
Strongly Polynomial Algorithms for theUnsplittable Flow ProblemYossi Azar1 and Oded Regev21 Dept. of Computer Siene, Tel-Aviv University, Tel-Aviv, 69978, Israel.azar�math.tau.a.il ? ? ?2 Dept. of Computer Siene, Tel-Aviv University, Tel-Aviv, 69978, Israel.odedr�math.tau.a.ilAbstrat. We provide the �rst strongly polynomial algorithms withthe best approximation ratio for all three variants of the unsplittableow problem (UFP ). In this problem we are given a (possibly direted)apaitated graph with n verties andm edges, and a set of terminal pairseah with its own demand and pro�t. The objetive is to onnet a subsetof the terminal pairs eah by a single ow path as to maximize the totalpro�t of the satis�ed terminal pairs subjet to the apaity onstraints.Classial UFP , in whih demands must be lower than edge apaities,is known to have an O(pm) approximation algorithm. We provide thesame result with a strongly polynomial ombinatorial algorithm. Theextended UFP ase is when some demands might be higher than edgeapaities. For that ase we both improve the urrent best approximationratio and use strongly polynomial algorithms. We also use a lower boundto show that the extended ase is provably harder than the lassial ase.The last variant is the bounded UFP where demands are at most 1K ofthe minimum edge apaity. Using strongly polynomial algorithms hereas well, we improve the urrently best known algorithms. Spei�ally,for K = 2 our results are better than the lower bound for lassial UFPthereby separating the two problems.1 IntrodutionWe onsider the unsplittable ow problem (UFP ). We are given a direted orundireted graph G = (V;E), jV j = n, jEj = m, a apaity funtion u on itsedges and a set of l terminal pairs of verties (sj ; tj) with a demand dj and pro�trj . A feasible solution is a subset S of the terminal pairs and a single ow pathfor eah suh pair suh that the apaity onstraints are fully met. The objetiveis to maximize the total pro�t of the satis�ed terminal pairs. The well-knownproblem of maximum edge disjoint path, denoted EDP , is the speial ase whereall demands, pro�ts and apaities are equal to 1 (see [5℄).The EDP (and hene the UFP ) is one of Karp's original NP-omplete prob-lems [6℄. An O(pm) approximation algorithm is known for EDP [7℄ (for addi-tional positive results see [12, 13℄). Most of the results for UFP deal with the? ? ? Researh supported in part by the Israel Siene Foundation and by the US-IsraelBinational Siene Foundation (BSF).



2lassial ase where dmax � umin (the maximal demand is at most the mini-mal apaity). The most popular approah seems to be LP rounding [2, 10, 14℄with the best approximation ratio being O(pm) [2℄. A mathing lower boundof 
(m1=2��) for any � > 0 is shown in [5℄ for direted graphs. Both before andafter the O(pm) result, there were attempts to ahieve the same approximationratio using ombinatorial methods. Up to now however, these were found onlyfor restrited versions of the problem [5, 10℄ and were not optimal. Our ombi-natorial algorithm not only ahieves the O(pm) result for lassial UFP but isalso the �rst strongly polynomial algorithm for that problem.The extended UFP is the ase where both demands and apaities are arbi-trary (spei�ally, some demands might be higher than some apaities). Due toits omplexity, not many results addressed it. The �rst to attak the problem isa reent attempt by Guruswami et al. [5℄. We improve the best approximationratio through a strongly polynomial algorithm. By proving a lower bound for theextended UFP over direted graphs we infer that this ase is really harder thanthe lassial UFP . Spei�ally, for large demands we show that unless P = NPit is impossible to approximate extended UFP better than O(m1��) for any� > 0.Another interesting ase is the bounded UFP ase where dmax � 1Kumin(denoted K-bounded UFP ). It is a speial ase of lassial UFP but betterapproximation ratios an be ahieved. As a speial ase, it ontains the half-disjoint paths problem where all the demands and pro�ts are equal to 12 and edgeapaities are all 1 [8℄. For K � logn, a onstant approximation is shown in [11℄by using randomized rounding. For K < logn, previous algorithms ahieved anapproximation ratio of O(Kn 1K�1 ) ([2, 14℄ by using LP rounding and [3, 9℄ basedon [1℄). We improve the result to a strongly polynomial O(Kn 1K ) approximationalgorithm whih, as a speial ase, is a O(pn) approximation algorithm for thehalf disjoint ase. Sine this ratio is better than the lower bound for lassialUFP , we ahieve a separation between lassial UFP and bounded UFP . Theimprovement is ahieved by splitting the requests into a low demand set anda high demand set. The sets are treated separately by algorithms similar tothose of [1℄ where in the ase of high demands the algorithm has to be slightlymodi�ed. We would like to note that in our approximation ratios involving n,we an replae n with D where D is an upper bound on the longest path everused (whih is obviously at most n).As a by-produt of our methods, we provide online algorithms for UFP .Here, the network is known but requests arrive one by one and a deision hasto be made without knowing whih requests follow. We show on-line algorithmswhose ompetitive ratio is somewhat worse than that of the o�-line algorithms.We also show that one of our algorithms is optimal in the on-line setting byslightly improving a lower bound of [1℄.We onlude this introdution with a short summary of the main results inthis paper. We denote by dmax the maximum demand and by umin the minimumedge apaity.



