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AbstratLet X = f1; 2; : : : ; ng be a ground set of n elements, and let S be a family of subsets of X ,jSj = m, with a positive ost S assoiated with eah S 2 S.Consider the following online version of the set over problem, desribed as a game betweenan algorithm and an adversary. An adversary gives elements to the algorithm from X one-by-one. One a new element is given, the algorithm has to over it by some set of S ontainingit. We assume that the elements of X and the members of S are known in advane to thealgorithm, however, the set X 0 � X of elements given by the adversary is not known in advaneto the algorithm. (In general, X 0 may be a strit subset of X .) The objetive is to minimizethe total ost of the sets hosen by the algorithm. Let C denote the family of sets in S thatthe algorithm hooses. At the end of the game the adversary also produes (o�-line) a familyof sets COPT that overs X 0. The performane of the algorithm is the ratio between the ost ofC and the ost of COPT . The maximum ratio, taken over all input sequenes, is the ompetitiveratio of the algorithm.We present an O(logm logn) ompetitive deterministi algorithm for the problem, and es-tablish a nearly mathing 
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minimum ost. The set over problem is a lassi NP-hard problem that was studied extensivelyin the literature, and the best approximation fator ahievable for it in polynomial time (assumingP 6= NP ) is �(log n) [6, 7, 9, 10℄.Consider the following online version of the set over problem, desribed as a game betweenan algorithm and an adversary. An adversary gives elements to the algorithm from X one-by-one.One a new element is given, the algorithm has to over it by some set of S ontaining it. Denote byX 0 � X the set of elements given by the adversary. Our assumption is that the set over instane,i.e. the elements of X and the members of S, is known in advane to the algorithm. The objetiveis to minimize the total ost of the sets hosen by the algorithm. However, the algorithm does notknow in advane the set of elements X 0 given by the adversary, i.e., X 0 may be a strit subset of Xin general. Let C denote the family of sets in S that the algorithm hooses. At the end of the gamethe adversary also produes (o�-line) a family of sets COPT that overs all the elements belongingto X 0. The performane of the algorithm is de�ned to be the ratio between the ost of C and theost of COPT . The maximum ratio, taken over all input sequenes, is de�ned to be the ompetitiveratio of the algorithm.The online set over problem aptures many pratial senarios. Consider, for example, serversin a network that provide a servie. There is a set of potential lients that may need the servieand eah server an provide the servie to a subset of them. (E.g., the subset is determined by thedistane from the server.) There is a setup ost, or ativation ost, assoiated with the operationof a server. The lients arrive one-by-one. Upon arrival of a lient, the network manager has todeide whih server to ativate so that the lient reeives the servie it requested. The networkmanager knows in advane the set of potential lients and the set of servers, however, it does notknow in advane whih lients will indeed request the servie.1.1 ResultsOur main result is an O(logm log n) ompetitive algorithm for the online set over problem. We�rst present the algorithm for the unweighted ase, i.e., when all sets have unit ost. Then, wegeneralize the algorithm for the weighted ase, ahieving the same ompetitive fator. If eahelement appears in at most d sets, and all sets have unit ost, then the ompetitive fator of ouralgorithm an be improved to O(log d log n).The algorithm assoiates a weight with eah set, initially all weights are equal. In eah iterationof the algorithm, when the adversary gives a new element, all