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of the computation. A number of authors [17, 19, 4, 14] consider the sameproblem from the source's viewpoint. There are many ways for the sourceto deviate from perfect randomness, but for most models the source is anadversary who can select a strategy from a given repertoire, and whose goalis to derail the randomized algorithm. While the randomized algorithm issearching for a witness, the source tries to fail this search. Lichtenstein etal. [14] point out the control-theoretic avor of this problem, namely, weare studying a stochastic process (the randomized algorithm) on which anagent (source, controller, adversary...) can exert some bias. The strategiesavailable to the controller are given by some rules, and there are certain goalsthat he strives to achieve. Some qualitative information about the optimalstrategy can be obtained using Markov decision theory, but we are mainlyinterested in quantitative questions: how much can the controller's biasa�ect the stochastic process, and which stochastic processes are the hardestto inuence? The only instances of this problem for which answers areavailable [17, 19, 4, 14, 6, 2, 3, 10] are (either originally thus stated, or easilytranslated into these terms) random walks on a �nite tree, which is directedfrom the root to the leaves. The decision which branch to take is determinedlocally and the controller can bias this decision with a certain probability.The present paper concerns similar questions pertaining to random walkson �nite graphs, which, in contrast, are time-in�nite. This instance of thegeneral problem is particularly appealing in the context of weakly-randomsources, since witness-searching through random walks (mostly on expandergraphs) has proved highly successful [1, 8, 12].An instance of our problem is speci�ed by an n-vertex connected graphG and a �xed 1 > � > 0. We will be concerned mostly with regular graphs,and use d to denote their degree. We consider the following variation ofthe standard random walk on the vertices of G: each step of the walk ispreceded by an (�; 1� �)-coin being ipped. With probability 1 � � one ofthe d neighbors is selected uniformly at random, and the walk moves there.With probability � the controller gets to select which neighbor to move to.The selection can be probabilistic, but it is time independent. In other wordsif the original transition probability matrix of the random walk was Q, thenthe modi�ed transition probability matrix isP = (1� �)Q+ �B;where B is an arbitrary stochastic matrix chosen by the controller, withsupport restricted to the edges of G. The interesting situation is when � is2



not substantially larger than 1=d; otherwise, the process is dominated bythe controller's strategy.This setup is a special case of a Markov decision process, where a con-troller is selecting from a set of available actions to bias the behavior of aMarkov chain. Much is known about Markov decision processes (see e.g.[9]). For example, we could have de�ned our problem in terms of time-dependent strategies. However, for every Markov decision process there isa time independent optimal strategy, and hence all of our de�nitions andresults consider only time independent strategies. Further conclusions fromMarkov decision theory are presented in Section 4 below. Our problem dif-fers from the classic setup in that we desire quantitative information: howmuch can the controller a�ect characteristics of the random walk such as itsstationary distribution? Which are the hardest graphs to inuence? Thesetype of questions are not addressed in the general theory.The problem considered here can also be viewed as a special case ofthe question: \How do perturbations in a matrix a�ect the eigenvectors?".There is a rich literature on this subject (see e.g. [13, 16, 11]). Nevertheless,the general results are not very useful for our case { typically the estimateof the change depends on the the eigenvalues of the original matrix. Forinstance, for general matrices (see [13]), the change is inversely proportionalto the di�erence between the �rst and the second eigenvalue, which maybe unbounded. Here, we consider a very restricted situation: the originalmatrix is stochastic and describes a random walk on a graph, and the sup-port of the perturbation matrix is restricted to the support of the originalmatrix. This enables us to derive uniform upper and lower bounds (that is,independent of the original matrix or its eigenvalues), whereas the generaltheory provides only non-uniform upper bounds and no lower bounds.There are a number of goals for the controller which are worth studying.The present article concentrates on a�ecting the limit, or long-term behaviorof the walk. For example, we may want to make the visit of a particularvertex as likely as possible, or as unlikely as possible. More generally, ifwe de�ne a weight vector w that associates with every vertex x the bene�twx of visiting it, it is of interest to �nd out how to maximize the expectedbene�t in the limit, i.e., Px2V �xwx, where � is the limit distribution of thebiased walk.We say that a strategy is simple if there is a function b : V ! V , suchthat whenever the controller gets to decide where the walk goes, if the walkis at x, the controller forces it to go to b(x).Here are our main results: 3