3{ Classial UFP (dmax � umin) - Strongly polynomial O(pm) approximationalgorithm.{ Extended UFP (arbitrary dmax, umin) - Strongly polynomial O(pm log(2+dmaxumin )) approximation algorithm; A lower bound of 
(m1��) and of
(m 12��qlog(2 + dmaxumin )) for direted graphs.{ Bounded UFP (dmax � 1Kumin) - Strongly polynomial O(Kn 1K ) approxi-mation algorithm.2 NotationLet G = (V;E), jV j = n, jEj = m, be a (possibly direted) graph and a apaityfuntion u : E ! R+. An input request is a quadruple (sj ; tj ; dj ; rj) wherefsj ; tjg is the soure-sink terminal pair, dj is the demand and rj is the pro�t.The input is a set of the above quadruples for j 2 T = f1; :::; lg. Let D be abound on the length of any routing path; note that D is at most n.We denote by umin (umax) the minimum (maximum) edge apaity inthe graph. Similarly, we de�ne dmin, dmax, rmin and rmax to be the mini-mum/maximum demand/pro�t among all input requests. We de�ne two fun-tions on sets of requests, S � T :r(S) =Xj2S rj d(S) =Xj2S djA feasible solution is a subset P � T and a route Pj from sj to tj for eah j 2 Psubjet to the apaity onstraints, i.e., the total demand routed through an edgeis bounded by the its apaity. Some of our algorithms order the requests so wewill usually denote by Lj(e) the relative load of edge e after routing request j,that is, the sum of demands routed through e divided by u(e). Without loss ofgenerality, we assume that any single request an be routed. That is possible sinewe an just ignore unroutable requests. Note that this is not the dmax � uminassumption made in lassial UFP .Before desribing the various algorithms, we begin with a simple usefullemma:Lemma 1. Given a sequene fa1; :::; ang, a non-inreasing non-negative se-quene fb1; :::; bng and two sets X;Y � f1; :::; ng, let X i = X \ f1; :::; ig andY i = Y \ f1; :::; ig. If for every 1 � i � nXj2Xi aj > �Xj2Y i ajthen Xj2X ajbj > �Xj2Y ajbj



4Proof. Denote bn+1 = 0. Sine bj � bj+1 is non-negative,Xj2X ajbj = Xi=1;:::;n(bi � bi+1)Xj2Xi aj> � Xi=1;:::;n(bi � bi+1)Xj2Y i aj = �Xj2Y ajbj3 Algorithms for UFP3.1 Algorithm for Classial UFPIn this setion we show a simple algorithm for lassial UFP (the ase in whihdmax � umin). The algorithm's approximation ratio is the same as the besturrently known algorithm. Later, we show that unlike previous algorithms, thisalgorithm an be easily made strongly polynomial and that it an even be usedin the extended ase.We split the set of requests T into two disjoint sets. The �rst, T1, onsistsof requests for whih dj � umin=2. The rest of the requests are in T2. For eahrequest j and a given path P from sj to tj de�neF (j; P ) = rjdjPe2P 1u(e) ;a measure of the pro�t gained relative to the added network load.Given a set of requests, we use simple bounds on the values of F . The lowerbound, denoted �min, is de�ned as rminn and is indeed a lower bound on F (j; P )sine P annot be longer than n edges and the apaity of its edges must be atleast dj . The upper