
Ancient and new algorithms for load balancing in the Lp normAdi Avidor� Yossi Azary Ji�r�� SgallzJuly 7, 1997AbstractWe consider the on-line load balancing problem where there arem identical machines(servers) and a sequence of jobs. The jobs arrive one by one and should be assignedto one of the machines in an online fashion. The goal is to minimize the sum over allmachines of the squares of the loads, instead of the traditional maximum load.We show that for the sum of the squares the greedy algorithm performs within 4=3 ofthe optimum, and no on-line algorithm achieves a better competitive ratio. Interestingly,we show that the performance of greedy is not monotone in the number of machines.More speci�cally, the competitive ratio is 4=3 for any number of machines divisible by3 but strictly less than 4=3 in all the other cases (although it approaches 4=3 for largenumber of machines). To prove that greedy is optimal, we show a the lower bound of 4=3for any algorithm for 3 machines. Surprisingly, we provide a new on-line algorithm thatperforms within 4=3� � of the optimum, for some �xed � > 0, for any su�ciently largenumber of machines. This implies that the asymptotic competitive ratio of our newalgorithm is strictly better than the competitive ratio of any possible on-line algorithm.Such phenomena is not known to occur for the classic maximum load problem.Minimizing the sum of the squares is equivalent to minimizing the load vector withrespect to the L2 norm. We extend our techniques and analyze the exact competitiveratio of greedy with respect to the Lp norm. This ratio turns out to be 2��(ln pp). Weshow that greedy is optimal for two machines but design an algorithm whose asymptoticcompetitive ratio is better than the ratio of greedy.
�Department of Computer Science, Tel Aviv University. E-Mail: adi@math.tau.ac.il.yDepartment of Computer Science, Tel-Aviv University. E-Mail: azar@math.tau.ac.il. Research sup-ported in part by Alon Fellowship and by the Israel Science Foundation administered by the Israel Academyof Sciences.zE-mail sgall@math.cas.cz. Mathematical Institute, AV �CR, �Zitn�a 25, 115 67 Praha 1, Czech Republic;partially supported by grant A1019602 of AV �CR. 0

1 IntroductionConsider a set of jobs that are created in an on-line fashion and should be assigned to disks.Each job has a weight which is the frequency access to the disk. De�ne the load on a diskto be the sum of the weights of jobs assign to it. If we would like to minimize the maximumdelay of an access request of a job to the disk than it is equivalent to minimize the maximumload on a disk. However, in many cases the more appropriate goal would be to minimizethe average delay of all access requests [6]. That is equivalent to minimizing the sum of thesquares of the loads, since the delay of an access request is proportional to the load on thedisk. That motivates us to de�ne the following machine load balancing problem.We are given m parallel identical machines and a number of independent jobs (tasks)arriving one by one at arbitrary times. Each job has an associated weight and shouldbe assigned immediately to exactly one of the machines based only on the previous jobswithout any knowledge on the future jobs. The load of a machine is the sum of the weightsof the jobs assigned to it. The cost of an assignment for an input sequence of jobs is thesum of the squares of the machines' load vector (after all jobs are assigned). The goal ofan assignment algorithm is to assign all the jobs while minimizing the cost.We measure the performance of an on-line algorithm by its competitive ratio. Anon-line algorithm is c-competitive if for each input the cost of the assignment produced bythe algorithm is at most c time larger than the cost of the optimal assignment.We show that for minimizing the sum of the squares of loads the greedy algorithm is43 -competitive over any number of machines. We also show that no on-line algorithm canachieve a better ratio than 43 for all m which implies that greedy may be considered asan optimal algorithm. Interestingly, the competitive ratio of the greedy algorithm is notmonotone in the number of machines. It is exactly 43 for m � 0 (mod 3) but strictlysmaller than 43 for m 6� 0 (mod 3). However, the asymptotic competitive ratio, whichis the limit of the competitive ratio for m!1, is 43 . More precisely, for any � > 0 there issome M such that for all m � M the competitive ratio of greedy is at least 4=3 � �. Thereason that the greedy algorithm is optimal if we allow any number of machines is that weproof a lower bound of 43 on any on-line algorithm for 3 machines. The greedy algorithm isalso optimal for 2 and 4 machines, in both cases the competitive ratio is 3+p5=4 � 1:3090.Surprisingly, we provide a new on-line algorithm with competitive ratio 4=3 � �, forsome �xed � > 0, for any su�ciently large number of machines. This implies that theasymptotic competitive ratio of our new algorithm is strictly better than the competitiveratio of any possible on-line algorithm and strictly better than the asymptotic competitiveratio of greedy. Such phenomena is not known to occur for the classic makespan problem.In fact it is conjectured in [7] that the competitive ratio for the makespan is monotoneincreasing with the number of the machines. Also we are not aware of a natural on-lineproblem whose competitive ratio is di�erent than the asymptotic competitive ratio (inparticular it should be non-monotone).We also consider the general Lp norm (for any p > 1). Note that minimizing the sumof the squares is equivalent to minimizing the L2 norm of the load vector. We can alsode�ne the cost to be the Lp norm of the machines' load vector for any p > 1. In particular,minimizing the L1 norm precisely means minimizing the maximum load. By using thetriangle inequality, it is not hard to show that for any Lp norm the worst case performance1