1. In the special case when w equals 1 at one particular vertex (called rootor favored vertex) and 0 everywhere else, that is, the controller triesto maximize the limit frequency of a certain vertex, we can show thatunder the controller's best strategy, the root's limit probability goesup from 1n to ( 1n)1�c�, where c depends only on d. (Clearly the resultis meaningful only for � small enough.) For instance, in a d-regulartree, for n and d �xed, as �! 0 the root's limit probability is less thann�1+�( dln(d�1)+f(n;d))+O(�2);where, as n!1 and d is �xed, f(n; d) = O(1= logn).Furthermore the best strategy has a simple characterization in terms ofthe hitting time to the root. (\Go closer to the root" is not necessarilythe best strategy!)2. The aforementioned bound is tight and is achieved on any expander.That is, if G is an expander, then any strategy for the controller cannotmake the limit probability of any vertex larger than ( 1n)1�c�.3. Analogous results hold for w which is the characteristic function of aset of vertices S � V , and the limit probability can be raised from jSjnto ( jSjn )1�c�.4. We can also �nd an optimal strategy in polynomial time when the goalis to minimize any weighted average of the expected hitting times toa set S � V .The �rst three results are presented in Section 3, while the fourth appearsin Section 5. For completeness we present the relationship of our problem toMarkov decision theory in Section 4, where we draw the following conclusionsfrom the general theory:1. For any bene�t function w : V ! R, we can �nd an optimal strategywhich maximizes Px2V �xwx. This strategy is found in time polyno-mial in n and in the number of bits needed to represent w.2. There is always a simple optimal strategy.3. When the controller wants to maximize the stationary probability of atarget vertex v, a strategy is optimal if and only if it has the propertythat at each vertex the bias is toward a neighbor with minimal biasedhitting time to v. 4



Regarding the increase in limit probability in part (1), there is an in-teresting similarity that we would like to point out. Ben-Or and Linial [6]study the following question: Given a full binary tree, where a fraction p ofthe leaves are considered \success", we perform a walk, starting at the root,until we reach a leaf. Suppose the decision where to proceed at internalvertices of the tree is determined by a set of n players. \Honest" players aresupposed to take random moves, while the \dishonest" ones may play anoptimal strategy to maximize the chance of hitting a success leaf. Ben-Orand Linial show that for every � > 0, there is a choice of �n dishonest playerswho have a strategy that increases the probability of success from p to p1��.We conjecture that this result is also true in our case:Conjecture 1 In any graph, a controller can increase the stationary prob-ability of any vertex from p to p1��.We have proved that the stationary probability can be raised to p1�O(�) onlyfor regular, bounded-degree graphs.A preliminary version of this paper has appeared in [5].2 Example: The d-regular TreeConsider a d-regular tree of depth l; by this we mean a rooted (d� 1)-arytree with a self-loop at the root and d�1 self-loops at each leaf. The numberof vertices is n = ((d� 1)l+1 � 1)=(d� 2).Suppose that the goal of the controller is to maximize the stationaryprobability of the root. It is clear in this case that the best bias strategy isfor each vertex to bias towards its neighbor closest to the root. Let L(i) bethe set of vertices at distance i from the root. Let pi be the limit probabilityof being at level i in the tree, that is pi =Pv2L(i) �v. Let � = (1� �)=d+ �be the probability on edges pointing to the root. Then we have:p0 = �p0 + �p1pi = (1� �)pi�1 + �pi+1 for 0 < i < lpl = (1� �)pl�1 + (1� �)plOne can check the solution to these equations is pi = p0(1��� )i, and hence�root = p0 = �Xi 1� �� ��1:5