bound, denoted �max, is de�ned as rmaxumaxdmin and is learlyan upper bound on F (j; P ).PROUTErun Routine2(T1) and Routine2(T2) and hoose the better solutionRoutine2(S):foreah k from blog�min to dlog�maxerun Routine1(2k; S) and hoose the best solutionRoutine1(�; S):sort the requests in S aording to a non-inreasing order of rj=djforeah j 2 S in the above orderif 9 path P from sj to tj s.t. F (j; P ) > � and 8e 2 P;Lj�1(e) + dju(e) � 1then route the request on P and for e 2 P set Lj(e) = Lj�1(e) + dju(e)else rejet the request



5Theorem 1. Algorithm PROUTE is an O(pm) approximation algorithm forlassial UFP .Proof. First, we look at the running time of the algorithm. The number of iter-ations done in Routine2 is:log �max�min = log(nrmaxrmin umaxdmin )whih is polynomial. Routine1 looks for a non overowing path P with F (j; P ) >�. The latter ondition is equivalent to Pe2P 1u(e) < rjdj� and thus a shortestpath algorithm an be used.Consider an optimal solution routing requests in Q � T . For eah j 2 Q letQj be the route hosen for j in the optimal solution. The total pro�t of eitherQ\T1 orQ\T2 is at least r(Q)2 . Denote that set byQ0 and its index by i0 2 f1; 2g,that is, Q0 = Q \ Ti0 . Now onsider the values given to � in Routine2 and let�0 = 2k0 be the highest suh that r(fj 2 Q0jF (j;Qj) > �0g) � r(Q)=4. It islear that suh an �0 exists. From now on we limit ourselves to Routine1(�0; i0)and show that a good routing is obtained by it. Denote by P the set of requestsrouted by Routine1(�0; i0) and for j 2 P denote by Pj the path hosen for it.Let Q0high = fj 2 Q0jF (j;Qj) > �0g and Q0low = fj 2 Q0jF (j;Qj) � 2�0gbe sets of higher and lower `quality' routes in Q0. Note that the sets are notdisjoint and that the total pro�t in eah of them is at least r(Q)4 by the hoieof �0. From the de�nition of F ,r(Q0low) = Xj2Q0 low F (j;Qj)Xe2Qj dju(e) � 2�0 Xj2Q0low Xe2Qj dju(e)� 2�0Xj2Q Xe2Qj dju(e)= 2�0Xe Xj2Qje2Qj dju(e)� 2�0Xe 1 = 2m�0where the last inequality is true sine an optimal solution annot overow anedge. Therefore, r(Q) � 8m�0:Now let Eheavy = fe 2 EjLl(e) � 14g be a set of the heavy edges afterthe ompletion of Routine1(�0; i0). We onsider two ases. The �rst is whenjEheavy j � pm. Aording to the desription of the algorithm, F (j; Pj) > �0 forevery j 2 P . Therefore, r(P) =Xj2P F (j; Pj)Xe2Pj dju(e)



6 � �0Xj2P Xe2Pj dju(e)= �0Xe Xjje2Pj dju(e)= �0Xe Ll(e) � 14pm�0where the last inequality follows from the assumption that more than pm edgesare loaded more than fourth their apaity. By ombining the two inequalitieswe get: r(Q)r(P) � 32pm = O(pm)whih ompletes the �rst ase.From now on we onsider the seond ase where jEheavy j < pm. Denote byR = Q0high nP . We ompare the pro�t given by our algorithm to that found in Rby using Lemma 1. Sine rjdj is a non inreasing sequene, it is enough to boundthe total demand routed in pre�xes of the two sets. For that we use the notationRk = R \ f1; :::; kg and Pk = P \ f1; :::; kg for k = 1; :::; l. For eah requestj 