of the greedy algorithm is at most 2. We determine the exact worst case performance of thegreedy algorithm over an arbitrary number of machines. We show that this performance is2��(ln pp). Then we present a lower bound of 32��(1p) for any on-line assignment algorithmfor any �xed number of machines. We show that for any p > 1 the greedy algorithm isoptimal for 2 machines. In contrast, we design an algorithm whose asymptotic competitiveratio is strictly better than the asymptotic competitive ratio of greedy.The case p =1 (i.e., L1) is the classic ancient problem of scheduling jobs on identicalmachines minimizing the makespan (or maximum load). Graham [11] showed that thegreedy load balancing algorithm is 2� 1m competitive in this case. The greedy algorithm isoptimal only for m � 3, for any m > 3 better algorithms exist [9, 7]. Bartal et al. [5] werethe �rst to show an algorithm whose competitive ratio is below 2 � � for some constant� > 0 and arbitrary m. Very recently, Albers [1] designed 1:923 competitive algorithm andshowed a lower bound of 1:852.Chandra and Wong [6] were the �rst to consider the problem of minimizing the sum ofthe squares of the machines load vector. Cody and Co�man [8], in their study of placinga set of records on a sectored drum to minimize the average latency, considered essentiallythe same minimization problem. In [6] it is shown that if the jobs arrive in non-increasingweights order then the greedy algorithm is 2524 of the optimal assignment in the worst case.This result was slightly improved by Leung and Wei [12]. Chandra and Wong [6] alsoconsidered the the general Lp norm (for any p > 1) and showed that the greedy algorithmon the sorted items achieves a constant performance bound. The constant depends on pand grows to 32 when p grows to 1.O�-line scheduling/load balancing with respect to the Lp norm has been consideredin [2]. The o�-line minimization problem is known to be NP-hard in the strong sense [10].Alon et al. [2] provided a polynomial approximation scheme for scheduling jobs with respectto the Lp norm for any p > 1. An example in which the optimal assignment for the sum ofthe squares is di�erent than the optimal assignment in the L1 norm is also given in [2].Results on load balancing for the unrelated machines with respect to the L1 norm andL2 (and Lp) norm appear in [3, 4]. The competitive ratio for unrelated machines is muchworse (�(p)) than the trivial bounds for identical machines and the techniques used aretotally di�erent.2 De�nitions and preliminariesIn the load balancing problem we are given m identical machines (servers) and a �nitesequence of jobs (tasks). Each job j has a weight wj � 0. A schedule S is an assignmentwhich assigns each job j to a single machine i, 1 � i � m. For every schedule S, theload of machine i, denoted Li(S), is the sum of weights of all jobs assigned to i in S.The vector of loads is L(S) = (L1(S); : : : ; Lm(S)). An assignment algorithm is analgorithm which for an input sequence � produces a schedule which assigns every job in �to one of the m machines. An on-line assignment algorithm must assign a job j at itsarrival to a machine based only on the previous jobs and their assignments; the decisionis made without any knowledge about future job arrivals. Our measure of cost is the Lp2

norm. Hence the cost of a schedule S is de�ned askL(S)kp = mXi=1(Li(S))p! 1p :Note that we can reorder the machines with no change in the cost. The optimal cost,denoted OPT(S), is the minimal cost of a schedule S0 which assigns the same jobs as S;this schedule can be computed by an o�ine algorithm which knows all the jobs in advance.We measure the performance of our algorithms by the competitive ratio. For a �xedp > 1, the competitive ratio of a schedule S is de�ned as C(S) = kL(S)kp=OPT(S)(putting 0=0 = 1 to handle the empty schedule). Let A be an on-line assignment algorithm.The competitive ratio of A over a �xed number m � 1 of machines is de�ned asCA;m = supfC(S) j S is a schedule produced by A on m machinesg:The competitive ratio of A over an arbitrary number of machines is de�ned asCA = supfCA;m j m � 1g:The previous de�nitions cover also the case when we measure the the sum of the squaresof loads, since then the cost is (kL(S)k2)2. Consequently, the competitive ratios w.r.t. thesum of the squares of loads are equal to C2(S), C2A;m and C2A w.r.t. the L2 norm.Now we de�ne the notion of a shape of a schedule, which is an abstraction of a schedulewhere for every machine, all jobs assigned to it except for one are replaced by very smalljobs with the same total load. In general it may be impossible to produce such a scheduleby the same algorithm as the original one. Nevertheless, the concept of a shape, is veryuseful for proving upper bounds on the competitive ratio, since the optimal assignment mayimprove (by partitioning the jobs) while the cost of the assignment does not change. Hencea shape is a pessimistic estimate of a schedule. A shape characterizes each machine by twonumbers, ai is the total load of the small jobs, and ui is (a lower bound on) the weight ofone large jobs.Formally a shape is a pair R = (a; u), where a and u are vectors of m nonnegativereals. The vector of loads of a shape is de�ned as L(R) = a + u. The shape R = (a; u)is a shape of a schedule S if L(R) = L(S) and for every i � m with ui > 0 thereexists a job with weight wj � ui assigned to the machine i in S. The optimal cost of ashape R is the in�mum of the optimal costs of all schedules S with the shape R, formallyOPT(R) = inffOPT(S) j R is a shape of Sg. As we shall see, the in�mum can be replacedby a minimum. The competitive ratio of a shape R is C(R) = kL(R)kp=OPT(R).It is possible to compute the optimal cost of the shape R = (a; u) explicitly. It is thecost of a schedule in which some big jobs are scheduled each on a separate machine andthe rest of the jobs are balanced evenly on the rest of the machines. Let the machines beordered so that ui are nondecreasing. For 1 � l � m let hl = (Pmi=1 ai +Pri=1 ui)=l. Let kbe the largest l such that hl � ul (k is always de�ned, since h1 � u1). We de�ne the heightof the shape to be h(R) = hk.It is easy to see that a good candidate for an optimal schedule for the shape R is to puton each machine one job of size exactly ui and divide ai into a few jobs so that they can be3

balanced exactly on the k machines; then the load vector is (hk; : : : ; hk; uk+1; : : : ; um). Seethe Figures 1 and 2 for examples where ai = 1 for all i. Next, we show that this really isthe optimal schedule.
1

123......m Figure 1: A shape R.
h

k

...... 3 2 1m Figure 2: Optimal assignment of RLemma 2.1 Let h = h(R). Then OPT(R) = k(h; : : : ; h; uk+1; : : : ; um)kp.Proof: We have seen above that there exists a schedule which achieves this value. Itremains to prove that for any schedule S with shape R, the cost kL(S)kp is at least thebound in the statement of the lemma.The case of h(R) = 0 is trivial since the equality holds. Otherwise let h = h(R) and letk be such that h = hk in the previous de�nition. From the de�nition of h(R) it follows thath < ui for every i > k (otherwise we would have chosen larger k). For i > k, let ji be a jobassigned to i in S with weight at least ui (it exists, since ui > 0).Let S0 be the optimal schedule for the jobs in S. First, S0 has a machine with load atmost h: there are at least k machines on which no job ji, i > k, is scheduled, and their totalload is at most kh. Second, if S0 is optimal, then for any i > k, no other job is assignedto the same machine as the job ji: Assume that the job ji is scheduled on a machine withthe load b > 0 of other jobs. We know that there is a machine with load c � h < ui � wji .However, if we replace the two machines with loads c and b+wji by two machines with loadb+c and wji , the total cost decreases due to the convexity of the function xp. Consequently,after a renumbering of the machines, the vector of loads L = L(S0) satis�es Li � ui for eachi > k and Pmi=1 Li = hk +Pmi=k+1 ui. Using convexity again, the cost of any such scheduleis at least k(h; : : : ; h; uk+1; : : : ; um)kp.3 The greedy algorithmIn this section we determine the competitive ratio of the greedy algorithm de�ned below.Algorithm Greedy: Upon arrival of a job j assign it to the machine with thecurrent minimum load (ties are broken arbitrarily).To bound the performance of Greedy, we show that each schedule can be replacedby a very special shape so that the competitive ratio does not decrease. Computing the4