the sets ontaining the elementmultiply their weight by a fator (whih depends on the ost of the set, among other parameters).A set hooses itself to the solution with probability roughly proportional to the inrease in itsweight. We de�ne a potential funtion that depends on the weight of the unovered elements, theost of the sets already in the over, and the ost and weight of the sets not belonging to the over.The heart of our analysis is the laim that there exists a hoie of sets in eah iteration for whih thepotential funtion is non-inreasing. This is proved by analyzing a suitable randomized hoie ofsets. We then show that the randomized hoie of the sets in eah iteration an be derandomized,thus making the online algorithm deterministi, while maintaining the same ompetitive fator.We note that knowing in advane the set over instane is ruial for making the online algorithmdeterministi.A high level desription of the design of the algorithm is as follows. It starts by produing online



a frational solution to the problem, where the frational solution (at least for the unweightedase) is motivated by similar tehniques developed in omputational learning theory for onlinepredition [11, 8℄ (e.g., the WINNOW algorithm). See also [5, 3, 4℄ for related tehniques andadditional referenes. Frational solutions an often be onverted into randomized algorithms, butit is usually impossible to perform this onversion online. In our ase, however, this onversionis possible, beause of the way the frational solution evolves in time. Finally, the randomizedalgorithm is onverted into a deterministi one by using an appropriate derandomization tehnique.This derandomization is non-standard, as it has to apply to the online setting. The requirement tomaintain the properties of the online solution obtained leads to the potential funtion used.Our result is nearly tight. We prove a lower bound of 
� log n logmlog logm+log log n� on the ompetitivenessof any deterministi algorithm for the online set over problem for a wide range of the parametersm and n, and observe that this range annot be extended signi�antly. Thus, our upper and lowerbounds almost math for all interesting values of the parameters.We note that the problem onsidered here is di�erent from the online set over problem disussedin [2℄. There, we are also given m sets and n elements that arrive one at a time. However, the goalof the online algorithm is to pik k sets so as to maximize the number of elements that are overed.The algorithm only gets redit for elements that are ontained in a set that it seleted before orduring the step in whih the element arrived. The authors of [2℄ showed a randomized �(logm log nk )ompetitive algorithm for the problem, where the bound is optimal for many values of n, m, andk. This problem is di�erent from our problem here, as it deals with maximum bene�t, whereaswe onsider minimum ost. Indeed, it is easy to see that in ontrast to our ase, the problem in[2℄ does not yield any non-trivial deterministi algorithm, and the algorithms and tehniques forthe two problems seem to be totally unrelated, despite the similarity in the desription of the twoproblems.2 The Unweighted CaseWe desribe in this setion an O(logm logn) ompetitive algorithm for the unweighted ase, i.e.,when all sets have unit ost.The algorithm maintains a weight wS > 0 for eah S 2 S. The weights an only inrease duringthe run of the algorithm. Initially, wS = 1=(2m) for eah S 2 S. The weight of eah element j 2 Xis de�ned as wj =PS2Sj wS , where Sj denotes the olletion of sets ontaining element j. Initially,the algorithm starts with the empty over C = ;. De�ne C to be the set of all elements overedby the members of C. (Initially, C = ;.) The following potential funtion is used throughout thealgorithm: � = Xj 62C n2wjWe now give a high level desription of a single iteration of the algorithm in whih the adversarygives an element j and the algorithm hooses sets that over it.1. If wj � 1, then do not add any new set to C and do not update the weights of the sets.2. Else, (wj < 1), perform a weight augmentation:



(a) Let k be the minimal integer for whih 2k � wj > 1. (Clearly, 2k � wj < 2.)(b) For eah set S 2 Sj , wS  2k � wS .() Choose from Sj at most 4 log n sets to C so that the value of the potential funtion �does not exeed its value before the weight augmentation.In the following we analyze the performane of the algorithm and explain whih sets to add tothe over C in the weight augmentation step.Lemma 1. The total number of iterations in whih a weight augmentation step is performed is atmost jCOPT j � (logm+ 2).Proof. For eah subset S, wS � 2 always holds, sine the algorithm maintains in all iterationsthat wj � 2 for all elements j. Consider an iteration in whih the adversary gives element j. Aweight augmentation is performed in this iteration if and only if wj < 1. When doing a weightaugmentation, the weight of at least one set belonging to COPT is multiplied by a fator greaterthan or equal to two. Sine the weight of eah set is initially 1=(2m) and at the end at most 2, itfollows that eah set an partiipate in at most log(4m) iterations in whih a weight augmentationis performed. Hene, the desired result follows.Lemma 2. Consider an iteration in whih a weight augmentation is performed. Let �s and �e bethe values of the potential funtion � before and after the iteration, respetively. Then, there existat most 4 log n sets that an be added to C during the iteration suh that �e � �s.Proof. The proof is probabilisti. Suppose that the adversary gives element j in the iteration.For eah set S 2 Sj , let wS and wS + ÆS denote the weight of S before and after the iteration,respetively. De�ne Æj =PS2Sj ÆS . The algorithm maintains that wj + Æj =PS2Sj (wS + ÆS) � 2.We now explain whih sets from Sj are added to C.Repeat 4 log n times:hoose at most one set from Sj suh that eah set S 2 Sj is hosen with probabilityÆS=2. (This an be implemented by hoosing a number uniformly at random in [0; 1℄,sine Æj=2 � 1.)Consider an element j0 2 X suh that j0 =2 C. Let the weight of j0 before the iteration be wj0and let the weight after the iteration be wj0+ Æj0 . Element j0 ontributes before the iteration to thepotential funtion the value n2wj0 . In eah random hoie, the probability that we do not hoosea set ontaining element j0 is 1 � Æj02 . The probability that this happens in all the 4 log n randomhoies is therefore (1� Æj02 )4 log n � n�2Æj0 .Therefore, the expeted ontribution of element j0 to the potential funtion after the iterationis at most n�2Æj0n2(wj0+Æj0 ) = n2wj0 :By linearity of expetation it follows that Exp[�e℄ � �s. Hene, there exists a hoie of at most4 log n sets suh that �e � �s.



Theorem 3. At the end of the algorithm, C is a feasible over of X 0 and jCj is O(jCOPT j logm log n):Proof. Initially, the value of the potential funtion � is less than n �n = n2. It follows from Lemma2 that � is non-inreasing throughout the iterations. Therefore, if wj � 1 for an element j duringthe algorithm, then j 2 C, otherwise � � n2wj � n2. Hene, C is a feasible over. It followsfrom Lemma 1 that the number of iterations is at most jCOPT j � (logm+ 2). By Lemma 2, in eahiteration we hoose at most 4 log n sets to C. Therefore, the total number of sets hosen by thealgorithm is as laimed.Remark: If every element appears in at most d sets, then the algorithm an be modi�ed by startingwith the weights wS = 1=(2d) for eah S 2 S, and the ompetitive fator an be improved in thisase to O(log d log n).3 The Weighted CaseWe desribe in this setion an O(logm log n) ompetitive algorithm for the weighted ase. For eahset S 2 S, a positive ost S is assoiated with the set. The ost of the optimal solution, (COPT ),is denoted by �.Note, �rst, that we may assume, by