2 Rk the algorithm annot �nd any appropriate path. In partiular, the pathQj is not hosen. Sine j 2 Q0high, F (j;Qj) > �0 and therefore the reason thepath is not hosen is that it overows one of the edges. Denote that edge by ejand by Ek = fej jj 2 Rkg.Lemma 2. Ek � EheavyProof. Let ej 2 Ek be an edge with j 2 Rk, a request orresponding to it. Welaim that when the algorithm fails �nding a path for j, Lj(ej) � 14 . For the asei0 = 1, the laim is obvious sine the demand dj � umin=2 and in partiular,dj � u(ej)=2. Thus, the load of ej must be higher than u(ej)=2 for the pathQj to overow it. For the ase i0 = 2, we know that umin=2 < dj � umin.In ase u(ej) > 2umin, the only way to overow it with demands of size atmost dmax � umin is when the edge is loaded at least u(ej) � umin � u(ej)=2.Otherwise, u(ej) � 2umin and sine dj � umin � u(e) we know that the edgeannot be empty. Sine we only route requests from T2 the edge's load must beat least umin=2 � u(ej)=4.Sine eah request in Rk is routed through an edge of Ek in the optimalsolution, d(Rk) �Pe2Ek u(e). The highest apaity edge f 2 Ek is loaded morethan fourth its apaity sine it is in Eheavy and therefore d(PK) � u(f)4 . ByLemma 2, jEkj � jEheavy j < pm and hene,d(Rk) < pm � u(f) � 4pm � d(Pk):



7We use Lemma 1 by ombining the inequality above on the ratio of demandsand the noninreasing sequene rjdj . This yieldsXj2R rjdj dj � 4pmXj2P rjdj dj ;or, r(R) � 4pm � r(P):Sine Q0high = R [ P ,r(Q0high) = r(R) + r(P) � (1 + 4pm)r(P):Reall that r(Q0high) � r(Q)=4 and thereforer(Q)r(P) � 4 + 16pm = O(pm)3.2 Strongly Polynomial AlgorithmRoutine1 is strongly polynomial. Routine2 however alls it log �max�min times.Therefore, it is polynomial but still not strongly polynomial. We add a pre-proessing step whose purpose is to bound the ratio �max�min . Reall that l denotesthe number of requests.SPROUTE(T ):run Routine3(T1) and Routine3(T2) and hoose the better solutionRoutine3(S):For eah edge suh that u(e) > l � dmax set u(e) to be l � dmax.Throw away requests whose pro�t is below rmaxl .Take the better out of the following two solutions:Route all requests in Stiny = fj 2 Sjdj � uminl g on any simple path.Run Routine2(S n Stiny).Theorem 2. Algorithm SPROUTE is a strongly polynomial O(pm) approxi-mation algorithm for lassial UFP .Proof. Consider an optimal solution routing requests in Q � S. Sine the de-mand of a single request is at most dmax, the total demand routed through agiven edge is at most l � dmax. Therefore, Q is still routable after the �rst pre-proessing phase. The total pro�t of requests whose pro�t is lower than rmaxlis rmax. In ase r(Q) > 2rmax, removing these requests still leaves the set Q0whose total pro�t is at least r(Q) � rmax � r(Q)2 . Otherwise, we take Q0 to bethe set ontaining the request of highest pro�t. Then, r(Q0) is rmax � r(Q)2 . Allin all, after the two preproessing phases we are left with an UFP instane forwhih there is a solution Q0 whose pro�t is at least r(Q)2 .