competitive ratio is then shown to be equivalent to computing a maximum of a certainfunction over the reals. A shape R = (a; u) is called at if all the components of a are thesame. Abusing notation, we then denote by a both the value of the component and thevector of m such components. (For an example of a at shape, see Figure 1.)Lemma 3.1 Let S be a schedule obtained by Greedy. Then there exists a at shape Rwhich is a shape of S.Proof: Let L = L(S) be the vector of loads of S; w.l.o.g. assume that L1 is the smallestcomponent of L. We claim that the at shape (a; u), where a = L1 and ui = Li � a, is ashape of S. Clearly the loads are the same. Consider a machine with ui > 0. Let j be thelast job assigned to the machine i. At the time of its assignment, the load of the machine imust have been at most a, as otherwise Greedy would have scheduled j on the machine 1.Hence wj � Li � a = ui.Lemma 3.2 Let R = (a; u) be a at shape. Then there exists a at shape R0 = (a0; u0)such that C(R) � C(R0) and for any i, u0i = 0 or u0i � h(R0).Proof: Assume that 0 < u1 < h = h(R). We claim that there exists a at shape R0such that kL(R0)kp � kL(R)kp, OPT(R0) = OPT(R), h(R0) = h, u01 is either 0 or h, andthe other components of the vector u0 remain unchanged. Applying this claim inductively�nishes the proof of the lemma.To prove the claim, we de�ne two candidate shapes and prove that one of them satis�esall the conditions. Let R0 = (a0; u0) and R00 = (a00; u00), where u0 = (0; u2; : : : ; um), a0 =a+ u1=m, u00 = (h; u2; : : : ; um), and a00 = a� (h� u1)=m. It is easy to verify that a00 � 0,OPT(R0) = OPT(R00) = OPT(R), and h(R0) = h(R00) = h. Moreover,L(R) = h� u1h L(R0) + u1h L(R00);i.e., the old vector of loads is a weighted average of the two new vectors of the loads. Fromthe convexity of the function xp it follows that(kL(R)kp)p � h� u1h (kL(R0)kp)p + u1h (kL(R00)kp)p:Hence either kL(R)kp � kL(R0)kp or kL(R)kp � kL(R00)kp, and the claim is proved.Lemma 3.3 Let k � m and let R = (a; u) be a at shape such that ui � h(R) for i =1; : : : ; k. Then there exists x such that for R0 = (1; (x; : : : ; x; uk+1; : : : ; um)), it holds thatC(R) � C(R0), OPT(R0) = OPT(R), h(R0) = h(R), and x � h(R0).Proof: Let x be the pth power mean of ui, i � k, i.e., x = (Pki=1 upi =k)1=p. Clearly x isat least the minimum of u1; : : : ; uk, hence the optimal schedule changes only in the loadof the machines with these single jobs and x � h(R) = h(R0). The contribution of thek big jobs to (OPT(R))p is Pki=1 upi , and their contribution to (OPT(R0))p is kxp. Thesecontributions are the same and hence the optimal cost does not change. It remains to prove5

that kL(R0)kp � kL(R)kp. Comparing the contribution of the �rst k machines, we need toprove that kXi=1(a+ ui)p � k(a+ x)p:We apply Minkowski inequality (the triangle inequality for the Lp norm) to the vectors(a; : : : ; a) and (u1; : : : ; uk) and obtain kXi=1(a+ ui)p!1=p � k1=pa+ kXi=1 upi!1=p = k1=p(a+ x):Raising the inequality to pth power �nishes the proof.The above lemmas imply that in order to �nd the competitive ratio of the greedyalgorithm we need to solve a restricted optimization problem. De�ne the functionfp(x; �) = (1� �)(1 + x)p + �(1� �)xp + �1�pTheorem 3.4 The competitive ratios of the greedy algorithm areCGreedy;m = supffp(x;M=m)1=p j 0 � x;M = 0 : : : ; m� 1g;CGreedy = supffp(x; �)1=p j 0 � x; 0 � � � 1g:Proof: Let u(x;M;m) be a vector with m�M components with value x andM zeros, andlet R = (1; u(x;M;m)) be the corresponding at shape. The function f is de�ned so thatf(x;M=m)1=p = C(R) if x � h(R). If x < h(R), the denominator of f is the pth power ofthe cost of a valid but not optimal schedule, hence f(x;M=m)1=p < C(R) in this case.By the above lemmas for every schedule S generated by Greedy there exists x and Msuch that the at shape R = (1; u(x;M;m)) satis�es C(S) � C(R) and x > h = h(R):First apply Lemma 3.1 to obtain a at shape of S; by Lemma 2..1 the competitive ratio canonly increase. Next apply Lemma 3.2 and Lemma 3.3 to obtain a at shape (a; u) with u ofthe desired form. Last, normalize the shape so that a = 1, i.e., put R = (1; u=a) (if a = 0,the greedy schedule is optimal). From the construction it follows that x > h = m=M andM < m. Hence C(R) = f(x;M=m)1=p. This proves the upper bounds.To prove the lower bound for a �xedm, it is su�cient, given x andM , to �nd a sequence� with the same cost ratio as that of the shape R = (1; u(x;M;m)). From the de�nitionof R it follows that h(R) = m=M . The sequence of mM jobs with weight 1=M followedby m �M jobs of weight x has the desired ratio. For unrestricted m, given x and �, �xa sequence of rational numbers Mi=mi converging to �. The result now follows from thelower bound for �xed m, since fp is continuous.In the Theorem A.1 in the appendix we prove that the supremum of fp(x; �), x > 0,0 < � < 1, is achieved at a unique point, moreover we give a method to compute thesupremum and hence the competitive ratio. Here we state the results for the most interestingcase of sum of squares, i.e., evaluating C2Greedy for p = 2.6