For n and d �xed, as �! 0 we havep0 � n�1+�( dln(d�1)+f(n;d))+O(�2);where, as n!1 and d is �xed, f(n; d) = O(1= logn).3 Bounds on the Controller's Inuence3.1 PreliminariesWe review the following elementary de�nitions and theorem from Markovchain theory.Let Q be the transition probability matrix of a �nite irreducible, ape-riodic Markov chain. Let � be the vector of stationary probabilities of Q(i.e. �Q = �). Let htij be the the probability that the �rst visit to statej starting at state i occurs at the t'th transition. (h0ii = 1.) Let hi(j) bethe expected hitting time to state j starting at state i. (hi(j) = Pt�1 thtij ,hi(i) = 0.) For j 6= i, hi(j) clearly satis�es the relationhi(j) = 1 +Xk Qi;khk(j):We will use hi instead of hi(j), whenever the target vertex j is clear fromthe context.Let f ti be the the probability that the �rst return to state i starting atstate i occurs at the t'th transition. Let Ri = Pt�1 tf ti . The basic limittheorem of Markov chains states thatlimn!1Qnji = �i = 1Ri :We need the following elementary lemma.Lemma 1 Let Q denote the transition probability matrix of an irreducibleMarkov chain with a �nite state space S, and say jSj = n. Consider h =h(0) = (h0(0) = 0; h1(0); : : : ; hn�1(0)), the vector of hitting times to state0. If h0 = (h00; h01; : : : ; h0n�1) satis�es h00 = 0 and for i 6= 0, h0i � 1 +Pj2S Qi;jh0j, then h0 � h. Similarly if for each vertex except the origin,h0i � 1 +Pj2S Qi;jh0j, then h0 � h. 6



Proof: We have for c = 1 +Pj Q0;jhj and c0 = 1 +Pj Q0;jh0jQh = h � ~1 + ce0Qh0 � h0 � ~1 + c0e0and therefore Q(h0 � h) � (h0 � h) + (c0 � c)e0:Hence h0�h is sub-harmonic: at all states except state 0, h0�h is boundedabove by a weighted average of h0� h at the \neighboring states" (states towhich there is a non-zero transition probability). By irreducibility it followsthat if h0 � h is not constant, it must have a maximum at the origin. Thush0 � h. 2We will also need the following theorem due to Metropolis et al. [15]:Theorem 1 (Metropolis et al.) Let G(V;E) be a graph, and let � be astrictly positive probability distribution on V . Let dx denote the degree ofvertex x. For each edge (x; y) 2 E, letMx;y = ( 1dx if �x=dx � �y=dy1dy �y�x otherwise,and add a self-loop at each vertex with Mx;x = 1�Py2N(x)Mx;y. Then � isthe stationary distribution of the Markov chain with transition probabilitiesMx;y.Proof: For each edge (x; y) 2 E,�xMx;y = minf�xdx ; �ydy g = �yMy;x:Therefore�xMx;x + Xy2N(x)�yMy;x = �xMx;x + Xy2N(x)�xMx;y = �x;so � is the stationary distribution of the Markov chain given by the transitionprobabilities Mx;y. 2 7



3.2 Lower BoundTheorem 2 Let G = (V;E) be a connected graph, S � V , v 2 S andx 2 V . Let �(x; v) be the length of the shortest path between vertices xand v in G and �(x; S) = minv2S �(x; v). Let � = 1 � �. There is abias strategy for which the stationary probability at S (i.e. the sum of thestationary probabilities of v 2 S) is at leastPv2S dvPv2S dv +Px62S ��(x;S)�1dx :Proof: De�ne a probability distribution �M by �Mv = dv for v 2 S, and�Mx = ��(x;v)�1dx for each x =2 S, where = 1Pv2S dv +Px62S ��(x;S)�1dx :LetM be the transition probability matrix given by the Metropolis theorem,so that �M is the stationary distribution for M . For all x 2 V let Px;x = 0and for all y 6= x Px;y = Mx;y=(1 � Mx;x) (Mx;x < 1 by construction).Note that P is a transition probability matrix. We claim (1) that P is thetransition probability matrix of a �-biased random walk, and (2) that foreach state in S its stationary probability under P is at least its stationaryprobability under M , which leads to the desired bound.For (1) note that Px;y � Mx;y � (1 � �)=dx for y 2 N(x), so P is thetransition probability matrix of an �-biased walk. For (2) denote by hM (v)the hitting times to vertex v 2 S. For each vertex x 6= v,hMx (v) = 1 + Xy2N(x)Mx;yhMy (v) +Mx;xhMx (v):or hMx (v) = 11�Mx;x + Xy2N(x) Mx;y1�Mx;xhMy (v)� 1 + Xy2N(x)Px;yhMy (v):Hence by Lemma 1, for every v 2 S, hM(v) � hP (v), where hP (v) is thevector of hitting times to v in the Markov chain P . Now let RMv and RPv be8