8 Assume that the total pro�t in Q0 \Stiny is at least r(Q)4 . Sine the requestsin Stiny have a demand of at most uminl and there are at most l of them, they anall be routed on simple paths and the pro�t obtained is at least r(Q)4 . Otherwise,the pro�t in Q0 n Stiny is at least r(Q)4 and sine algorithm PROUTE is anO(pm) approximation algorithm, the pro�t we obtain is also within O(pm) ofr(Q).The preproessing phases by themselves are obviously strongly polynomial.Reall that the number of iterations performed by Routine2 is log(n rmaxrmin umaxdmin ).The ratio of pro�ts is at most l by the seond preproessing phase. The �rstpreproessing phase limits umax to k � dmax. So, the number of iterations is atmost log(nl2 dmaxdmin ). In ase S = T1, dmax � umin2 and dmin � uminl sine tinyrequests are removed. For S = T2, dmax � umin and dmin � umin=2. We end upwith at most O(log n+ log l) iterations whih is strongly polynomial.3.3 Algorithm for Extended UFPIn this setion we show that the algorithm an be used for the extended ase inwhih demands an be higher than the lowest edge apaity.Instead of using just two sets in SPROUTE, we de�ne a partition of theset of requests T into 2 + maxfdlog dmax=umine; 0g disjoint sets. The �rst, T1onsists of requests for whih dj < umin=2. The set Ti for i > 1 is of requests forwhih 2i�3umin < dj � 2i�2umin. The algorithm is as follows:ESPROUTE(T ):for any 1 � i � 2 +maxfdlog dmax=umine; 0g suh that Ti is not emptyrun Routine3(Ti) on the resulting graphhoose the best solution obtainedThe proof of the following theorem is left to Appendix A.1:Theorem 3. Algorithm ESPROUTE is a strongly polynomial O(pm log(2 +dmaxumin )) approximation algorithm for extended UFP .4 Algorithms for K-bounded UFPIn the previous setion we onsidered the lassial UFP in whih dmax � umin.We also extended the disussion to extended UFP . In this setion we show betteralgorithms for K-bounded UFP in whih dmax � 1Kumin where K � 2.4.1 Algorithms for Bounded DemandsIn this setion we present two algorithm for bounded UFP . The �rst deals withthe ase in whih the demands are in the range [uminK+1 ; uminK ℄. As a speial ase, itprovides an O(pn) approximation algorithm for the half-disjoint paths problemwhere edge apaities are all the same and the demands are exatly half the edgeapaity. The seond is an algorithm for the K-bounded UFP where demandsare only bounded by uminK from above.



9EKROUTE(T ):� 2Dsort the requests in T aording to a non-inreasing order of rj=djforeah j 2 T in the above orderif 9 a path P from sj to tj s.t.Pe2P (�Lj�1(e) � 1) < Dthen route the request on P and for e 2 P set Lj(e) = Lj�1(e) + 1bK�u(e)umin else rejet the requestBKROUTE(T ):� (2D)1+ 1K�1sort the requests in T aording to a non-inreasing order of rj=djforeah j 2 Ti in the above orderif 9 a path P from sj to tj s.t.Pe2P (�Lj�1(e) � 1) < Dthen route the request on P and for e 2 P set Lj(e) = Lj�1(e) + dju(e)else rejet the requestNote that algorithmEKROUTE uses a slightly di�erent de�nition of L. This`virtual' relative load allows it to outperform BKROUTE in instanes wherethe demands are in the orret range.The proof of the following theorem an be found in Appendix A.2:Theorem 4. Algorithm EKROUTE is a strongly polynomial O(K � D 1K ) ap-proximation algorithm for UFP with demands in the range [uminK+1 ; uminK ℄. Algo-rithm BKROUTE is a strongly polynomial O(K � D 1K�1 ) approximation algo-rithm for K-bounded UFP .4.2 A Combined AlgorithmIn this setion we ombine the two algorithms presented in the previous setion:the algorithm for demands in the range [uminK+1 ; uminK ℄ and the algorithm for theK-bounded UFP . The result is an algorithm for the K-bounded UFP with anapproximation ratio of O(K �D 1K ).We de�ne a partition of the set of requests T into two sets. The �rst, T1,inludes all the requests whose demand is at most 1K+1 . The seond, T2, inludesall the requests whose demand is more than 1K+1 and at most 1K .CKROUTE(T ):Take the best out of the following two possible solutions:Route T1 by using BKROUTE and rejet all requests in T2Route T2 by using EKROUTE and rejet all requests in T1