Theorem 3.5 For p = 2 the performance of Greedy is:C2Greedy = 43 ;C2Greedy;m = 43 for m � 0 (mod 3);C2Greedy;m < 43 for m 6� 0 (mod 3);C2Greedy;m = 3+p54 � 1:3090 for m = 2; 4:Proof: According to Theorem A.1, the supremum of f2 is achieved at x = 3, � = 2=3, andC2Greedy = f2(x; �) = 4=3. The claim for m divisible by 3 is true, since the supremum of f2is achieved for M = 2m=3. The claim for m not divisible by 3 is true, since the supremumof fp is unique, and M=m 6= 2=3 if m is not divisible by 3.The last claim is obtained by maximizing the function f2(x; 1=2) form = 2 and addition-ally f2(x; 1=4) and f2(x; 3=4) for m = 4. The calculus leads to simple quadratic equations,which give the optimal solution x = 1 +p5 and M = m=2. Details are omitted.4 Lower BoundsIn this section we prove that for p = 2 Greedy is optimal for �xed m = 2; 3; 4, and hencealso for arbitrary m (since the worst performance of Greedy is achieved for m = 3). InTheorem 4.2 we give weaker lower bounds for m > 4, and in Appendix C we prove somebounds for general p.Theorem 4.1 For any on-line assignment algorithm A, C2A � C2A;3 � 4=3 and C2A;2; C2A;4 �(3 +p5)=4 � 1:3090.Proof: Consider the sequence (1; 1; 1; 3; 3; 3; 12) for 3 machines. First the 3 jobs of weight1 arrive. If the algorithm A assigns two or more jobs with weight 1 on the same machine,it does not get any other job. Its cost is at least 5, the optimal cost is 3, and we are done.Otherwise, A assigns on every machine one job with weight 1. Now the next 3 jobs of weight3 arrive. If A assigns two or more of these jobs on the same machine, is does not get anyother job. Its cost is at least (1 + 3+ 3)2+ (1+ 3)2+12, whereas the optimum cost is 3 � 42which again yields a ratio greater than 4=3. Otherwise all machines have load 4 before thelast job of weight 12 arrives. The cost of A on the full sequence is (12+4)2+2 � 42, whereasthe optimum cost is 122 + (3 + 3)2 + (3 + 1 + 1 + 1)2, which yields a ratio of 4=3.Consider the sequences (1; 1; 1+p5) form = 2 and (1; 1; 1; 1; 1 +p5; 1 +p5) form = 4.If the algorithm assigns two jobs of weight 1 to the same machine, the ratio is at least3=2 > (3 +p5)=4. Otherwise together with the large job(s) we get a ratio of (3 +p5)=4.Theorem 4.2 For any number of machines m � 2 and any on-line assignment algorithmA, C2A;m � p5� 1 � 1:2361:Proof: Denote � = p5=2� 1 � 0:118. We assume that m is even. The proof for m whichis odd is similar and omitted in this abstract. Consider the sequence of m jobs of weight 1followed by m=2 jobs of weight 1 +p5. At the beginning m jobs of size 1 arrive. Let l be7

Figure 3: Best on-line assignment of the�rst m jobs with l empty machines Figure 4: Best on-line assignment of allthe jobs with l empty machinesthe number of empty machines after the on-line algorithm assigns the m jobs of size 1. Anexample of the best such assignment is shown in �gure 3.First we assume �m � l � 12m. In this case the cost of the on-line algorithm is at leastl � 22 + (m � 2l) � 12 whereas the cost of optimum is m � 12. This yields a ratio of at least1+2l=m � 1+2� = p5�1 which completes the proof of this case. Since any assignment forl � m=2 results in a cost greater than the assignment for l = m=2 we may assume l < �m.Now the next m=2 jobs of weight p5+1 arrive. An example of the best on-line assignmentfor these jobs is shown in �gure 4. The competitive ratio of the algorithm is at leastl � 22 + (m=2� l) � (2 +p5)2 + (m=2� l) � 12 + l � (p5 + 1)2m=2 � (p5 + 1)2 +m=2 � (1 + 1)2 :Since l=m < �, the competitive ratio is at least ((1� �) � 2p5 + 5)=(5 +p5) = p5� 1.5 A better algorithmOur algorithm uses the same intuition as the algorithms better than greedy for the classicalmakespan scheduling problem [5, 1]. Namely, instead of trying to balance all the machines,we maintain a constant fraction of the machines that are reserved for large jobs. In our casewe schedule the small jobs on the remaining machines greedily.We de�ne an algorithm A(t; �) for any t > 0 and 0 < � < 1. The choice of t and �clearly inuences the performance of the algorithm. However, since the exact analysis isbeyond our current techniques, we are not trying to optimize them.Algorithm A(t; �): Let k = b�mc. Before an arrival of a job, reorder themachines so that the loads are non-decreasing; let Lk+1 be the (k+1)th smallestload. Upon arrival of a job j with weight w, if w � tLk+1, schedule the job onmachine 1, otherwise schedule it on machine k + 1.Theorem 5.1 For every p, there exist m0, t, �, and � > 0 such that for any m > m0,CA(t;�);m � CGreedy � �.The proof of Theorem 5.1 occupies the rest of this section and has the following structure.First, in Lemma 5.2 we prove that if the competitive ratio of a at shape is very close toCGreedy, then the shape must look very similar to the unique worst case example for Greedyfound in Theorem 3.4. This is intuitively clear, but the precise proof is technical. We givethe proof of Lemma 5.2 in Appendix D. Using this lemma we prove that for su�ciently8