the expected return times to v in the two chains:1=�Mv = RMv= 1+ Xy2N(v)Mv;yhMy (v)= 1 + Xy2N(v)Pv;yhMy (v)� 1 + Xy2N(v)Pv;yhPy (v) = RPv = 1=�Pv :The last equality follows from the fact that there is no bias at v 2 S. Inparticular, if v 2 S and y 2 N(v), then Mv;y = Pv;y = 1=dv. Lastly we haveXv2S �Pv �Xv2S �Mv = Pv2S dvPv2S dv +Px62S ��(x;S)�1dx :2Corollary 1 Let G = (V;E) be any connected, d-regular graph and let S �V . Then there is a bias strategy for which Pv2S �v is at least � jSjn �1�c�, fora constant c > 0 depending only on d.Proof: For d-regular graphs, the lower bound given by the theorem is justjSj=(jSj+Px62S �d(x;S)�1). It is minimized for graphs with (d� 1)ijSj nodesat distance i from S. 23.3 Upper BoundIt can be seen that the above bound for a single target vertex is tight byconsidering expander graphs.Theorem 3 Let G = (V;E) be a d-regular expander graph, i.e., the secondeigenvalue of its adjacency matrix does not exceed d � � for some � > 0.Then for any bias strategy, the stationary probability at any vertex is atmost nc��1 for some constant c depending only on d and �.Proof: Let A be G's adjacency matrix and let Q = 1dA be the transitionprobability matrix of the standard random walk on G. It is standard (by9



the spectral theorem) that Q(k)vw (the probability of reaching w in a k-stepwalk starting from v) satis�esQ(k)vw = 1n + O(�k2);where �2 is the second largest eigenvalue of Q. By assumption, �2 � 1��=dso for some c0 depending only on �dQ(c0 lnn)vw = 1n �1 +O� 1n�� ;for all v; w. Fix any bias strategy, and let P (k)vw be the probability of reachingw in a k-step biased walk starting from v. We have (for k = c0 ln n)�w = Xv2V �vP (k)vw � Xv2V �vQ(k)vw  1��d + �1d !k� Xv2V �v 1n �1 +O� 1n�� 1��d + �1d !c lnn� e(d�1)�k 1n �1 + O� 1n�� = nc��1;for some constant c depending only on d and �. 23.4 The biased return time equationThe biased return time to the target satis�es a simple equation.Theorem 4 Let G = (V;E) be a connected, d-regular graph and let v0 2 V .Consider any simple bias strategy B. For each vertex v 2 V , considerhv = hv(v0), the biased hitting time to v0 (in a walk starting at v), and letb(v) be the neighbor of v that is biased towards in B. Then R0, the returntime at v0, satis�es R0 = n� �Xv2V �hv � hb(v)� :Proof: For each vertex v, hv satis�eshv = 1 + 1� �d Xu2N(v)hu + �hb(v)10



and the return time satis�esR0 = 1 + 1� �d Xu2N(v0)hu + �hb(v0):Adding these equations for all v givesR0 + Xv2V hv = n+ 1� �d Xv2V Xu2N(v)hu + �Xv2V hb(v)= n+ (1� �)Xv2V hv + �Xv2V hb(v)and therefore R0 = n� �Xv2V �hv � hb(v)� :2Specializing to the case where � is small yields the following result.Corollary 2 Let G = (V;E) be a connected, d-regular graph and let v0 2 V .Consider any simple bias strategy B. For each vertex v 2 V , consider�hv = �hv(v0), the unbiased hitting time to v0 (in a walk starting at v), andlet b(v) be the neighbor of v that is biased towards in B. Then the stationaryprobability at v0 satis�es�v0 = 1n  1 + �n Xv2V (�hv � �hb(v))!+ O(�2); �! 0:Proof: Follows from the above theorem, noting that �v0 = 1=R0, and�hv = hv + O(�) for each vertex v. 2The assumption that the bias strategy is simple involves no loss of gen-erality (see Theorem 7). Thus the optimal strategy for small � is to biastowards the neighbor with the smallest unbiased hitting time.4 Connections with Markov Decision Theory andthe Properties of the Optimal StrategyAs noted in the introduction, the problem considered in this paper is aninstance of a Markov decision problem. This section presents the elementsof Markov decision theory that yield useful results in this context. Wherever11



