Commuting Polynomials

I. YANTAROV

EpiToR's NOTE. Mathematical problems that are proposed to high-school stu-
dents are usually related to new results in mathematics in a rather oblique way.
Or at best, they may only touch upon some very particular details, ruling out any
chance for the reader to grasp the entire concept. A probable reason for this is that
in mathematics everything is interrelated, and thus to understand even a fairly
elementary question completely, one has to take into account considerations from
nonelementary areas of mathematics.

The problem of commuting polynomials—the subject of this article—is a fortu-
nate exception to this rule, because it allows one to do real mathematics by entirely
elementary methods.

We knew about this problem from a letter we received two years ago from
E. Turkevich, to whom we owe the first results in this area. A problem, completed
with additional questions and divided into several steps, was then proposed for the
research tour of the XIth Soviet Mathematical Olympiad and also appeared in the
Kwvant Problem Book under the number M455.

Formulation of the Problem.

Two polynomials P and @ in one variable are said to commute! if P(Q (x)) is
equal to Q@ (P (x)). This implies that upon removal of parentheses and collecting
terms we will obtain the same polynomials in each case. This is also eguivalent
to the requirement that for every resl number d we have the numerical equality
P(Q(d) = Q(P(d)).

In Problem M455 of the Kvant Problem Book only polynomials with leading
coefficient 1 were considered. We will refer to such polynomials as unitery. (As we
will see later, any question about arbitrary commuting polynomials can always be
reduced to one about polynomials with leading coefficient +1.)

The problem consists of five connected subproblems:

(a) For any given number o find all polynomials of degree no greater than 3

that commute with the polynomial P(z) = 22 — a.
(b) Prove that there exists no more than one polynomial of a given degree that
commutes with 2 given polynomial of degree 2.

The Russian original is published in Kuvant 1979, no. 4, pp. 15-23.

TRANSLATION EDITOR'S NOTE: The reader will search the mathematical literature in vain for
any mention of a mathematician named I. Yantarov. A clue to the true identity of the author of
this paper can be found in the fact that “yantar’™ in Russian means “amber” in English. The
German word for “amber™ is “Bernstein,” and indeed, the author of this article is I, Bernstein.

1From the Latin commutativus, “interchanging.™
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(c) Find all polynomials of degrees 4 and 8 that commute with 2 given poly-
nomial P of degree 2.
(d} Prove that if polynomials @ and R both commute with the polynomial P
of degree 2, then they commute with each other.
(e) Prove the existence of an infinite sequence of polynomials Py, P, . . -, Py, - - -
which every pair commute, the degree of each P is k, and P> =
= -2

Solution to Problems (a) through (d).

SOLUTION To (a). Let Q(z) = 23 + aa? + bz + c. The equality P (Q (z)) =
Q (P (x)) can be rewritten as

(2P +ar? +bz+c)’ —a= (2 -a)’+a(z® —a)’ +b(z? - a) +c.

Before expanding these expressions, observe that on the right we have only even
powers of z, while on the left there is an z° with coefficient 2a. Hence ¢ = 0.
But then the coefficient of 22 on the left is 2c, and therefore ¢ also vanishes. Thus
Q(z) = 23 + bz2. Removing the parentheses and equating the coefficients of equal
powers of &, we obtain

2b=_3a,
b2 =302 + b,
o=a® + ba.

Let @ = 2. Then b = —3y. The second equation implies that 9y = 1292 — 39,
i.e., 72 — < = 0. Hence either v = 0 or v = 1. It is easily verified that each of these
values leads to a solution of the system.

We can summarize the result as follows. A polynomial of degree 3 that com-~
mutes with P(x) = x? — a exists only when either o = 0 (and P(z) = 72,
Q(z) = x*) or a =2 (and then P(r} = x? -2, @ (z) = 2® — 3x).

In a similar way one can prove that if the degree of @ is 2, then necessarily
Q = P, and if the degree of Q is 1, then Q@ {z) = x.

You can see that this part of the problem is fairly simple. At the Olympiad, it
was proposed to the students mainly as an introductory task. Nevertheless, 2 close
look at the equations written above may give the clue to solving part (b), and thus
a key to the whole problem.