small �, in any schedule S produced by the algorithm such that C(S) is close to CGreedy,there must be many machines with load at least 1+ t. Lemma 5.3 shows that in such a casethere are k jobs with large load that are scheduled on machines with the load of remainingjobs at most y < 1; here we use the crucial properties of the algorithm. Last, we show thatthe existence of such k jobs, together with previously established conditions, implies thatthe competitive ratio is bounded away from CGreedy.Let �p and xp be the unique maximum of the function fp(x; �) from the analysis ofthe greedy algorithm, Theorem A.1. Fix constants t and �h such that 1=�p < �h < t < xp;such constants exist, since we have proved that xp�p > 1. Fix a constant y < 1, such thatH = y(1 + t)� 1 > �h > 1=�p. Such y clearly exists. Note that it follows that yt > 1.Lemma 5.2 There exist constants ;B; �1 > 0 and m1 such that for every m > m1, ifQ = (1; v) is a at shape satisfying C(Q) � CGreedy��1, then h(Q) � �h, (OPT(Q))p � Bm,and there are at least m machines with Li(Q) � 1 + t.Fix the constants ; B; �1 and m1 so that the previous lemma holds. Now considera schedule S generated by the algorithm A(t; �). W.l.o.g. we assume that the (k + 1)stsmallest load is 1. (If it is 0, then the S is the optimal schedule. Otherwise multiply all theweights by an appropriate constant; this does not change the behavior of the algorithm).De�ne a shape �Q = (b; v) by bi = minf1; Li(S)g and vi = Li(S)� bi. For each i, whenthe last job was scheduled on the machine i, the load was at most 1, therefore �Q is a shapeof S and C(S) � C(�Q). Now let Q = (1; v) be a at shape corresponding to �Q. We want toshow that C(Q) is close to C(�Q) for a su�ciently small �. The load vector of Q is the sameas L(�Q) except that the load of k machines increased to 1. Clearly kL(Q)kp � kL(�Q)kp.Adding the extra load of at most k increases in the optimal schedule load of some machinesto h(Q). This contributes to (OPT(Q))p at most kp(h(Q))p�1, since the derivative of xp isincreasing. Using also the facts that m(h(Q))p � (OPT(Q))p and h(Q) � 1, we obtain(OPT(Q))p � (OPT(�Q))p � kp(h(Q))p�1 � kp(OPT(Q))pmh(Q) � �p(OPT(Q))por OPT(Q) � OPT(�Q)=(1��p)1=p. Fix some �2 < �1 and put �1 = 1p �1� �CGreedy��1CGreedy��2�p� :Assume that C(S) � CGreedy � �2 and � < �1. It follows thatC(Q) � C(�Q)(1��1p)1=p � C(S)(1��1p)1=p � (CGreedy � �2)(1��1p)1=p = CGreedy � �1:Hence Q satis�es the assumptions of Lemma 5.2, and, in particular, there must be l = mmachines with load Li(S) = Li(Q) � 1 + t.Lemma 5.3 For any l � 0 and any schedule S generated by the algorithm A(t; �) (nor-malized as above), if there are l + k machines with Li(S) � 1 + t, then there exists z � 1and a shape R = (a; u) of S such that the machines are partitioned into� k \small" machines with z � ai � 1 and ui = 0,� l \bad" machines with ai = z and ui � t+ 1� z,� k \good" machines with ai = y and ui � yt, and� m� l � 2k \ordinary" machines with ai = 1 and ui arbitrary.9

Proof: Let ci be the load of the machine i before the last job scheduled on it. We willconstruct R so that always ai � ci and ui = Li � ai. This implies that R is a shape of S.Let z be the smallest load in S. For the k machines with smallest load we put ai = Li.These are the small machines. By the properties of the algorithm, no job was so far assignedto a machine with load more than 1, hence every remaining machine can be assigned ai = 1and be an ordinary one. If Li � 1 + t, then the last job assigned to i has weight at least t,therefore according to the algorithm it was assigned to a machine with the smallest load atsome previous time. Hence ci � z and we may assign ai = z making this machine bad. Itremains to �nd the k good machines.If ci � y for all machines with Li � 1 + t, we choose k of them and make them goodby putting ai = y. Otherwise at some time � a big job was assigned on a machine withload at least y. Hence at time � the load of all machines was at least y. Let � 0 be the �rsttime when the (k + 1)st smallest load was at least y. At that time all the k smallest loadswere strictly less than y. Hence between time � 0 and � , the algorithm scheduled k jobs onthe k small machines. These jobs have size at least ty, by the condition in the algorithm.Furthermore, no other jobs were scheduled on these machines later, as ty > 1. Hence thesek machines have ci � y and can be made good. Some of them may be the machines withLi � 1 + t, however, we still have at least l machines that can be made bad.Let the shape R and the value z be as in Lemma 5.3 and let the shape Q be the same asbefore Lemma 5.3. To �nish the proof of Theorem 5.1, we show that for suitable parametersOPT(R) is signi�cantly larger than OPT(Q). The optimal schedule for R is obtained fromthe optimal schedule for Q so that we (i) move weight at least l(1 � z) from the machineswith load h = h(Q) to the big jobs from the bad machines, which have weight at least t,(ii) move weight at least k(1 + y) from the machines with load h to the big jobs from thegood machines, which have weight at least H = y(1 + t) � 1, and (iii) remove a weight ofat most k(1 � z) (corresponding to the small machines) from machines with load h. SinceH � t, we are always moving the weight from machines with load at most h to machineswith load H and using the fact that the derivative of xp is nondecreasing, we bound theresulting di�erence as follows:(OPT(R))p � (OPT(Q))p � (l(1� z) + k(1� y)) � (pHp�1 � php�1)� k(1� z) � php�1� (1� z)pm((Hp�1 � hp�1)� �hp�1) + b�mcp(1� y)(Hp�1 � hp�1):Since ; p;H; �h are constants and h satis�es h � �h < H, we can choose � su�ciently smallso that the �rst term is always positive. Then, for su�ciently large m, the second term isat least "m for some " > 0. Hence, using (OPT(Q))p � Bm, we obtain(OPT(R))p � (OPT(Q))p + "m � (OPT(Q))p(1 + "=B)and C(S) � C(R) = kL(R)kpOPT(R) � kL(Q)kpOPT(Q)(1 + "=B)1=p � CGreedy(1 + "=B)1=p � CGreedy � �for a su�ciently small � > 0. 10