a theorem has a natural proof in the restricted context of biased randomwalks, the proof is presented.We have considered controller strategies that maximize objective func-tions of the following type: Pv2V wv�v. If we allow time-dependent con-troller strategies, then �v may not be well de�ned. We use the relationshipbetween biased random walk strategies and Markov decision theory [9] inorder to show that there is a time-independent optimal strategy.A Markov decision process can be described as follows. Consider a sys-tem, that at each discrete point of time (t = 0; 1; 2; : : :) is observed andclassi�ed into one of a possible number of states, denoted by I . (I is �-nite.) After each observation of the system, one of a set of possible actionsis taken. Let Ki be the set of actions possible when the system is in statei. A (possibly randomized) policy R is a set of distributions Da(Ht�1; Yt),where a is an action in KYt meaning that if Ht�1 is the history of states andactions up to time t � 1, and Yt is the state at time t, then the probabilitythat action a is taken at time t is Da(Ht�1; Yt). The actions can be such thatthey change the state of the system. We de�ne this precisely by saying thatqij(a) is the probability of the system being in state j at the next instant,given that the system is in state i and action a is taken. Another way ofsaying this is that no matter what policy R is employed,Pr(Yt+1 = jjHt�1; Yt = i; At = a) = qij(a);where At is the action taken at time t.An additional set of parameters associated with a Markov decision pro-cess are costs: when the chain is in state i and action a is taken, a knowncost cia is incurred.Let SR;T (i) be the expected cost of operating a system up to timeT using the policy R, given that Y0 = i. In other words, SR;T (i) =P0�t�T PjPaPrR(Yt = j; At = a)wja.A standard problem in Markov decision theory is to minimize the ex-pected average cost per unit time, i.e. to �nd a policy R to minimize (ormaximize) lim supT!1 SR;T (i)T :Another standard problem is the optimal �rst passage problem. Thisproblem consists of �nding a policy R that minimizes SR;�(i), where � de-notes the smallest positive value of t such that Yt = j.12



Our problem of determining the optimal controller strategy to maximizeobjective functions of the form Pv2V wv�v is a problem of the �rst type. Abiased random walk on a graph G = (V;E) can be phrased as the followingMarkov decision process fYtg: the set I is the set of vertices V of G and theset of actions Ku is the set of neighbors, N(u), of u in G. The transitionprobabilities quv(x) are thenquv(x) = 8><>: (1��)du + � if v = x(1��)du if v 6= x and v 2 N(u)0 otherwiseThe cost of taking action x in state u, cux, is wu. Clearly, in the time-dependent case, for a given controller strategy R, the limitlim supT!1 SR;T (i)Tis the natural replacement for the sum Pv2V wv�v that we used in thetime-independent case. (Indeed, the limit reduces toPv2V wv�v if the timedependence is eliminated.)The following theorem is a basic theorem in Markov decision theory.Theorem 5 ([9], p. 25) There is an optimal policy that is memoryless,time-invariant and deterministic.Therefore, in our context there is an simple time-independent optimalstrategy.4.1 Computing the Optimal StrategyIt follows from results about Markov decision theory that there is an ex-plicit linear programming algorithm for determining the optimal controllerstrategy. Our specialized setup allows a simpler construction. We present anatural linear program for computing a controller strategy which maximizes(resp. minimizes) Px2V �xwx for any weight function w. We consider herethe more general case of directed graphs, and do not require regularity.We use the following notation. Let dx denote the out-degree of nodex and let N+(x) be the set of vertices that can be reached from x by adirected edge. Similarly, N�(x) is the set of vertices with an edge into x.Let E denote the set of directed edges. If the walk is at x, with probability13