doubling, that the value of � is known up to a fator of 2.Indeed, we an start guessing � = minS2SS , and run the algorithm with this value of the optimalsolution. If it turns out that the value of the optimal solution is already at least twie our urrentguess for it, (that is, the ost of C exeeds �(� logm log n)), then we \forget" about all sets hosenso far to C, update the value of � by doubling it, and ontinue on. We note that the ost of thesets that we have \forgotten" about an inrease the ost of our solution by at most a fator of 2,sine the value of � was doubled in eah step.We thus assume that � is known. Hene, we an ignore all sets of ost exeeding �, and alsohoose all sets of ost at most �=m to C. Thus, we assume that all osts are between �=m and �,and further normalize the osts so that the minimum ost is 1 (and hene the maximum ost is atmost m).We now desribe an online algorithm with ompetitive fator (6 + o(1)) logm log n, (assumingthat � is known), where the o(1) term tends to zero as n and m tend to in�nity. It is worth notingthat the onstant 6 + o(1) an be improved to 2 + o(1) by being somewhat more areful, but weprefer to desribe the algorithm with the inferior onstant, to simplify the omputation. From nowon, all o(1) terms denote terms that tend to zero as n and m tend to in�nity. All logarithms are inthe natural basis e.As in the unweighed ase, the algorithm maintains a weight wS > 0 for eah S 2 S. Theweights an only inrease during the run of the algorithm. Initially wS = 1=m2 for eah S 2 S.The weight of eah element j 2 X is de�ned as wj =PS2Sj wS, where Sj denotes the olletion ofsets ontaining element j.Initially, the algorithm starts with the empty over C = ;. De�ne C to be the set of all elements



overed by the members of C. The following potential funtion is used throughout the algorithm:� = Xj 62C n2wj + n � exp 12� XS2S(S�C(S)� 3wSS logn)! :The funtion �C above is the harateristi funtion of C, that is, �C(S) = 1 if S 2 C, and �C(S) = 0otherwise.We now give a high level desription of a single iteration of the algorithm in whih the adversarygives an element j and the algorithm hooses sets that over it.1. If wj � 1, then do not add any new set to C and do not update the weights of the sets.2. Else, (wj < 1), perform a sequene of weight augmentation steps as long as wj < 1:(a) For eah S 2 Sj , wS  wS � (1 + 1n�S )(b) Choose from Sj sets to C so that the value of the potential funtion � does not exeedits value before the weight augmentation.In the following we analyze the performane of the algorithm and explain whih sets to add tothe over C in the weight augmentation step.Lemma 4. The total number of weight augmentation steps performed during the algorithm is atmost XS2COPT (n � S + 1) log�m2 �1 + 1n�� � (2 + o(1))n� logm:Proof. Obviously, for eah subset S, wS � 1 + 1n�S always holds. Consider an iteration in whihthe adversary gives element j. A weight augmentation is performed in this iteration as long aswj < 1. When doing a weight augmentation, the weight of at least one set S 2 COPT is multipliedby a fator of (1 + 1n�S ). Sine the weight of eah set is initially 1=m2 and at the end at most(1 + 1=n), it follows that eah set S partiipates in at most (n � S + 1) log �m2 �1 + 1n�� steps inwhih a weight augmentation is performed. Hene, the desired result follows.Lemma 5. The following is maintained throughout the algorithm:XS2SwSS � (2 + o(1))� logm:Proof. Consider an iteration in whih the adversary gives element j. We start with weights satis-fying XS2Sj wS � 1;and inrease the weight of eah set S in Sj by wS=(n � S) in eah step. Thus, the total inrease ofthe quantity PS2S wSS in a step does not exeedXS2Sj wSnS S = XS2Sj wSn � 1n:



Initially, PS2S wSS � m � 1m2 �m = 1, and the result thus follows from Lemma 4 that bounds thenumber of weight augmentation steps.Lemma 6. Consider a step in whih a weight augmentation is performed. Let �s and �e be thevalues of the potential funtion � before and after the step, respetively. Then, there exist sets thatan be added to C during the step suh that �e � �s.Proof. The proof is probabilisti. Suppose that the adversary gives element j in the iteration. Foreah set S 2 Sj , let wS and wS + ÆS denote the weight of S before and after the step, respetively.De�ne Æj =PS2Sj ÆS .We now explain whih sets from Sj are added to C. Independently, for eah S 2 Sj , set S isadded to C with probabilty 1 � n�2ÆS . (This is roughly the same as hoosing S with probabilityÆS=2 and repeating this 4 log n times.) Let C0 denote the over obtained from C by adding to it therandomly hosen sets.We �rst bound the expeted value of the �rst term of the potential funtion. This is similar tothe unweighted ase. Consider an element j0 2 X suh that j0 =2 C. Let the weight of j0 before thestep be wj0 and let the weight after the step be wj0 + Æj0 . Element j0 ontributes before the step tothe �rst term of the potential funtion the value n2wj0 . The probability that we do not hoose a setontaining element j0 is n�2Æj0 . Therefore, the expeted ontribution of element j0 to the potentialfuntion after the step is at most n�2Æj0n2(wj0+Æj0 ) = n2wj0 : By linearity of expetation it followsthat the expeted value of Pj 62C n2wj after the step is preisely its value before the step.It remains to bound the expeted value of the seond term of the potential funtion. LetT = n � exp 12� XS2S(S�C(S)� 3wSS log n)!denote the value of the seond term of the potential funtion before the step, and let T 0 denote thesame term with respet to the over C0. Sine the hoies of di�erent sets are independent, andthe random variable T 0 an be viewed as a produt of independent random variables, its expetedvalue is the produt of the orresponding expeted values. Therefore,Exp[T 0℄ = n � exp � 12� XS2S 3(wS + ÆS)S logn!� YS2SExp �exp� 12�S�C0(S)�� (1)Fix an S 2 S. If the weight of S was not hanged during the step, or if it was hanged even thoughS 2 C (i.e., j is overed, but wj < 1), then the expeted value of exp( 12� � S�C0(S)) is preisely itsvalue before the step. Therefore, if we let S 0 denote the family of all sets S 2 S n C whose weightswere hanged during the weight augmentation step, then the expeted value in (1) is preiselyExp[T 0℄ = T � exp � 12� XS2S 3ÆSS log n!� YS2S0Exp �exp� 12�S�C0(S)�� : (2)



Consider, now, an S 2 S 0. S did not belong to C before the step, and after the step, the probabilitythat �C0(S) = 1 is 1� n�2ÆS . Thus,Exp �exp� 12�S�C0(S)�� (3)= n�2ÆS + (1� n�2ÆS) � exp� S2�� (4)� 1� 2ÆS logn+ 2ÆS logn exp� S2�� (5)= 1 + 2ÆS logn�exp� S2��� 1� (6)� 1 + 2ÆS logn3S4� (7)� exp�3ÆSS log n2� � : (8)Here, (5) follows sine for all x � 0 and z � 1, e�x + (1� e�x) � z � 1� x+ x � z, (7) follows sineey� 1 � 3y=2 for all 0 � y � 1=2, and (8) follows sine 1+x � ex for all x � 0. Plugging in (2), weonlude that the expeted value of the seond term after the step and random hoies is at mostExp[T 0℄ = T � exp � 12� XS2S 3ÆSS log n!� YS2S0 exp� 12�3ÆSS logn� � T:By linearity of expetation it now follows that Exp[�e℄ � �s. Therefore, there exists a hoie ofsets from Sj suh that �e � �s.Theorem 7. Throughout the algorithm, the following properties hold.(i)Every j 2 X of weight wj � 1 is overed, that is, j 2 C.(ii) PS2C S � (6 + o(1))� logm log n:Proof. Initially, the value of the potential funtion � is at most n �n2=m+n < n2, and hene it stayssmaller than n2 during the whole algorithm. Therefore, if wj � 1 for some j during the proess,then j 2 C, sine otherwise the ontribution of the term n2wj itself would be at least n2. Thisproves part (i). To prove part (ii), note that by the same argument, throughout the algorithmn � exp 12� XS2S S�C(S)� 3wSS logn! < n2:Therefore, XS2S S�C(S) � XS2S 3wSS log n+ 2� logn;and the desired result follows from Lemma 5.