References[1] S. Albers. Better bounds for on-line scheduling. In Proc. 29th ACM Symp. on Theoryof Computing, 1997. To appear.[2] N. Alon, Y. Azar, G. Woeginger, and T. Yadid. Approximation schemes for scheduling.In Proc. 8th ACM-SIAM Symp. on Discrete Algorithms, 1997. To appear.[3] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line load balancing withapplications to machine scheduling and virtual circuit routing. In Proc. 25th ACMSymposium on the Theory of Computing, pages 623{631, 1993.[4] B. Awerbuch, Y. Azar, E. Grove, M. Kao, P. Krishnan, and J. Vitter. Load balancingin the lp norm. In Proc. 36th IEEE Symp. on Found. of Comp. Science, pages 383{391,1995.[5] Yair Bartal, Amos Fiat, Howard Karlo�, and R. Vorha. New algorithms for an ancientscheduling problem. In Proc. 24th ACM Symp. on Theory of Computing, 1992.[6] A.K. Chandra and C.K. Wong. Worst-case analysis of a placement algorithm relatedto storage allocation. SIAM Journal on Computing, 4(3):249{263, 1975.[7] B. Chen, A. van Vliet, and G. Woeginger. New lower and upper bounds for on-linescheduling. Operations Research Letters, 16:221{230, 1994.[8] R.A. Cody and E.G. Co�man, Jr. Record allocation for minimizing expected retrievalcosts on crum-like storage devices. J. Assoc. Comput. Mach., 23(1):103{115, January1976.[9] G. Galambos and G. Woeginger. An on-line scheduling heuristic with better worst caseratio than graham's list scheduling. Siam Journal on Computing, 22(2):349{355, 1993.[10] M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman andCompany, San Francisco, 1979.[11] R.L. Graham. Bounds for certain multiprocessor anomalies. Bell System TechnicalJournal, 45:1563{1581, 1966.[12] J.Y.T. Leung and W.D. Wei. Tighter bounds on a heuristic for a partition problem.Information Processing Letters, 56:51{57, 1995.

11

AppendixA Competitive Ratio of GreedyTheorem A.1 De�ne: G = f(x; �) 2 R2 j 0 < x; 0 < � < 1g�p = (p� 1)p� pp�1and the system of equations S,S : (1� �px = 1(1+x)p�1x� = p 1p�1 :Then, the supremum of fp(x; �) over x > 0, 0 < � < 1 is achieved as a unique maximumin G. The maximum is achieved at the unique point which is the solution to the system Sin the region G. Furthermore, the value of the competitive ratio isCGreedy = �1 + 1x� p�1p ;where x is the unique solution of the system S in G.Proof: It is easy to verify thatfp(0; �) = �p�1 � 1 (p > 1; 0 � � � 1)limx!1 sup0<�<1 fp(x; �) = 1 (p > 1)lim�!0+ supx>0 fp(x; �) = 0fp(x; 1) = 1and therefore, the supremum of the function fp(x; �) is achieved as a local maximum in G.Since the function fp(x; �) has derivatives in G, the point that achieves the maximumis a solution of the system of equations@fp@x = 0 and @fp@� = 0:In lemma A.2, we prove this system of equations implies the system S, i.e.,1� �px = 1(1 + x)p�1 (1)x� = p 1p�1 : (2)Next we prove that the solution to the system S in G is unique. Denote:LHS(x) = 1� �pxRHS(x) = 1(1 + x)p�1Clearly, 12

� LHS(0) = RHS(0)� In (�1;1), the function LHS(x) is linear, whereas RHS(x) is convex� 0 > LHS0(0) > RHS0(0)and therefore equation (1) has a unique solution for x in (0;1), which implies the systemS has a unique solution in G. Thus, fp(x; �) has a unique maximum in G. By lemma A.2its value is �1 + 1x�p�1, which completes the proof.Lemma A.2 For p > 1 and (x; �) 2 G the system of equations@fp@x = 0 @fp@� = 0implies 1� �px = 1(1 + x)p�1x� = p 1p�1and fp(x; �) = �1 + 1x�p�1 :Proof: Denote: M = (1� �)(1 + x)p + � (3)N = (1� �)xp + �1�p: (4)Clearly fp = MN , and therefore@fp@x = 0 @fp@� = 0) fp = MN (�)= @M@x@N@x (��)= @M@�@N@� : (5)@M@x = (1� �) � p(1 + x)p�1 (6)@M@� = �(1 + x)p + 1 = �((1 + x)p � 1)@N@x = (1� �) � pxp�1 (7)@N@� = �xp + (1� p)��p = �(xp + (p� 1)��p)Substituting the above derivatives in equation (��) gives(1 + x)p�1xp�1 = (1 + x)p � 1xp + (p� 1) � ��p :13

Solving for � we get ��p = xp�1 � (1 + x)p�1 � 1(p� 1) � (1 + x)p�1 (8)or, ��pxp�1 = (1 + x)p�1 � 1(p� 1) � (1 + x)p�1 : (9)Substituting equations (3), (4), (6), (7) in equation (�) gives(1 + x)p + �1��xp + �1�� � � 1��p = (1 + x)p�1xp�1which yields, 1� �� = ��pxp�1 � 1(1 + x)p�1 :Substituting equation (9) gives1� �� = (1 + x)p�1 � 1(p� 1) � (1 + x)p�1 � 1(1 + x)p�1= 1p� 1 � 1(p� 1) � (1 + x)p�1 � 1(1 + x)p�1= 1p� 1 � 1(1 + x)p�1 � pp� 1or, 1� = pp� 1 � �1� 1(1 + x)p�1� : (10)Substituting equation (10) in equation (8) gives� pp� 1�p � �1� 1(1 + x)p�1�p = xp�1 � (1 + x)p�1 � 1(p� 1) � (1 + x)p�1or, pp(p� 1)p�1 � ((1 + x)p�1 � 1)p�1xp�1 � ((1 + x)p�1)p�1 = 1:Raising to the power of � 1p�1 we get�p = (p� 1)p� pp�1 = (1 + x)p�1 � 1x � (1 + x)p�1 :14

which is equivalent to 1� �p � x = 1(1 + x)p�1 :Substituting the last equation in equation (10) yields1� = pp� 1 � (1� (1� �p � x))= pp� 1 � (p� 1)p� pp�1 � x= xp� 1p�1or, x � � = p 1p�1 :Furthermore, by (5) fp(x; �) = @M@x (x; �)@N@x (x; �)= (1� �) � p(1 + x)p�1(1� �) � pxp�1= �1 + 1x�p�1which completes the proof.B Approximating CGreedyLemma B.1 12p�1 + �p < 1 for p > 1.Proof: Denote: s(p) = 12p�1 + �p for p > 1t(p) = ln pp�1 for p > 1:If p � 2, p � 2p�1and therefore s(p) = 12p�1 + (p� 1)p� pp�1< 12p�1 + p� 1p1= 12p�1 � 1p + 1� 1: 15