1 � � it moves to a vertex from N+(x) selected uniformly at random; withprobability � the controller selects a neighbor of x according to some dis-tribution. So as before, if the original transition probability matrix of therandom walk was Q, the modi�ed transition probability matrix isP = (1� �)Q+ �B;where B is an arbitrary stochastic matrix with support restricted to thedirected edges of G, chosen by the controller.Consider the following system of inequalities:8x 2 V : �x � 08x 2 V : �x = Xy2N�(x) 1� �dy �y + Xy2N�(x) �By;x�y8(x; y) 2 E : Bx;y � 08x 2 V : Xy2N+(x)Bx;y = 1Xx2V �x = 1Clearly the set of feasible solutions to the above system is in one to onecorrespondence with the set of possible strategies of the controller. Theapparent di�culty suggested by the fact that these equations are quadraticcan be easily overcome.Theorem 6 The controller strategy that maximizes Px2V �xwx for anyweight function w can be found in polynomial time.Proof: We convert the quadratic system into a linear program by de�ning8(x; y) 2 E, ex;y = Bx;y�x. This yields8x 2 V : �x � 08x 2 V : �x = Xy2N�(x) 1� �dy �y + Xy2N�(x) �ey;x (1)8(x; y) 2 E : ex;y � 08x 2 V : Xy2N+(x)ex;y = �x (2)Xx2V �x = 114



The objective function remainsmaxXx2V wx�x :This linear program can be solved in polynomial time to obtain an opti-mal strategy and its value. Note that the polytope of the feasible solutionsis non-empty since the stationary distribution of an unbiased strategy isalways a feasible solution. The polytope is also bounded, e.g. by the unitcube, thus an optimal strategy always exists. 24.2 Properties of the Optimal StrategyIn this section we present some additional properties of the optimum con-troller strategy. The following theorem follows from Markov decision theory.For completeness we include a proof.Theorem 7 There exists a simple optimal bias strategy, i.e. there is anoptimal solution to the linear program, such that for each vertex x there isexactly one vertex y 2 N(x) such that ex;y > 0.Proof: It is straightforward to verify that there is a redundant equationout of the 2n + 1 equations of the linear program. (Sum the equations (1)for all x 2 V , interchange the order of summation and substitute equations(2) to get an identity.) Therefore a vertex of the polytope can have atmost 2n non-zero coordinates. Since n nonzero variables are accounted forby positive stationary probabilities, at most n of the variables ex;y can bepositive. Since for each x, there is at least one y with ex;y positive, weconclude that there is exactly one of y with ex;y positive. Therefore, thereis a simple optimal strategy. 2The following two theorems characterize the best controller strategywhen there is a single target vertex. Analogous results hold when the con-troller wants to avoid a single vertex.Theorem 8 When the controller wants to maximize the stationary proba-bility of a target vertex v, the optimal strategy has the property that at eachvertex the bias is toward a neighbor with minimal biased hitting time to v.Proof: Fix a bias strategy, represented by a matrix B. Consider the vectorh of biased hitting times to the target vertex. Assume there is a vertex x,15



with neighbors y and z, such that hy < hz but bx;z > 0. We will show thatB cannot be optimal.Construct a new bias matrix B0, that di�ers from B in just two places:b0x;z = 0 and b0x;y = bx;y + bx;z. By Lemma 1 (the \similarly" part, withh and h0 exchanging roles), the vector h0 of hitting times in the new chainsatis�es h0 � h. In fact we have strict inequality at x, and because the graphis connected, there must be strict inequality at some neighbor of the target.Therefore the return time to the target is smaller in the new chain. Hence,the stationary probability at the target is strictly larger in the new chainthan the old chain and B is not optimal. 2The converse to the above theorem is also true:Theorem 9 Let B be a strategy that biases in the direction of its own biasedhitting time to the favored vertex v, and let h be the corresponding hittingtimes to v. Let h0 be the hitting times to v for any other strategy. Thenh � h0, and B is an optimal strategy.Proof: For each vertex x let b(x) be the neighbor of x that has the leastbiased hitting time to the target: b(x) must be the vertex that the controllerbiases towards from x in strategy B. If there are ties, we can assume withoutloss of generality that the controller biases completely towards just one ofits neighbors with least biased hitting time.Now consider any other simple bias strategy, represented by b0, withassociated hitting times h0. We have:h0x = 1 + (1� �)dx Xy2N(x)h0y + �h0b0(x) :However, the de�nition of b gives ushx = 1 + (1� �)dx Xy2N(x)hy + �hb(x)� 1 + (1� �)dx Xy2N(x)hy + �hb0(x) :Hence by Lemma 1 we have h � h0, so �v � �0v , and B is optimal. 2Comparing the above two theorems with Corollary 2 we see that for smallenough �, the optimal strategy is to bias towards the neighbor with least16