4 DerandomizationThe hoies of the various sets S to be added to C after eah iteration an be done deterministiallyand eÆiently, by the method of onditional probabilities, .f., e.g., [1℄, hapter 15. In fat, thisan be done here in a very simple way. A lose look at the proof in the last setion shows that wean simply deide, after eah weight augmentation, for eah set whose weight has been inreasedin its turn, if we add it to C or not, making sure that the potential funtion will not inrease aftereah suh hoie. The details will appear in the full version of the paper.We note that knowing in advane the set over instane is ruial for making the online algorithmdeterministi. To see this, onsider the following example where the sets ontaining an elementj are revealed only when the adversary gives element j to the algorithm. The set over instaneontains elements f1; 2; : : : ; ng and sets S1; : : : Sn. The adversary gives the algorithm the elementsin the order 1; 2; : : : ; n. Assume indutively that the algorithm has used sets S1; : : : Si for overingelements 1; : : : ; i. When element i+1 is given, the sets ontaining it are Si+1; : : : ; Sn. Without lossof generality we an assume that the algorithm used set Si+1 for overing element i + 1. Clearly,the adversary an over all the elements with a single set, Sn, yielding a ompetitive ratio of n.5 Lower BoundIn this setion we show that for every �xed Æ > 0 and every m and n satisfyinglog n � m � en1=2�Æ ; (9)there is a family F of m subsets of X, jXj = n, so that the ompetitive ratio of any deterministionline algorithm for the (unweighted) online set over problem with X and F is at least
� logn logmlog logm+ log logn� : (10)Before desribing the proof, we note that the assumption (9) is essentially optimal. Let OPTdenote the value of the optimum (o�-line) solution to the problem. Note, �rst, that the problemhas a trivial algorithm with ompetitive ratio m (that simply takes all sets after the �rst elementappears), showing that for m < (log n)1�� the above lower bound (10) fails. (In fat, we may alwaysassume that m � log2 n, sine all the elements that lie in the same ell of the Venn diagram of thesets in F an be replaed by a single element, without any hange in the problem.) It is also easy tosee that the problem has a simple algorithm with ompetitive ratio O(pn); when the �rst elementarrives, we pik, repeatedly, all sets that over at least pn members of X among those not overedso far. Note that after this proess terminates, there are at most OPTpn yet unovered elementsthat an appear, and hene even if from now on we pik an arbitrarily hosen set for eah newelement, the algorithm will hoose at most pn + OPTpn sets altogether. (By being a bit moreareful we an atually get an O(pn=OPT )-ompetitive algorithm this way. The details are left tothe reader). This disussion shows that for m > en1=2+Æ the lower bound (10) also fails. Therefore,both inequalities in the assumption (9) are needed.Proposition 8. Let X = f0; 1; 2; : : : ; n� 1g be a set of n = 2k elements. For eah 1 � i � k, letFi be the set of all elements j of X so that the ith bit in the binary representation of j is on, and



let F be the family of all k sets Fi. Then, the ompetitive ratio of the best deterministi algorithmfor the online set over problem (X;F) is jFj = k = log2 n.Proof. The adversary starts by giving the number n� 1 in whih all bits are on. If the algorithmovers it by Fi1 , then the adversary gives the number in whih all bits are on besides the i1th bit.The algorithm overs it by Fi2 and the adversary gives the number in whih all bits are on besidesthe i1th and i2th bits, and so on. Clearly, the algorithm will have to hoose this way all k sets,while the optimal solution onsists of only one set: the last set hosen by the algorithm.The above proposition and some obvious modi�ation of the family F for bigger values of mimplies that the lower bound (10) holds for all m satisfying, say, log2 n � m � (log2 n)3. It thusremains to establish the lower bound for pairs n;m satisfying (log n)3 � m � en1=2�Æ . This is donein what follows.Let k; r be positive integers. Suppose n � 2kkr2, and let X1;X2; : : : ;Xkr2 be kr2 pairwisedisjoint bloks of elements in X = f1; 2; : : : ; ng, eah of size 2k. For a blok Xb and a bit loationt, with 1 � t � k, let Xb(t) denote the set of all elements in Xb in whih the tth bit is on. For eahsubset R = fb1; b2; : : : ; brg of size r of f1; 2; : : : ; kr2g, with b1 < b2 : : : < br, and