Otherwise, 1 < p < 2. For all z 2 R, zez � 1e and thereforedsdp = � ln 2 � 12p�1 + ln pp� 1 � 1p pp�1= � ln 2 � 12p�1 + t(p)et(p) � 1p= � ln 2 � 12p�1 + 1e � 1p< 0:The last inequality holds since 2p�1 < p � e ln 2, for 1 < p < 2. Therefore s(p) in monotonedecreasing in (1; 2). Since, limp!1+ s(p) = 1 the proof of the lemma is completed.For p > 1 denote: gp(x) = 1�p �1� 1(1 + x)p�1� for (0;1):For a �xed p > 1, de�ne (an)1n=0, (bn)1n=0 by a0 = 1, an+1 = g(an) and b0 =1, bn+1 = g(bn).Lemma B.2a0 < a1 < : : : : : : < an < an+1 < xp < bn+1 < bn < : : : : : : < b1 < b0and limn!1 an = limn!1 bn = xp:Proof: Lemma B.1 claims that 12p�1 + �p < 1 for p > 1. Therefore,a0 < b0a0 = 1 < 1�p �1� 12p�1� = a1b1 = 1�p < b0:By the proof of Theorem A.1 the equation x = gp(x) has a unique solution in (0;1). Inaddition, gp(x) is continuous and monotone increasing in (0;1). As a consequence, we mayderive the desired result.The following theorem may be derived by using lemma B.2.Theorem B.3 CGreedy = 2��� ln pp � :
16

Proof: Lemma B.2 implies that a1 < xp < b1and therefore we get the following approximation to xp1�p �1� 12p�1� < xp < 1�p :Lemma B.1 easily implies that �p1� 12p�1 < �p + 12p�1 :By theorem 3.4 and the approximation to xp we get(1 + �p)1� 1p < CGreedy < 1 + �p1� 12p�1 !1� 1p < �1 + �p + 12p�1�1� 1p :Since ax = 1 + x lna+O(x2 ln a),�p = �1� 1p� e� ln pp�1= �1� 1p� 1� ln pp� 1 +O ln2 pp2 !!= 1� ln epp +O ln2 pp2 !andCGreedy = �1 + �p +O� 12p��1� 1p= 2� ln epp +O ln2 pp2 !!1� 1p= 2� ln epp +O ln2 pp2 !! �0@1� ln (2� ln epp +O(ln2 pp2))p +O0@ ln (2� ln epp +O(ln2 pp2))p2 1A1A= 2� ln epp +O ln2 pp2 !!�1� ln 2p +O� ln pp2 ��= 2� ln 4epp +O ln2 pp2 ! :Hence, CGreedy = 2��� ln pp � :17

It can be easily shown that when p decreases to 1, xp increases to the x1+ - the uniquesolution in (0;1) to the equation ln(1 + x) = xe , and the competitive ratio decreases to 1.In addition, when p decreases to 1, xp decreases to 1 and the competitive ratio increasesto 2. Figure 5 shows the competitive ratio, xp, �p, xp�p for various p up to four decimaldigits precision. Calculations are based on the sequences (an)1n=0, (bn)1n=0. The last columnshows the number of iteration required to satisfy the desired precision for all entrances inthe table. p CGreedy xp �p xp � �p No. of Iterations& 1 & 1 % x1+ & �1+ = ex1+ % e1.001 1.0002 4.7557 0.5713 2.7169 211.01 1.0019 4.7256 0.5724 2.7048 201.1 1.0186 4.4498 0.5829 2.5937 181.25 1.0449 4.0734 0.5994 2.4414 161.5 1.0850 3.6042 0.6243 2.2500 141.75 1.1214 3.2617 0.6465 2.1089 122 1.1547 3.0000 0.6667 2.0000 102.5 1.2137 2.6253 0.7017 1.8420 83 1.2646 2.3692 0.7311 1.7321 74 1.3485 2.0413 0.7776 1.5874 55 1.4150 1.8405 0.8125 1.4953 47 1.5135 1.6085 0.8599 1.3831 310 1.6096 1.4346 0.9003 1.2915 215 1.7032 1.3001 0.9333 1.2134 225 1.7952 1.1912 0.9600 1.1435 150 1.8804 1.1052 0.9800 1.0831 1100 1.9321 1.0582 0.9900 1.0476 11000 1.9907 1.0079 0.9990 1.0069 110000 1.9988 1.0010 0.9999 1.0009 1%1 % 2 & 1 % 1 & 1Figure 5: Approximation of the competitive ratio for various pExperimental results shows that CGreedy is monotone in p. In fact that can be easily(but technically) proved for p � p0.Similarly to the approximation of CGreedy, an approximation for CGreedy;2, i.e., the com-petitive ratio of Greedy for 2 machines, can be evaluated. Figure 6 shows the competitiveratio and the solution to equation (11) for various p up to four decimal digits precision.Again, the last column shows the number of iteration required to satisfy the desired preci-sion for all entrances in the table.
18

p CGreedy x No. of Iterations& 1 & 1 % 2(1 +p2)1.001 1.0002 4.8252 241.01 1.0019 4.7967 211.1 1.0183 4.5373 161.25 1.0438 4.1879 131.5 1.0817 3.7621 101.75 1.1149 3.4601 82 1.1441 3.2361 72.5 1.1927 2.9291 53 1.2311 2.7320 44 1.2870 2.5006 35 1.3248 2.3738 37 1.3714 2.2446 210 1.4083 2.1601 115 1.4380 2.1015 125 1.4624 2.0586 150 1.4811 2.0285 1100 1.4905 2.0141 1%1 % 32 & 2Figure 6: Approximation of the competitive ratio over two machines for various pC General pC.1 Two MachinesTheorem C.1 The competitive ratio of Greedy for two machines isCGreedy;2 = supx�0�1 + (1 + x)p2p + xp � 1p ;where x 2 (0;1) is the unique solution of the equationxp�1(1 + (1 + x)1�p) = 2p: (11)Proof: For x � 0 de�ne: up(x) = 1 + (1 + x)p2p + xpvp(x) = xp�1(1 + (1 + x)1�p):19