SoLvTrioN 1O (b). Let
Qz)=x"+a;2" " 4 aax" 2 - 4 Qp—1X + ag,
P(x)=r*+pzx+g.
Consider the equelity
(r° +ar 2" 4o b @) ol + T b k) + g
—(@ +px+gff — (PP +pz+ gt - —ap =0

Equating the coefficients of x?*, x%~1, .. r!, z°, we obtain a system of equations
for a1y 82, .-y Gks Dy G- It is rather difficult even to write down this system, to say
nothing of solving it. However, some useful observations can be made. Note that
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the coefficients by, by, ... , b of the powers z2%—1, 226—2 4% in the expanded
polynomial are

bl = 2“1 +Rl(.p1Q) =O|
b2 = 2az + Ra(p,g,01) =0,

by = 2ak+Rk(PsQaals"-lak—l) =0,

where every I; is a certain algebraic expression involving p, ¢, a1, ..., 6g—1. The
first of these equetions implies thet a; can be expressed in terms of p and g; the
second equation says that a2 can be expressed in terms of p, g, and a;, and hence
in terms of » and g only. Proceeding in this way, we conclude that all coefficients
of & polynomial @ that commutes with P are uniquely expressed in terms of p and
g. And this is precisely what we were supposed to prove.

It is easily verified thet a similar argument is valid for any polynomial P of
degree greater then 1 (provided that @ is unitaxy), so that assertion (b) is true for
any such polynomial.

Assertion (b) is crucial for the whole problem, since the two remaining asser-
tions (parts (c)} and (d)) are its easy corollaries.

SoLUuTION TO (c). Let us prove that the polynomial @ (z) = P (P (z)) com-
mutes with P (z). Indeed, Q (P (z)) = P (P (P ())) = P (Q (z)). This polynomial
Q is of degree 4 and, by assertion (b), is the only polynomial of degree 4 that com-
mutes with P. In & similer way, one can prove that the only polynomial of degree
8 that commutes with P is R (z) = P (P (P (z))).

SoLUTION TO (d). Set S(z) = Q(R(x)) and T(2) = R(Q(z}). Since P
commutes with both @ and R, we have P(S(x))} = P(Q (R(z))) =@ (P(R(=z))) =
Q(R(P (z))) = S(P(z)). Thus, P commutes with S. For a similar reason, P also
comrmmtes with 7. Furthermore, both S and T' are unitary polynomials of the same
degree (if Q and R heve degrees k and [, then S and T are of degree k). Now,
assertion (b) implies that § =T, i.e., @ (R(z)) = R(Q (2}), q.e.d.

As with assertion (b}, the present statement remains valid in the case where P
is any polynomizal of degree greater than 1 if both @ and R are unitary.

Chebyshev Polynomials: Solution to Problem (e).
Problem (e) is much more complicated than the others. We will give several

approaches to its solution.

FIRST APPROACH. Let z = ¢+ ¢~1. It is then easy to check that z* can be
written as

ot = (441"
=" +t*) +a (t"" + r("—“)
+az (t‘”" +t"‘"‘2’) +otapy (t+E7T) +ag,

where a;, ... , a; are well-defined numbers. By induction on & one can prove that
t* 4.t~k can be expressed as

a® b2tV oo b1z + i,
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where again by, ... , by are certain fixed numbers. Denote this polynomial
2%+ b2 o ez by
by P (x)- By definition, Py(t + £ ') = t* + t~%. Hence
Po(Pt+t ") =P (t' +t7!) = tM 4175 = Pyt +t77).

It follows that

Py (P (%)} = Pu (z) = B (P (z)),
i.e., any two of the polynomials P, commute. Since moreover, P; (z) = 2* — 2, the
desired sequence of polynomials has been constructed.

SECOND APPROACH. Here we explain how to construct polynomials Py using
Chebyshev polynomials Ty. Instead of giving a direct definition of these, we will
specify a relation that they satisfy (and that determines them uniquely):

T (cost) = coskd.

It can be shown that T} is 2 polynomial of degree k. Furthermore, Chebyshev
polynomials commute, Tk (T (2)) = Tim (2} = T (Tk (x)). This follows from
the simple fact that cos[k(mt)] = coskmt = cos[m(kt)]. However, T} is not 2
unitary polynomial. Its leading coefficient is 2°~1. From the point of view of the
problem under study, this is a drawback. Fortunately, it can easily be fixed by
stretching both the argument and the value of the function by a factor of 2, ie.,
setting Py (z) = 27} (§). This procedure preserves the commutativity relations
(check thist).

‘Thus, the remarkable sequence of Chebyshev polynomials, which appears nat-
urally in various problems of calculus, specifically in the theory of approximation
of functions by polynomials, turns out to be a sequence of commuting polynomials.
It was precisely this method that E. Turkevich used to construct the sequence F.

Note that both approaches described so far are based on one and the same idea.
Let f be a function that takes an infinite number of values and such that for every
natural number n,

F(nt) =Qn (f (),
where 0, is a polynomial. Then for any two numbers m and =, the polynomials
Qm and @, commute. For example, if f () = ef, then we get the sequence of
commuting polynomials F, (2} = z". If f(x} = €' + ¢!, we get the sequence
P, (note that this is our first method of obtaining P,, with ¢ replaced by et).
Finally, if f () = cost, we arrive at the sequence of polynomials T;,. Those who
are acquainted with complex numbers and the formula

el¥ 4 =t
2

will easily find an explanation of the fact that the functions et + e~* and cos# lead
to essentially the same system of polynomisls.