10Theorem 5. Algorithm CKROUTE is a strongly polynomial O(K � D 1K ) ap-proximation algorithm for K-bounded UFP .Proof. Let Q denote an optimal solution in T . Sine BKROUTE is used withdemands bounded by 1K+1 its approximation ratio is O(KD 1K ). The same ap-proximation ratio is given by EKROUTE. Either T1 or T2 have an optimalsolution whose pro�t is at least r(Q)2 and therefore we obtain the laimed ap-proximation ratio.5 Lower BoundsIn this setion we show that in ases where the demands are muh larger thanthe minimum edge apaity UFP beomes very hard to approximate, namely,
(m1��) for any � > 0. We also show how di�erent demand values relate to theapproximability of the problem. The lower bounds are for direted graphs only.Theorem 6. [4℄ The following problem is NPC:2DIRPATH:INPUT: A direted graph G = (V;E) and four nodes x; y; z; w 2 VQUESTION: Are there two edge disjoint direted paths,one from x to y and the other from z to w in G ?Theorem 7. For any � > 0, extended UFP annot be approximated better than
(m1��).Proof. For a given instane A of 2DIRPATH with jAj edges and a small on-stant �, we onstrut an instane of extended UFP omposed of l opies of A,A1; A2; :::; Al where l = jAjd 1� e. The instane Ai is omposed of edges of apaity2l�i. A speial node y0 is added to the graph. Two edges are added for eah Ai,(yi�1; xi) of apaity 2l�i� 1 and (yi�1; zi) of apaity 2l�i. All l requests sharey0 as a soure node. The sink of request 1 � i � l is wi. The demand of requesti is 2l�i and its pro�t is 1. The above struture is shown in the following �gurefor the hypothetial ase where l = 4. Eah diamond indiates a opy of A withx; y; z; w being its left, right, top and bottom orners respetively. The numberinside eah diamond indiates the apaity of A's edges in this opy.
87 8 43 4 21 2 10 1y0 w1 w2 w3 w4Fig. 1. The UFP instane for the ase l = 4We laim that for a given Y ES instane of 2DIRPATH the maximal pro�tgained from the extended UFP instane is l. We route request 1 � i � l through



11[y0; x1; y1; x2; y2; :::; yi�1; zi; wi℄. Note that the path from xj to yj and from zjto wj is a path in Aj given by the Y ES instane.For a NO instane, we laim that at most one request an be routed. Thatis beause the path hosen for a request i ends at wi. So, it must arrive fromeither zi or xi. The only edge entering xi is of apaity 2l�i � 1 so zi is theonly option. The instane Ai is a NO instane of apaity 2l�i through whiha request of demand 2l�i is routed form zi to wi. No other path an thereforebe routed through Ai so requests j > i are not routable. Sine i is arbitrary, weonlude that at most one request an be routed through the extended UFPinstane and its pro�t is 1.The gap reated is l = jAj 1� and the number of edges is l �(jAj+2) = O(l1+�).Hene, the gap is 
(m 11+� ) = 
(m1��0) and sine � is arbitrary we omplete theproof.Theorem 8. For any � > 0 extended UFP with any ratio dmax=umin � 2annot be approximated better than 
(m 12��qblog(dmaxumin )).Proof. Omitted.6 Online AppliationsSomewhat surprisingly, variants of the algorithms onsidered so far an be usedin the online setting with slightly worse bounds. For simpliity, we present herean algorithm for the unweighted K-bounded UFP in whih rj = dj for everyj 2 T .First note that for unweighted K-bounded UFP , both EKROUTE andBKROUTE an be used as online deterministi algorithms sine sorting therequests beomes unneessary. By splitting T into T1 and T2 as in CKROUTEwe an ombine the two algorithms:ONLINECKROUTE(T ):Choose one of the two routing methods below with equal probabilities:Route T1 by using BKROUTE and rejet all requests in T2Route T2 by using EKROUTE and rejet all requests in T1Theorem 9. Algorithm ONLINECKROUTE is an O(K � D 1K ) ompetitiveonline algorithm for unweighted K-bounded UFP .Proof. The expeted value of the total aepted demand of the algorithm forany given input is the average between the total aepted demands given by thetwo routing methods. Sine eah method is O(K �D 1K ) ompetitive on its partof the input, the theorem follows.Theorem 10. The ompetitive ratio of any deterministi on-line algorithm forthe K-bounded UFP is at least 
(K � n 1K ).Proof. Omitted.