By theorem 3.4, CGreedy;2 = supx�0 �1 + (1 + x)p2p + xp � 1p = supx�0 up(x) 1p :Since up(0) = 12p�1 and limx!1 up(x) = 1, up(x) achieves its maximum in (0;1). Hence,xp - the maximum of up(x) in (0;1), satis�es u0p(xp) = 0. The last equation is equivalent tothe equation vp(x) = 2p. Since v0p(x) > 0 for x > 0, the equation vp(x) = 0 (or u0p(x) = 0)has a unique solution in (0;1).Theorem C.2 For any p > 1 the competitive ratio of any on-line algorithm over twomachines is at least CGreedy;2.Proof: Consider the sequence (1; 1; x). If the on-line algorithm assigns the �rst two jobson the same machine, it does not get another job and it produces a cost of 2(p�1)=p. It iseasy to show by convexity arguments of the function yp that for all x � 01 + (1 + x)p2p + xp � (2 + x)p2p � 2p + xp2and therefore �1 + (1 + x)p2p + xp � 1p � 2 p�1p :Hence, by theorem C.1 we are done. Otherwise, the last job is given to the on-line algorithm.The resulted assignment of the sequence is the same as the worst case example of Greedy,and we are done again.C.2 Lower Bound for general p > 1Similarly to theorem 4.2 a lower bound for general p > 1 and arbitrary number m � 2 ofmachines can be proved. The lower bound depends on p and grows to 32 as p grows to 1.Theorem C.3 For any p > 1 the competitive ratio of any on-line algorithm A over m � 2of machines satis�esCA;m � c = 32 1� 13p�12 � (1 + (34)p + 14p � 12p�2)! 1p = 32 ���1p� :Proof: Similarly to the proof of theorem 4.2. Denote� = cp � 12p � 2 :It can be easily seen that � < 12 for p > 1. W.l.o.g m is even. Consider the followingsequence of jobs (1; : : : : : : : : : : : : : : : ; 1| {z }m ; 2; : : : ; 2| {z }m=2):
20

Let l be the number of idle machines after the on-line algorithm assigns the �rst m jobs.Assume �m � l � 12m (see �gure 3 for a similar example). In this case the ratio is at least� l � 2p + (m� 2l) � 1p1p �m � 1p = �1 + (2p � 2) � lm� 1pwhich is at least c.Since any assignment for l � 12m results in a cost greater than the assignment for l = 12mwe may assume l < �m < 12m. In this case the cost of the optimum is 2m1=p, whereas thebest assignment for the on-line algorithm (see �gure 4 for a similar example) yields a costof �l � 2p + �12 �m� l�+ �12 �m� l� � 3p + l � 2p� 1p :This cost is at least 2m1=pc, and therefore the proof is completed.D The proof of Lemma 5.2Lemma 5.2 says that if the competitive ratio of a at shape is very close to CGreedy, then theshape must look very similar to the worst case example for Greedy found in Theorem 3.4.This is intuitively clear, since the worst case example is unique by Theorem A.1, however,the precise formulation and proof are a bit tedious; in particular we have to reexamine thetransformations from Lemma 3.2 and Lemma 3.3.Lemma D.1 (5.2) There exist constants ; B; �1 > 0 and m1 such that for every m > m1,if Q = (1; v) is a at shape satisfying C(Q) � CGreedy � �1, then h(Q) � �h, (OPT(Q))p �Bm, and there are at least m machines with Li(Q) � 1 + t.Proof: Fix �x > 0 such that t < xp ��x and �� such that 1=�h < �p ���. Now choose�1 such that (fp(x; �))1=p � CGreedy � �1 implies jx� xpj � �x and j� � �pj � ��. Such a�1 exists since fp is continuous and has a unique maximum (and fp ! 1 for x!1).Let Q be a shape from the assumption of the lemma, let h = h(Q). Now we transform Qas follows. First, if there are machines i; i0 with 0 < vi � vi0 < h, we decrease vi and increasevi0 by the same amount maxfvi; h�vi0g. This does not change the load vector of the optimalschedule, and the value of the modi�ed shape can only increase due to convexity of xp. Wecontinue this process until there is at most one machine with 0 < vi < h. Next we applyLemma 3.2 and then Lemma 3.3. As a result we obtain a at shape Q0 = (a; v0) such thatall nonzero components of v0 are the same, h(Q0) = h, OPT(Q0) = OPT(Q), C(Q0) � C(Q),and 1�h=m � a � 1+h=m. The bound on a follows since a can change only in Lemma 3.2,and this is applied only to one machine with 0 < vi < h. (In fact, this is the reason whywe need to apply a di�erent transformation if there are two or more such machines.) Thecompetitive ratio of Q0 is bounded by CGreedy � �1 � C(Q) � C(Q0) � fp(x=a; a=h) forx equal to the non-zero components of v0. By the choice of �1, jx=a � xpj � �x andja=h� �pj � ��.Choose m0 � 2 such that 1=�h � � ��� � 1=m0. Now it follows that1�h � � ��� � 1=m � ah � 1m � 1h;21

hence h � �h.Put B = 2p(1 + xp +�x)p. By the choice of m0 it also follows that a � 2. Hence(OPT(Q))p = (OPT(Q0))p � m(a+ x)p � m(a+ a(xp +�x))p � mB:Let l be the number of machines with Li(Q) � 1 + t. It remains to prove that l � mfor suitable constant . First we prove that we can assume that all the loads are boundedby some constant. Given a number s > �h, let Q00 = (1; v00) be de�ned by v00i = minfs; vig.Note that v00i � t for exactly l machines. Let �(a; b) = ((a + b)p � ap)1=p. Let vi = s + �.If we change only this vi, (kL(Q)kp)p decreases by �(s+1; �) and (OPT(Q))p decreases by�(s; �). A standard calculation shows thatlims!1 sup�>0 �(s+ 1; �)�(s; �) = 1:Hence for su�ciently large s and arbitrary � > 0�(s+ 1; �)�(s; �) � CGreedy � �1:Fix such s. Now it follows that C(Q00) � CGreedy � �1, since C(Q) � CGreedy � �1, and theratio of the di�erences in each step is at most CGreedy � �1.Now construct Q000 = (a000; v000) from Q00 by the same transformations as Q0 from Q.Let x be the resulting common value of all non-zero components of v000. Since C(Q000) �CGreedy � �1, it must be the case that x=a000 � xp��p. Since a000 � 1� �h=m, we have x � �tfor some constant �t > t and su�ciently large m; �x m1 � m0 appropriately. Examiningthe transformations, x is the pth power mean of l numbers upper-bounded by s and m� lnumbers upper-bounded by t. Since x � �t > t, l � m for some constant .

22