Both solutions of problem (e) given already are quite elegant, but both are
imperfect in one way: It remains absolutely incomprehensible how one could have
hit upon such a proof. We are going to give one more proof. It is longer than the
first two, but in compensation there are no secrets about how it was discovered.
Also, it gives a fast method of computing the sequence of polynomials P,.

cosyp =
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THIRD APPROACH. As we glready know from part (b) of the problem, there
can exist only one polynomial P of degree k that commutes with P, (z) =22 — 2.
Let us write down the beginning of the series:

P (ﬁ) =X,
Py (z)=a%-2,
P (z) = a® - 3,
Pi(x)=x'=4r" 42,
P; (z) = 2° — 52° + b,
Ps (z) = 2% — 62 + 022 — 2,
Here Py (z) = P2 (P2(z)), Ps{z) = P2(Ps(z)), and F;(x) can be found by the
direct procedure of problem (a). Looking at this table, one can guess the underlying
rule, which is Py () = 2P, (2) — Px—1 (z). A natural conjecture is that this
recurrence formule should be valid for all &£ > 1.
Thus, let us define the sequence A, P, ... , P,, ... inductively, setting
Pi(z)=z, Py(z)=x2-2,
and for £ > 1,
P41 (2) = 2P () — Pea (2).

We are to prove thet all these polynomials P, commute with Ps. It will then
follow, by assertion (d) above, that they commute with each other.

We proceed by induction on k. Cleerly, the polynomials P; end P; commute
with Po. Assuming that all polynomials Py, B, ..., P commute with P;, we will

prove that P, also commutes with P,.
‘We have to show that

Fria (332 = 2) = [Pr41 (3)]2 -2
By virtue of the recurrence relation for Py, this equelity can be rewritten as
(22 — 2) B (22 — 2) — Poy (22— 2) = [Py (2) — P (2)]° — 2.
By the induction hypothesis, this is equivalent to

(22 - 2) ([P @)]* - 2) = ([Pe-1 (2)]” - 2) = [2P2 {2) — P (2] - 2.
After removal of brackets and parentheses and trivial simplifications, this becomes

[Pe (2)]* — 2Pe () Po—1 () + [Pe1 (@)}° =4 — 2*.
Let S (x) be the lefi-hand side of this equation. It remains to prove that S (x)
does not depend on & (and equals 4 — 22). Indeed, suppose that k& > 2. Then
Sk (z) = [Px (2)]* = 2Py (z) Pe-1 (2) + [Pem1 (@)
= Pi () [Pe (z) — 2Pecr (2)] + [Pe=r (@)
= —Pi (2} Pu_2 (z) + [Prcr ()]

= [Po—2 (@)]® — 2Pi—1 () Pimz (%) + [Pe—1 (&)
= Sk...] (3.') .
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Thus, Sk () = Sk-1 (x), and since $p (z) = 4 — 22, we have S (z) = 4 — = for all
k 2 2. And this completes the proof.

Other Problems on Commuting Polynomials.
We will discuss several other problems related to the following general question:
Describe all pairs of commuting (not necessarily unitary) polynomicls P and Q.

PROBLEM 1. Prove that two polynomials P and @ of degree 1 commute if and
only if either P(2) = 2 -+ a, Q (x) = z + B or there exists a number g such that
P(zg) = Q(zp) = zo (i-e., 2 common fixed point of the mappings P and Q).

ProBLEM 2. Find the answer to the general question in the case where the
degree of one of the polynomizals P and @ is 1.

In what follows, we will assume that both P and @ are polynomials of degree

greater than 1.
Let

P(z) = 0p2* + a1z*! + -+« + ag—12 + ar,
Q(2) = b(l:lil + bla:""l e+ B2+ b

Note first of all that it suffices to solve the problem in the case where both coeffi-
cients @) and b; are zero (polynomials with this property are referred to as reduced).
This can be shown with the help of the following operation. Fix a number a, and
for a given polynomial R (z), define the new, shified polynomial R® (z) according
to the formule. R(®) (x} = R (z — a)+a. Clearly, the polynomial R can be recovered
from the polynomizl R®: R(z) = R (z +a) —a.

PROBLEM 3.

(2) Prove that if the two polynomials P and § commute, then the same is true
of the two polynomizals P(®) and Q(¢),

(b) Prove that any pair of commuting polynomials P and @ of degree greater
than 1 has the form P = §(8), Q = T(%), where a is a certain number,
while S and T are & pair of commuting reduced polynomials.

