still need).3. Connect together all the components found in Step 2.Theorem 2 Algorithm Connect-Clusters �nds a tree of at least k points whose weight isat most O(log3 k) times the optimal.Proof. Suppose in the invocations of Algorithm Merge-Cluster so far we have foundcomponents with k0 points total. Then, the optimal k-tree contains at least k � k0 pointsin the graph remaining, and all these are within distance ` from the root. Thus, the nextinvocation of the algorithm will �nd a tree on at least (k � k0)=4 points, at cost at mostO(` log2 k). So the algorithm will be run at most O(log k) times and the sum total cost of allcomponents found is at most O(` log3 k). The cost to connect them together is a low-orderO(` log k).We can remove the knowledge of the optimal cost ` from the above algorithm in the samemanner as was done for converting the rooted version of the k-MST problem to the unrootedversion. For improved e�ciency, note that the true ` satis�es � � ` � k�, where � is thedistance of the kth farthest vertex from the root. So we can begin with a guess of ` = � and5



then double our guess if the numbers and sizes of the components found do not satisfy theguaranteed bounds, for a total of O(log k) iterations maximum.We now show how to modify Algorithm Connect-Clusters to achieve an O(log2 k)approximation. To do this, we use the following corollary to a result by Goemans andWilliamson [GW92]. In [BCC+94] this is called a (3; 6)-TSP approximator.Fact 1 Given a weighted graph on n points and an � > 0, let L� be the length of the shortesttour that visits at least (1 � �)n points. One can �nd in polynomial time a path of length atmost 6L� that visits at least (1 � 3�)n points.For simplicity, we describe the modi�ed algorithm as either �nding a tree of k pointswith cost at most O(` log2 k) or else �nding a tree on at least k=4 points with cost O(`). Itis not hard to see that this su�ces because the latter case removes an O(log2 k) factor fromthe bounds of Theorem 1 (which is even better). The new algorithm works as follows.Algorithm Improved-Connect: Run Algorithm Connect-Clusters until compo-nents totaling at least 1516k points have been found. This requires only a constant numberof applications of AlgorithmMerge-Cluster. For simplicity, if the number of points foundexceeds 1516k, then discard points until we have only 1516k left. If the optimal k-tree intersectsless than a (1� 315) fraction of these points (and so contains at least k=4 new points), then one�nal application of Merge-Cluster (with argument k=4) will �nd a new component withat least k=16 points and we are done. On the other hand, if the optimal k-tree intersects atleast a (1 � 315) fraction of these points, then by applying the algorithm of Fact 1, we can�nd a path of length O(`) that visits at least (1 � 915)1516k = 38k points. Thus, the MST onthese points is a tree of cost O(`) on more than k=4 points.We thus have the following theorem.Theorem 3 Algorithm Improved-Connect provides an O(log2 k) approximation for thek-MST problem and runs in polynomial time.3 Extensions of the basic k-MST algorithmWe now describe how the algorithms of the previous section can be used to give guaranteedapproximations to the other problems mentioned in the introduction, such as� the quota TSP problem,� the prize-collecting salesman problem, and� the bank robber (orienteering) problem.6



3.1 Algorithms for quota-driven salesmenIn the quota TSP problem each vertex in the graph has some attached integral value wi � 0and the salesman has a target quota R. The goal is to �nd a route as short as possible thatvisits vertices whose sum total value is at least R. The salesman may visit a given city morethan once. (If salesman is restricted to one visit per city, the same approximation ratios canbe reached in the standard way in the case of a complete graph where distances obey thetriangle inequality.)First, it is immediate that we can approximate the quota TSP to a factor of O(log2R).Simply replace each vertex of value w by w vertices all at the same location, �nd the ap-proximate R-MST, and then traverse it at most twice. Notice that this bound might notbe so good if R is much larger than n. (Also, this approach naively requires R to be onlypolynomially large; however, since the �rst step of the k-MST approximation algorithm is toreconnect vertices at the same location into a cluster, we can view the replacement describedabove as just a thought experiment.) We show now that the algorithm in fact achieves thebetter bound of O(log2(min(R;n))).It will be simplest to view AlgorithmMerge-Cluster as acting directly on the weightedvertices, merging the two components Ci; Cj that minimize d(Ci; Cj)=min(wt(Ci); wt(Cj))where wt(C) is the sum of the values of the vertices contained in C. Let us call this algorithmMerge-Weighted-Cluster (even though it is really exactly the same algorithm, except forrunning time, as the thought experiment described above). For the analysis corresponding toLemma 1, however, when two components are merged we will \pay for" the cost by chargingto the smaller one in number, not in weight. This still means that for a connection of ratior a vertex of weight w will be charged at most rw, if we charge vertices proportionally totheir weight. But, now it is clear that a vertex will be charged at most log(p) times if it isin a component of p vertices, as opposed to a component having weight p. Thus we have thefollowing lemma. (We also give a more formal proof below.)Lemma 3 If at any time, the largest ratio used by the algorithmMerge-Weighted-Clusterso far is r, then any component of p points and total vertex-weight w will have total edgeweight (cost) at most rw log2 p.Proof: We prove it by induction. It is true initially since the cost begins at 0. When mergingtwo clusters Ci and Cj into C we note thatcost(C) = cost(Ci) + cost(Cj) + d(Ci; Cj)� r � wt(Ci) � log(jCij) + r � wt(Cj) �� log(jCjj) + r �minfwt(Ci); wt(Cj)g� r � (wt(Ci) + wt(Cj)) � log(jCij+ jCjj)� r � wt(C) � log(jCj)We can similarly improve Lemma 2 as follows.7