127 ConlusionUsing ombinatorial methods we showed algorithms for all three variants of theUFP problem. We improve previous results and provide the best approxima-tions for UFP by using strongly polynomial algorithms. Due to their relativesimpliity we believe that further analysis should lead to additional performaneguarantees suh as non linear bounds. Also, the algorithms might perform betterover spei� networks. It is interesting to note that no known lower bound existsfor the half-disjoint ase and we leave that as an open question.Referenes[1℄ B. Awerbuh, Y. Azar, and S. Plotkin. Throughput-ompetitive online routing. In34th IEEE Symposium on Foundations of Computer Siene, pages 32{40, 1993.[2℄ A. Baveja and A. Srinivasan. Approximation algorithms for disjoint paths andrelated routing and paking problems. To appear in Mathematis ofOperationsResearh.[3℄ A. Borodin and R. El-Yaniv. Online omputation and ompetitive analysis (am-bridge university press, 1998). SIGACTN: SIGACT News (ACM Speial InterestGroup on Automata and Computability Theory), 29, 1998.[4℄ S. Fortune, J. Hoproft, and J. Wyllie. The direted homeomorphism problem.Theoretial Computer Siene, 10:111{121, 1980.[5℄ V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yannakakis. Near-optimal hardness results and approximation algorithms for edge-disjoint paths andrelated problems. Pro. of STOC '99, pages 19{28.[6℄ R.M. Karp. Reduibility among Combinatorial Problems, R.E. Miller andJ.W. Thather (eds.), Complexity of Computer Computations. Plenum Press,1972.[7℄ J. Kleinberg. Approximation Algorithms for Disjoint Paths Problems. PhD thesis,Massahusetts Institue of Tehnology, 1996.[8℄ J. Kleinberg. Deision algorithms for unsplittable ow and the half-disjoint pathsproblem. In Proeedings of the 30th Annual ACM Symposium on Theory of Com-puting (STOC '98), pages 530{539, New York, May 23{26 1998. ACM Press.[9℄ J. Kleinberg and �E. Tardos. Approximations for the disjoint paths problem inhigh-diameter planar networks. Pro. of STOC '95, pages 26{35.[10℄ S. Kolliopoulos and C. Stein. Approximating disjoint-path problems using greedyalgorithms and paking integer programs. In IPCO: 6th Integer Programming andCombinatorial Optimization Conferene, 1998.[11℄ P. Raghavan and C.D. Thompson. Provably good routing in graphs: Regulararrays. In Pro. 17th ACM Symp. on Theory of Computing, May 1985.[12℄ N. Robertson and P. D. Seymour. An outline of a disjoint paths algorithm. InPaths, Flows and VLSI Design, Algorithms and Combinatoris, volume 9, pages267{292, 1990.[13℄ N. Robertson and P. D. Seymour. Graph minors. XIII. the disjoint paths problem.JCTB: Journal of Combinatorial Theory, Series B, 63, 1995.[14℄ A. Srinivasan. Improved approximations for edge-disjoint paths, unsplittable ow,and related routing problems. In Pro. 38th IEEE Symp. on Found. of Comp.Siene, pages 416{425.



13A AppendixA.1 Proof of Theorem 3Proof. The proofs of Theorem 1 and of Theorem 2 hold also for the extendedase. The only part whih has to be proved is Lemma 2. The following replaesthe lemma:Lemma 3. Ek � EheavyProof. Let ej 2 Ek be an edge with j 2 Rk, a request orresponding to it. Welaim that when the algorithm fails �nding a path for j, Lj(ej) � 14 . For thease i0 = 1, the laim is obvious as before. For the ase i0 > 1, we know that2i0�3umin < dj � 2i0�2umin. In ase u(ej) > 2i0�1umin, the only way to overowit with demands of size at most 2i0�2umin is when the edge is loaded at leastu(ej)� 2i0�2umin � u(ej)=2. Otherwise, u(ej) � 2i0�1umin and sine j is routedthrough this edge in the optimal solution dj � u(ej). Therefore, the edge annotbe empty. Sine we only route requests from Ti0 the edge's load must be at least2i0�3umin � u(ej)=4.The number of iterations ESPROUTE performs is at most l sine we ig-nore empty Ti's. For T1, the number of iterations of Routine2 is the same asin SPROUTE. For a set Ti, i > 1, the number of iterations of Routine2 islog(n rmaxrmin umaxdmin ). As before, the preproessing of Routine3 redues this numberto log(nl2 dmaxdmin ). Sine the ratio dmaxdmin is at most 2 in eah Ti, we onlude thatESPROUTE is strongly polynomial.A.2 Proof of Theorem 4Proof. The �rst thing to note is that the algorithms never overow an edge. Forthe �rst algorithm, the demands are at most uminK and the only way to exeed anedge apaity is to route request j through an edge e that holds at least bK�u(e)umin requests. For suh an edge, Lj�1(e) � 1 and �Lj�1(e) � 1 � �� 1 � D. For theseond algorithm, it is suÆient to show that in ase Lj�1(e) > 1� 1K for somee then �Lj�1(e)�1 � D; that is true sine �Lj�1(e)�1 � ((2D)1+ 1K�1 )1� 1K �1 =2D � 1 � D. Therefore, the algorithms never overow an edge.Now we lower bound the total demand aepted by our algorithms. We denoteby Q the set of requests in the optimal solution and by P the requests aeptedby either of our algorithm. For j 2 Q denote by Qj the path hosen for it in theoptimal solution and for j 2 P let Pj be the path hosen for it by our algorithm.We onsider pre�xes of the input so let Qk = Q\f1; :::; kg and Pk = P\f1; :::; kgfor k = 1; :::; l. We prove thatd(Pk) � Pe u(e)(�Lk(e) � 1)6KD� 1K :



14The proof is by indution on k and the indution base is trivial sine the aboveexpression is zero. Thus, it is suÆient to show that for an aepted request jPe2Pj u(e)(�Lj(e) � �Lj�1(e))6KD� 1K � dj :Note that for any e 2 Pj , Lj(e)�Lj�1(e) � 1K for both algorithms. In addition,for both algorithms Lj(e)�Lj�1(e) � 3 dju(e) where the fator 3 is only neessaryfor EKROUTE where the virtual load is higher than the atual inrease inrelative load. The worst ase is when K = 2, u(e) = (1:5 � �)umin and dj =( 13 + �)umin: the virtual load inreases by 12 whereas dju(e) is about 29 . Looking atthe exponent,�Lj(e) � �Lj�1(e) = �Lj�1(e)(�Lj(e)�Lj�1(e) � 1)= �Lj�1(e)((� 1K )K(Lj(e)�Lj�1(e)) � 1)� �Lj�1(e)� 1KK(Lj(e)� Lj�1(e))� �Lj�1(e)� 1K 3K dju(e)where the �rst inequality is due to the simple relation xy � 1 � xy for 0 � y �1; 0 � x and that for e 2 Pj , Lj(e)� Lj�1(e) � 1K . Therefore,Xe2Pj u(e)(�Lj(e) � �Lj�1(e)) � Xe2Pj �Lj�1(e)� 1K 3Kdj= 3K� 1K dj Xe2Pj �Lj�1(e)= 3K� 1K dj(Xe2Pj(�Lj�1(e) � 1) + jPj j)� 3K� 1K (D +D)dj= 6KD� 1K djwhere the last inequality holds sine the algorithm routes the request throughPj and the length of Pj is at most D.The last step in the proof is to upper bound the total demand aepted byan optimal algorithm. Denote the set of requests rejeted by our algorithm andaepted by the optimal one by Rk = Qk n P k. For j 2 Rk, we know thatPe2Qj (�Lj�1(e) � 1) � D sine the request is rejeted by our algorithm. Hene,D � d(Rk) � Xj2Rk Xe2Qj dj(�Lj�1(e) � 1)� Xj2Rk Xe2Qj dj(�Lk(e) � 1)



15=Xe Xj2Rkje2Qj dj(�Lk(e) � 1)=Xe (�Lk(e) � 1) Xj2Rkje2Qj dj�Xe (�Lk(e) � 1)u(e);where the last inequality holds sine the optimal algorithm annot overow anedge.By ombining the two inequalities shown above,d(Qk) � d(Pk) + d(Rk) � d(Pk) + d(Pk)6KDD � 1K = (1 + 6K� 1K )d(Pk)The algorithm followed a non-inreasing order of rjdj and by Lemma 1 we ob-tain the same inequality above for pro�ts. So, the approximation ratio of thealgorithm is 1 + 6K� 1K = O(K � � 1K )whih, by assigning the appropriate values of �, yields the desired results.