In what follows, we will assume that both polynomials P and Q are reduced.
Furthermore, we will suppose that they are unitary, i.e., have leading coefficient 1.
This is the most interesting particular case. Furthermore, an argument similar to
the one carried out above shows that the general problem can be reduced to the
case where the leading coefficients of both P and Q are ::1, so that this particular
case does not differ much from the general case. (Instead of the shift operation,
one must use the stretching operation defined by the formula R} (z) = AR (£).)
Here are several series of commuting polynomials:

1. Let R be a polynomial of degree r. Consider the polynomial sequence

Po(z) ==,

B (z) = R(z),

Py (x) = R(R (=)},

F3(z) = R(R(R(2))),
and in general,

Py (x) = Pi(R(x)).
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Clearly, 21l the polynomials F, commute, and the degree of F; is 7.

2. The series Fj, () = z*. All the polynomials Fi, commute, and the degree of
Frisk.

3. The series {F.} constructed above as the solution to problem (e). These
polynomials are defined by the condition Py(t+¢~1) = t¥+t~*. The degree
of Py is k.

4. The sequence of polynomials H), Ha, Hs, ... defined by the condition H;.(t—
t~1) = t* — ¢~ for odd k. You can check that these polynomials exist and
are uniquely determined by the condition mentioned. All these polynomials
commute, and the degree of H;. is k.

Actually, examples 3 and 4 are particular cases of a more general construction.

To describe it, we need to make a remark concerning the coefficients of polynomials.
So far, we have tacitly supposed all coefficients to be real numbers. However, in &
large class of algebraic problems it is better to work with complex numbers instead.
Therefore, let us assume from now on that the coefficients of the polynomials under
study are arbitrary complex numbers.

5. Fix a natural number m and 2 complex number A such that A™ =1 (for
any m, there exist m — 1 such numbers different from 1}.

Consider the pairs of numbers (u, v} such that 4-v = X and put =z = u+v.
It is readily verified that

=gk gt oy,
where @y, ...,0; are certain numbers determined by A. Set
P (z) =2* + a1 2" 4 -+ o+ as-

The polynomial F;, is characterized by the property P (u + v) = uk4o*
whenever uv = .

Let I be any number having remainder 1 after division by m. Then
ule! = (uv)! = N = ), so that P (u' + v!) = u + v®L. Therefore, if both k
and ! have remainder 1 upon division by m, we have

Pe(P(u+v))=v® +o¥ =B (P (u+)),

which means that the polynomials P, and F; commute. From a given A, we
have thus constructed the following series of commmting polynomials: P,
Pamt1s Pemsts - - - All these polynomials are unitary and reduced, and the
degree of P, is k. When m = 1, A = 1, we get example 3; when m = 2,
A = -1, we get example 4.

Examples 1 through 5 include all known examples of commuting polynomials,
so that we can make the following conjecture: If P and @ are two commuting
polynomials with complex coefficients of degree greater than 1, then they form part
of a series of polynomials that falls under the construction of one of the examples
1, 2, or 5 above.

Instead of trying to solve the general problem, another thing we might do is to
find an answer to the following partiel questions:

1. For what values of o does there exist a polynomial of odd degree that com-

mutes with the polynomial P (z) = 2% — o?

9. Let P be a unitary polynomial of degree greater than 1. Consider the set of

degrees of all polynomials that commute with P. What kind of subsets of
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the natural numbers can occur in this way? For instance, in example 1 we
had a geometric progression, and in example 5, an arithmetic progression.

3. Let P and @ be commuting polynomisals of degrees k and I, respectively.

Suppose that & divides L. Is it true that Q must be of the form @ (z) =
P(R(x)}, where R is a unitary polynomial that commutes with P?

One can also consider 2 more general problem—that of finding all pairs of
rational functions P and () that commute. In this case, many new and fascinating
examples come into view.

The general approach we mentioned while discussing the problem (e) above is
also valid here. Suppose that f is a function that takes infinitely many values and

has the property
f(nt) = Pu(f (),

where P, is a rational function. Then for arbitrary n and m the functions P, and
P, commute.

An exciting question is to find the fumctions f with the property that for any
n there exists a rational function P, such that P, (f ()) = f (nt). You can easily
check that one example is given by the function f (t} = tant.

Other examples of such functions can be constructed using the theory of elliptic
functions. Since the latter is essentially nonelementary, we will not touch upon it
here.

All these examples show that the problem of describing all pairs of commuting
polynomials {(and, more generally, rational functions} is directly related to profound
and beautiful mathematicel theories. A complete solution of this problem, when
found, will reveal some unknown facts. In short, this is a problem worth working
on.

Trauslated by N.K. KULMAN