Lemma 4 AlgorithmMerge-Weighted-Cluster never uses a ratio larger than O(`(log2 n)=R)where ` is the (edge) weight of the optimal tree having vertex-weight R.Proof. Following the proof of Lemma 2 we have buckets containing the components ofvertex-weight R=4 to R=8, R=8 to R=16, etc. We stop, however, at weight R=(10n) and putall components of that weight or less into one single bucket. Now there are only O(log n)buckets instead of O(logR) and the �nal small bucket intersects the optimal tree in at mostR=10 total weight and so can be \thrown out" in the analysis. The rest of the proof ofLemma 2 then can be followed directly.The above two lemmas imply that Algorithm Improved-Connect of Theorem 3 in factachieves a ratio of O(log2 n) as well as O(log2R), which gives us our desired bound.3.2 Algorithms for prize-collecting salesmenAs already mentioned in the introduction, an approximation algorithm to the quota TSPproblem can be transformed into an approximation algorithm to the PCTSP problem [Bal89](which has the additional complication of penalties attached to vertices and the \cost" of atour equals its length plus the sum of penalties on points not visited) as follows. Concate-nate the tour found by the quota TSP approximator to a tour found by a 2-approximationalgorithm of [GW92] to a version of the PCTSP in which the quota requirement is removed.(Removing the quota restriction only decreases the cost of the optimum solution.) Thus wehave the following theorem.Theorem 4 There is a polynomial time algorithm that approximates the PCTSP problemof [Bal89] on n-vertex undirected weighted graphs to a ratio O(log2(min(R;n))), where R isthe required vertex weight to be visited.3.3 The bank robber (orienteering) algorithmThe bank robber (orienteering) problem [GLV87] is much like the problem faced by ourquota-driven salesperson, except that the distance d that may be traveled is �xed and thegoal is to maximize the total valueR of points visited. If we do not require a speci�ed startingpoint, then we can approximate this problem to the same ratio as the quota-TSP problemas follows. We \guess" the value R, we run the quota TSP approximator to �nd a path oflength O(d log2(min(n;R))) visiting vertex-weightR, we break the path found into segmentsof length d=2, and then we choose the segment that contains the most vertex-value inside.Notice, however, that this does not approximate the orienteering problem with a speci�edstart vertex (root) since there is no guarantee the \good" segment found will intersect theroot. 8



4 A hard example for our algorithmOur basic algorithm, Merge-Cluster, �nds a tree on at least k=4 points with cost at mostO(` log2 k), where ` is the cost of the optimal k-tree. In fact, there exist examples that forcethe algorithm to pay 
(` log2 k), and we describe one such example here.De�ne a 1-block to be a single point, a 2-block to be two points separated by distance1, a 4-block to be two 2-blocks separated by distance 2, and more generally a 2t-block to betwo 2t�1-blocks separated by distance 2t�1. Note that a 2t-block has 2t points. Also, noticethat all the points in such a block would be connected together by Merge-Cluster usingconnections of ratio 1.Suppose we have a cluster of A points (by a cluster we just mean that all the points areat the same location) separated by some distance from a cluster of B points. Let us de�nea \�lling in" of the region between the two clusters as follows. First, if A = 1 or B = 1then we do nothing. Otherwise, let C = bmin(A=2; B=2)c and place a cluster of C pointshalfway between the A-point cluster and the B-point cluster. Then recursively �ll in theregion between the A-point and C-point clusters and the region between the C-point andB-point clusters.A hard example for the algorithm can now be described as follows. The graph consistsof two sets of points separated by a large distance. The �rst set of points is a k-block.The second set of points is constructed by placing two clusters of 4k= log k points at adistance of 8k= log k from each other, and then \�lling in" the region between the clustersas described above. Given such a graph, there exists a tree on at least k points with totallength 8k= log k. In particular, just connect all the points in the second set. However, thealgorithm will instead connect together points in the �rst set, since the ratios are betterthere (1 versus 2), and pay a total cost of 
(k log k).5 Open questionsThe obvious open question is whether there exist polynomial-time algorithms with betterapproximation ratios, i.e. logarithmic, or even constant, for the problems considered in thispaper. Alternatively, one would like to prove that improving the approximation is impossibleunless P=NP.Another interesting open question is �nding a polynomial-time poly-logarithmic approx-imation for the rooted version of the bank robber (orienteering) problem. This problemappears to be much more di�cult. Intuitively, the di�culty with approximating the rootedproblem is that many of the points on the optimal tour might be in a clump at distance justabout d=2 from the root. Thus, a strategy that opportunistically visits nearer vertices onits way to that clump may �nd that it cannot reach those vertices and return in the givendistance d. 9
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