for eah sequeneof hoies of bit loations I = (i1; i2; : : : ; ir), where 1 � it � k for all t, de�neFR;I = [rt=1Xbt(it):Note that eah suh set ontains elements from r bloks, and in eah suh blok it ontains half ofthe elements. Let F denote the family of all sets FR;I as above. Therefore, m = jFj = �kr2r �kr.We next show that given any deterministi algorithm, an adversary an hoose kr elements inX, foring the algorithm to pik kr sets from F , while keeping the value of the optimum solutionto be 1. The adversary starts by piking a blok, say the �rst one, and by following the strategydesribed in the proof of Proposition 8 in this blok. That is, the �rst hosen element is the memberof X1 in whih all bits are on, when the algorithm overs it by a set in whih the i1 is on in X1,the adversary hooses the element of X1 in whih all bits are on besides i1, and so on. After k suhsteps the algorithm used already k sets. These sets ontain elements in at most 1 + (r � 1)k < krdistint bloks. The adversary will not hoose any elements of these bloks from now on, pikanother blok, and repeat the same proess of making k hoies in this blok. This an be repeatedr times, while still enabling the adversary to over all elements piked by one set, implying thedesired result.By adding, if needed, some extra 2kkr2 elements and some of their subsets whih we will notuse, this implies the following.Proposition 9. For every positive integers k; r, and every n;m satisfying n � 2k+1kr2 and 22kkr2 �m � �kr2r �kr, there is an example of an online set over problem with n elements and m sets inwhih the ompetitive ratio of any deterministi algorithm is at least kr.Suppose, now, that n;m are large and satisfy (9). If m � (log n)3, the required lower bound(10) follows from Proposition 8, as mentioned after its proof. Otherwise, one an de�ne r =�( logmlog logm+log log n) and k = 
(logn) suh that n � 2k+1kr2 and 22kkr2 � m � �kr2r �kr. Therequired bound now follows from Proposition 9.



6 Conluding remarks� We desribed a deterministi O(logm log n) ompetitive algorithm for the online weightedset over problem for a set X, jXj = n and a family F , jFj = m, and showed that this isoptimal, up to a log logn+ log logm fator. For some families of subsets F , one an obtainonline algorithms with better performane. It may be interesting to identify properties of thefamily F that imply the existene of algorithms with better performane.� In eah weight augmentation step in the algorithm desribed in Setion 3, the weight wS ofeah set S is inreased by a fator of (1 + 1nS ). The fator n appearing here is simply forthe sake of obtaining a better absolute onstant in the analysis, and one an in fat augmentthe weight of S by a fator of (1 + 1S ) without any real hange in the performane. Thisis useful when we are about the eÆieny of our algorithm, as it dereases the number ofsteps in whih we have to add sets to the olletion C. In fat, it is possible to desribe aslightly modi�ed version of the algorithm where after the adversary presents an element jwith wj < 1, the weight of eah set S ontaining j is inreased from wS to wS � exp( xS ),where x > 0 is hosen so that after the augmentation wj = 1. This, and the brief disussionin Setion 4, enables the algorithm to onsider all the sets ontaining j only one after theadversary presents it.� The tehnique of onverting an online frational solution into a randomized algorithm (andlater a deterministi one) used here an be applied when the frational solution is monotoneinreasing during the algorithm. We believe that this method is likely to be useful in futureappliations as well.AknowledgementsThe last author would like to thank Julia Chuzhoy, Eli Gafni, Sanjeev Khanna, Elias Koutsoupias,and Baruh Shieber for many stimulating disussions on the problem.Referenes[1℄ N. Alon and J. H. Spener, The probabilisti method, Seond Edition, Wiley, New York,2000.[2℄ B. Awerbuh, Y. Azar, A. Fiat, and T. Leighton, Making ommitments in the fae of un-ertainty: how to pik a winner almost every time, In Proeedings of the 28th Annual ACMSymposium on Theory of Computing, pp. 519-530, 1996.[3℄ A. Blum, On-line algorithms in mahine learning, In: A. Fiat and G. Woeginger, editors,Online algorithms - the state of the art, Chapter 14, pp. 306{325, Springer, 1998.[4℄ A. Blum, Online learning tools for online algorithms, Dagstuhl Workshop on Online Algo-rithms, July 2002. (See http://www-2.s.mu.edu/ avrim/surveys.html.)
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