unbiased hitting time to the target v. Under this strategy the stationaryprobability at v is�v = 1n  1 + �n Xx2V (�hx � �hb(x))!+O(�2); � ! 0;where now b(x) denotes the neighbor of x with least unbiased hitting timeto v.Corollary 3 The strategy that maximizes the stationary probability at avertex v minimizes hx(v) for all x.Proof: Let h be the vector of hitting times to v under the strategy thatmaximizes the stationary probability at v, and let h0 be the hitting timesto v under any other bias strategy. By Theorem 8 and Theorem 9, we haveh � h0. 2Lastly we note some properties of the value of the optimal strategy, asa function of �.Theorem 10 The value of the optimal strategy is a non-decreasing functionof �. It is continuous and piecewise di�erentiable.Proof: The �rst fact follows because any legal bias strategy for �0 is also alegal strategy for � if �0 < �. Secondly, the value for any strategy is givenby the solution to a set of linear equations, hence is a rational function of�. For each �, the optimum strategy is obtained by choosing the minimumvalue simple strategy. Hence the optimum value is the minimum of a �nitecollection of rational functions of �, so the optimum value is a continuousand piecewise di�erentiable function of �. 25 The Hitting TimeIn this section we consider the biased hitting time problem. We are giventhe same graph and random walk as before, but now the goal is to minimizethe hitting time to some set S � V from all vertices. More precisely, fora bias strategy B, let hx(S) be the expected biased hitting time from x tothe set S. Clearly for each x 2 S, hx(S) = 0. Our objective function isto minimize over all possible bias strategies Px2V lxhx(S) where lx is theweight of vertex x. We will assume that for each vertex x, lx � 0.17



The biased hitting time problem is an example of an optimal �rst-passageproblem from Markov decision theory. The model is the same as that usedfor our previous problem, except that now the cost of every action cia is 1and we start from an initial distribution proportional to lx. Consequentlywe once again haveTheorem 11 ([9], p. 29) There is an optimal controller strategy for thebiased hitting time problem which is memoryless, time-invariant and deter-ministic.The main result of this section isTheorem 12 Given S, there is a controller strategy for the hitting timeproblem that is optimal for all objective functions such that for all x, theweight lx is non-negative. The strategy can be found in polynomial time.Proof: Consider the graph GS in which the nodes in S are shrunk into asingle node s. The graph GS may have multiple edges: the number of edgesbetween a vertex v =2 S and s will be the number of neighbors of v in S.Now for any vertex v =2 S and for any bias strategy, the hitting time fromv to S in G is equal to the hitting time from v to s in GS . We now showhow to �nd a strategy that minimizes this hitting time, using the results onmaximizing the stationary probability at a target vertex.Firstly we can �nd a bias strategy for GS that maximizes the stationaryprobability at vertex s using linear programming, as shown in Section 4.1.Note that the results of Section 4.1 still hold even though GS has multipleedges. In the notation of that section, dy is now the number of edges leavinga vertex y, and N�(y) is a multi-set, with a vertex x appearing once foreach edge (y; x).Now let h be the vector of hitting times to s under this optimum strategy.By Corollary 3 hx(s) is minimal for every x. (Note again that the Corollaryis still valid when GS has multiple edges.) Therefore, for any non-negativeobjective function l, the bias strategy that maximizes the stationary prob-ability at vertex s is also an optimal strategy for the biased hitting timeproblem to S. 26 AcknowledgmentsNati Linial wishes to acknowledge his conversations with Oded Goldreichwhich helped in formulating some of initial conjectures in the present re-18
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