
On the problem of approximating thenumber of bases of a matroidY. Azar� A. Z. Broder� A. M. FriezeyMarch 12, 1996In this note we consider the problem of counting the number of basesof a matroid. The problem is of practical signi�cance as it contains graphreliability as a special case. This is a #P-Hard problem and the main focusin recent research has been on trying to approximate the number of bases.The main result of this paper is that it is impossible to get a good ap-proximation in deterministic polynomial time if the matroidM is given to usby an independence or basis oracle. Thus our result has the same 
avour asthose of Elekes [5] and B�ar�anyi and F�uredi [1] on the problem of computingthe volume of a convex body given by a membership oracle.It should be noted that the main thrust of recent work on approximationfor #P-Hard problems has been on randomized algorithms, in particular theMarkov chain approach initiated by Broder [2]; see Dyer and Frieze [3], F�ederand Mihail [6] for examples of this approach to counting matroid bases. Itis to be hoped that randomisation can triumph in this case as it does forcomputing the volume of a convex body { Dyer, Frieze and Kannan [4] orLov�asz and Simonovits [8].We need very little from the theory of matroids, but see Welsh [12] orOxley [9] for any of the basic de�nitions we use. Our computational modelis that of Robinson and Welsh [11]. We assume that we have an oracle which�DEC Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, USA.E-mail: azar@src.dec.com, broder@src.dec.com.yDepartment of Mathematics, Carnegie Mellon University. A portion of this work wasdone while the author was visiting DEC Systems Research Center. Supported in part byNSF grant CCR9024935. E-mail: af1p@euler.math.cmu.edu.1



answers questions about a speci�c matroidM = (E;B) where E denotes thegroundset and B denotes the set of bases of M. Speci�cally, if S � E thenone probe of the oracle will tell us if S is independent and if it is provide abasis B 2 B containing S.We consider algorithms whose only knowledge of M is obtained throughprobes. We call these Matroid Oracle Algorithms. Now it is well known thatsuch algorithms can be used to optimise very e�ciently and it is always thehope in a matroid problem that there is a Matroid Oracle Algorithm whichcan be used to solve it. Here we have a negative result, which we express intwo ways. In the proof below we assume that n is su�ciently large to justifyany of the inequalities used.Theorem 1 Let jEj = n and let A be a deterministic oracle algorithm whichoutputs a number � approximating the number of bases of a given matroidM = (E;B). Suppose A makes k = 2o(n) probes. Then A can only guaranteethat 2�
(n=(log k)2)jBj � � � 2
(n=(log k)2)jBj:In particular(a) If A makes only a polynomial number of probes then its estimate canonly be guaranteed accurate to within 2
(n=(logn)2).(b) Suppose that A always computes an �-approximation � to jBj where0 < � is a constant. Then in the worst case A requires 2
(pn) probes.Proof: For a �nite set X let X(k) denote the set of k-subsets of X.Fact 1: Suppose H = fH1;H2; : : : ;Hpg � X(k) andjHi \Hj j � k � 2 for 1 � i < j � p: (1)Then there exists a matroid with groundset X whose set of bases is preciselyX(k) n H. (It is in fact straightforward to check that this collection of setssatis�es the basis axioms of a matroid.). This was observed by Pi� and Welsh[10] in their proof that the number of matroids on a ground set of size n isdoubly exponential in n.Fact 2: Using the same notation as Fact 1, if jXj = m then there is acollectionH satisfying (1) with p � � mbm=2c�=(2m). This was shown by Knuth[7] in a paper that sharpened the lower bound of Pi� and Welsh.2



Now back to the proof proper. Let s = dlog2 k + 32 log2 log2 k + 10eand r = bn=sc. Partition E = f1; 2; : : : ; ng into E1 [ E2 [ � � � [ Er wheres � mi = jEij � s+ 1 for 1 � i � r. Let M be the partition matroid wherea set I � E is independent if and only ifjEi \ Ij � bmi=2c for 1 � i � r: (2)We can now state the policy followed by the oracle: When given inputI our oracle will answer NO if (2) fails to hold and otherwise will say YESand provide some B � I satisfying (2) with equality. (B can be chosenarbitrarily.)Suppose that our algorithm A makes k positive probes and learns basesB1; B2; : : : ; Bk. Let Di;j = Ei \ Bj for 1 � i � r, 1 � j � k, and let Di =fDi;1;Di;2; : : :Di;kg. Using Fact 2 choose a set Hi = fH1;H2; : : : ;Hpg �E(bmi=2c)i with p � � mibmi=2c�=(2mi) which satis�es (1). Let Ĥi = HnDi. UsingFact 1 we know that there is a matroid Mi with groundset Ei which hasE(bmi=2c)i n Ĥi as its set of bases.Now notice that A cannot distinguish between the two matroids M andthe direct sum M̂ = Lri=1Mi, since the oracle gave answers to A's probesconsistent with either matroid. But M has� = rYi=1 mibmi=2c!bases, and M̂ has at most�̂ = rYi=1  mibmi=2c!�1� 12mi�+ k!bases. Thus A can not guarantee to be more accurate than within a factorq�=�̂ of the true number of bases. But�̂� = rYi=10@1 � 12mi + k� mibmi=2c�1A : (3)Now our choice of s implies that k � � mibmi=2c�=(4mi) and so (3) implies�̂� � rYi=1�1� 14mi� = e�
(r=s) = e�
(n=(logk)2):This completes our proof. 2 3
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