ONE-DIMENSIONAL COHOMOLOGIES OF DISCRETE SUBGROUPS

I. N. Bernshtein and D. A, Kazhdan-

Let G be a locally compact unimedular group and I' a discrete subgroup thereof with the factor group
I'\G compact. We shall study the group HY(T', C) compact. We shall study the group and its connection with
the decomposition into irreducibles of its representation in I,(I'"\G). We shall suppose G to have the fol-

lowing property:

(R) There exists in G a compact subgroup K such that the ring F (with respect to convolution), of con-
tinuous finite functions on G and two-way invariant relative to K, is commutative.

We shall prove two theorems with this assumption.
THEOREM 1. There exists a representation H of G such that
HY(T, C) == Homg (L, (I"\Q), H).

THEOREM 2. If G = Gy X Gy, with I projected everywhere dense on G, and G,, then HYT, €) = Hom -
(G, C) (i.e., every homomorphism of I" into C may be extended to a continuous homomorphism of G into C).

§1. GARDING SPACE AND A DUALITY THEOREM

By a representation T of group G we mean a homomorphism of G into the group of invertible cpera-
tors of the locally convex complete linear space L (over C) such that the map G x L. — L given by (g, 1)
- Tg(l) is continuous. For each such representation we construct a new representation T in L™ called

the representation in Garding space.

It is known from the construction theory of locally compact groups that there is an open subgroup N
in G with an admissible subgroup Uj in any unit neighborhood (i.e., a compact subgroup such that N normal-

U.
izes Uj and N/Uj is a Lie group). We denote by L ! the subspace of L consisting of vectors x such that
1) TUi X = X;
2) Tgx is an infinitely differentiable vector function on N/ Uj.

Us ~
We specify on L La topology using the system of neighborhoods V(p, V), where p is an element of
~ ~ U'
the enveloping algebra N/Uj and V is a neighborhood in L; viz., we set V(p, V) = {x € L o p (Tgx)(e) € vi}.
We set L™ = lim LUi . This is the desired space. The restriction of T to L® is a representation we shall
U; —{e}

denote by T®. It is easy to see that L™ is everywhere dense in L. Each continuous representation map L,
— L, induces a continuous map of Garding representations.

DUALITY THEOREM. Let T be a representation of G in I.. Then

Homg (L, L, (T\\G)) = Homg (L%, Ly (I'\\G))=- Homp(C, (L™)yy = H*(T, (L2y).

This theorem is proved in [1]. In particular, if L* is reflexive, then HYT, (L")*) = Homg(Ly(T'\G),
LS.
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§2. I'-ACYCLIC MODULES

Let Co be the space of continuous finite functions on G with Cg the correspondlng Garding space
and Q@ = (CO ) * the space of generalized functions on G. We specify on C,, CO , and Q a right representation

Lof G: (Rgyf)(®) = f(g80 (Lg,f)(e) = f(g'8).

LEMMA 1, If Q is regarded as a module over I" (using the left representation), then Hi(I‘, Q) = 0 for
i>0,

Proof. An admissible subgroup of V may be chosen such that I" acts on G/V without fixed points.
Ther. I'\G/V is a compact variety. We select a C®-triangulation in it. We denote by %&: the space of func-
tions of © with carrier in the preimage of the i-skeleton. A, C A%, C ... T £, =8, Cj = /A1 . Itis
then easy to see that Cj is the direct product of the Fg;, where the oj are i-simplexes and Fg; is the space
consisting of Taylor series in variables normal in gj with coefficients in functions on the ¢j which are gen-
eralized and which do not grow quickly. It is sufficient to show that HY(I', Cg) = 0,1 >0. This follows
from the following:

LEMMA 2. If C is the space of functions on I' taking values in the linear space F, then Hi(I‘, C) =0,
i>o0.

Proof, If Nc M is a C(I')-module , then the sequence Hom (M, C) — Hom(N, C) — 0 is exact, for
Homp(M, C) = Homg(M, F). This means that C is an injective I'-module (homomorphisms are here consid-
ered without the topology).

This proves Lemma 1.

We denote by A the submodule of Q@ consisting of functions on G/K. Since A is a direct sum in &, it
it is injective over I'" and HI(I‘ A) =0,1i> 0. We examine the exact sequence of modules 0—~S—~ A LB
— 0; the S here consists of constants, and B = A/S. Since Hi(I‘ A) = 0, HY(T, C) = HYT, B)/w*(H (T, A)).
It is easy to see that Q, A, and B are reflexive, and @ *, A*, and B* commde with their Garding spaces.
Therefore

H'(T, €) = Homg (L, (I'\\G), B)/x, (Homg (L, (T"\0), 4)-

§3. HECKE OPERATORS

LetFC Cy (F c Qg be finite continuous (generalized) functions two-way invariant relative to K, and
F and F convolution rings. We shall consider that (R) holds, i.e., Fis commutative. Since Fis densein F the lat~
ter is also commutative. It is hence easy to show that if f€ Q is a generalized function two-way invariant
relative to K, ¢ € ¥, then f*xo = @*f. FactsonA according to Ry, (f) = f *¢. This action commutes
with Lg. The subspace S is invariant, so therefore T acts on S and B.

We denote by x the one-dimensional representation (character) of F. In particular, we denote by X,
the representation in S. For any character x we examine the subspace Ay c A (By © B, respectively) con-

sisting of elements f such that Af = x(4)f for all A€ F. This is a closed G-invariant subspace.
Let T be the representation of G in L. For any function ¢ € £, we define the operator Tq, =J @ (g,
G

Tgdg. It is defined on the everywhere dense set L*. Let gk be the Haar measure on K regarded as a gen-
eralized function on G. We denote by P = T - PK the projector of the K-invariant vectors in L onto Lg.

If p€F, then T¢ carries Lk into itself. If T is a unitary irreducible representation, then Lx is null- or
one-dimensional (see [2]). If Lk is one-dimensional, then we denote the corresponding representation of
F by xT. Let & be the set of equivalence classes of irreducible unitary representations of G. We decom-
pose & into three classes:

={T|dlmLK=O}t $D={TIXT=XO}1
&, = {T|%r .definitely, . Xr=%}
Note 1. I is shownin [2] that from (R), &, consists only of the unit representation.

We expand L, (I'\G) into the sum of terms Lg + Ly + L, consisting of representations of the corre-
sponding class.



LEMMA 3, Let f be a continuous map of the irreducible unitary representation T into the represen-
tation A : 7 : L(Tj} — A. Then, if xT is defined, then (L) < AXT‘

i

It is enough to show that a nontrivial vector from L goes into A x7- Letx be a nontrivial vector from

Lg. Then f(x) is a two-way function on G invariant relative to K with A x f(x) = x T(4&) f(x} = #(x) * A for
any A€ F. This means that FRE AXT'

. LEMMA 4. K V is a nonnull invariant subspace in A, then there is a vector v € V such that Pg(v) = 0.

Proof. We may take v to be a smooth function with v(e) = 0. Then Pg(vi(e) = v(e) = 0. This means
that Homg(T, A) = 0,if T€ &s .

LEMMA 5. There is a unique vector in A Xo invariant relative to K.
Preof, Let ¢ € Ay and Pg(y) = ¢. We consider the space V = {E.aiLgi(fﬂ)' Saj = 0}; it is an invari-
— i i
anl subspace in A, if v €V, then Pyg(v) = (ZeiPKLgy) ¢ = (ZaiPkLg; PR) o = & *¢. Since Zaj = 0, we have
i i

that A *1 = 0, i.e., XA} = 0, and this means that A * ¢ = ¢ * A = x4(A) ¢ = 0. 1t foilows from Lemma 4
that V ig zero-dimensional, which means that Tgp = g@lorall g€ G, ie., ¢ is constant. This proves the
lemma.

PROPOSITION. Homg(L,, A) gf Homg(L,, B) is an isomorphism,

Proof. For each A€ f‘, we denote by 2 the operator cn I, that multiglies the Vegtors of every irre-
ducible component of T by X T(A). Suppose we have found an element [J € F such that LI has a continuous in-
verse and Xq(0} = 0. Since Li(S) = 0, there exists a unique map 6 such that 67 = 0. For ary f¢ Homg(L,,B),
f= 60 1}‘6 Homg(Ly, A). Then 7 () = £, as required.

How can [ be found? We construct it such that O is strictly posiiive definite, which it will be if Ois
such on Lyg. There exists an admissible subgroup Uj which acts freely on I'\G. Further, I\G/Uj is a
compact variety; Liy; is a subspace in Ly(I'\G/Uj). We may consider a function ¢ € Q,, such that Tgp
takes Ly(I'\G/ Uy into itself, T‘P (1) = 0, and T¢ is elliptical positive definite. If it equals 0 over a finite
number of vectors other than 1, then we supplement it with a nonnegative definite kernel operztor of the
form Ty which is not equal to ¢ on these vectors but is on 1. (This can be done easily, since for any A € Q,,
(TA)* also has the form TA', A' € ©,.) This means that T(p will be strictly positive definite on Ly (I'\ G/K)
=S and Py Pk will be strictly positive definite on L;g. We have thus proved that

HY(T, C) = Homg (L, + Ls, B)/x, (Homg (L, + Ls, A)).

We have 74 (Homg(Ly, A)) = 0, for Ly = {A} (A € C); Homg(Lg. A) = 0 by Lemma 4. This means that HY(T,
Cy = Homg(Lgy + Lg, B).

LEMMA 6. If T is a unitary irreducible representation in the space 1., and f+ L~ Bisamap of rep-~
resentations, then f(L) € BXo is a map of representations, then T€ &, U &s , and F(L) € BXT for T€ g, .

The proof for &, and &, is the same as in Lemma 3. Let T€%c , A€ F for x4(4A) = 0. Then 6f: T—~A,
and by Lemma 4 df = 0 (6 is introduced as in the proof of the proposition), Af = 76 f = 0, as required.

This means that H\(T, C) = Homg(L, + Lg, BXo) = Homg(I,(T\G), BXg)' This proves Theorem 1.

LEMMA 7. Homg(Ly, B) = Hom(G, C*) is the set of continuous homomorphisms of G into C*.

Proof. L,is canonically isomorphic to the module C over G (with trivial action). Let f:C — B be
continuous, (1) the image of 1, and vy any element of A for which TVf = f(1). Then Lgvf Vs €ES~C,y
i.e., we have a map ¢ £ G — C™*. 1t is continuous since the preimage of BXo consists of continuous func-

tions. It is easy to see that of is a homomorphism and does not depend on the choice of V.

Let a homomorphism ¢: G — C* be given. We consider the function v(g) = ¢(g). It is easy to see
thai v € A and that 7 (v) is invariant relative to G, Maps are in this way constructed on both sides, and it
can be easily verified that they yield an isomorphism.

(5]



Note 2. We have thus proved that H{(T, C) falls into a sum of two parts: Hom(G, C¥), which does not
depend on I', and Homg(Lg, BXQ),which does.

We now prove Theorem 2. In the case being considered it is enough to prove that Homg(Lg, on) =0.
Let T be an irreducible unitary representation in L, with T < Lg. We prove that Homg(T, BXc) =0, It

easily follows from the fact that G has property (R) that Gy and G, do also. We may further consider that
K = K; x K,. We introduce the subspaces B, = By,k, and By = By, K, into on. -It may.be proved analogous-

ly to Lemma:5 that By = BX},G . and B, = By,G,- In particular, By and B, are invariant relative to the action
of G.

LEMMA 8. I T is a unitary irreducible representation of G in L and f: L — By, is a map of repre-
sentations, then f(1) € By U By.

Proof. We consider an element v € L which varies according to the representation £ ® £, of group K

(&1, &, irreducible representations of K; and K,, respectively). If £, = 1, then f(v) € By, and the result is
proved. Suppose £, = 1. We denotfe by BE ) (Ag . and Lg 0 respectively) the space of vectors in B (in A and

L, respectively) which vary according to the representation £ pAe 1) c B .= AE ; It may be proved anal-
ogously to Lemma 4 that since f(Lg ) = {0} in £(L), there is a vector invariant relative to K,, i.e., one that
lies in B,, as required.

_ Suppose T occurs in Ly(I'\G) and f(T) < By. Then L of T is realized in the functions ¢ on G which
satisfy the condition

¢(gg) =9(18)=9(8), &¢€G, 7er.

It follows from this that the ¢ are constant, since the projection of I" onto G, is everywhere dense.
This means that if T < Lg, then HomG(T, Bxu) = 0, which proves Theorem 2,
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