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a n d  S.  I .  G e l ' f a n d  

§ 1 .  I n t r o d u c t i o n  

Let $ be a complex semis imple  Lie a lgebra.  Despite the fact that finite representat ions of the alge- 
b ra  6 were one of the very f i rs t  objects of study, there exist even s impler  representat ions .  Here a host of 
proper t ies  of finite representat ions  are essent ial ly  consequences of analogous proper t ies  of these s impler  
modules.  Categories of these modules,  such as the so-ca l led  O-modules,  were introduced by the authors,  
and their definition was given in [1]. In this work there will be studied e lementary  objects of that cha rac -  
ter ,  the modules Mx(see [1]). This work can be read independently of [1]. Study of the M x module was be-  
gun in V e r m a ' s  work* which obtained a se r i e s  of deep results  on M x modules.  

The MX modules (for a precise  definition, see below) a r e  of in teres t  since they are  the s implest  mod- 
uli generated by a single vec tor  of highest weight X - P ,  where p as usual denotes a ha l f -sum of positive 
roots .  All other  modules generated by a single vector of highest weight, including also i r reducible  finite 
representa t ions ,  a re  factor  modules of the modules MX. In the present  work there is a complete desc r ip -  
tion of the categories  of the modules MX. This is to say, on the basis  of the Verma Theorem,  Hom(MxI, 
MX2) is ei ther  0 or  C. The question a r i se s ,  for such Xl, X2 pai rs ,  whether there  exists a nontrivial mapping 
of MXI to MX2. The main resul t  of our ar t ic le  is the establ ishment  of neces sa ry  conditions for the exist-  
ence of such a mapping {Theorem 2). The proof of Theorem 2 is fairly involved; the authors have been 
unable to come upon an eas ie r  proof.  The form of the hypothesis in [2], for Theorem 2, was retained.~ 

The resul ts  obtained on MX modules permit  one to understand f rom a single point of view the grea te r  
par t  of the c lass ica l  results  in complex semis imple  Lie a lgebras ,  in par t icu lar  the Kostant theorem or 
the equivalence to it of the Well formula for charac te r s ,  the Borel-Weil  Theorem,  etc. 

§ 2 .  N o t a t i o n  a n d  B a c k g r o u n d J ~  

is a complex semisimple  Lie algebra of rank r ;  I~ is a Cartan subalgebra of the algebra G; 

/t is a sys t em of roots of G relative to ~ with a fixed ordering;  ~ is the sum of the simple roots;  A+ 
1 is the set  of positive roots ,  p =~ -  ~ ";; 

~E=%+ 

E T is the root vector  corresponding to the root  T 6Zk, where 7 ([E 7,  E_~/]) = 2. It is known that 
[Eot, E-fl] = 0 for  (t, fl E Z, a ~ ~; 

*The authors wish to express  their gratitude to Prof.  J. Dixmier for bringing the exceptionally interesting 
work [2] to their  notice. 
tWe  note that as formulated in [2] the theorem asser t ing  that every  submodule M in MX has the form 
M = £1 MXi is false.  Counterexamples can be constructed,  in par t icular  for Lie algebra of the group 
SL (4, C); see our last page. 
:~For prec i se  definitions and proofs ,  see also [4] and [5]. 
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n_ is the suba lgebra  of $, na tura l  in E_ V, V EA+; 

U(~), U(n_) a r e  enveloping a lgebras  of g and n- ,  respect ive ly ;  Z(g) is the cen te r  of U(Q); 

U(B) (x i . . . . .  xt0 for  e lements  x i . . . . .  Xk f r o m  the U(6)-module M denotes the U(g)-submodule in M 
genera ted  by x I . . . . .  x k. The meaning of U(n-) (x i . . . . .  Xk) is analogous; 

~* is the space  dual to ~; ~ is the r ea l  l inear  subspace  in ~*, natural  for  all  roots  V EA; ~* = 

< ", -> is the s c a l a r  product  in ~* const ructed accord ing  to the Killing f o r m  of the a lgebra  ~, I'1 is 
the cor responding  n o r m  in ~ .  We note that X ([E V, E_y]) = 2<)~, V>/< V, V > , X E I~*, V EA+; 

~ .  is the lat t ice in ~* cons t ruc ted  f r o m  those X for  which 2 < X, V > / <  V, V > E Z for  all  V E A; 

f(c~) is  the fundamental  weight cor responding  to the root  ¢~ E ~', i .e . ,  2 < f ( a ) ,  a > / < a ,  a >  =1,  <jf(c~), 
8> = 0 for  ~ E P . \ a .  The weights  f (c , ) ,  a E ~ ,  genera te  ~ . ;  

X 1 >> X2 fo r  Xl, X2 E ~* signif ies that X1 ~ X2 = ~ naa, na E Z, n~ ~ O~ 
aE~ 

W is the Well  group of the a lgebra  ~; 

~V E W is the re f lec t ion  corresponding to the root  V E ~ ,  i .e . ,  ~TX = X - 2 <  X, 7>  < V, V >-iV, X E ~*. 
We r eca l l  that  i f  ~ E Z, V E A+,  7 ~ a ,  then aaV E A+; 

Z(w) is  the length of the e lement  w E W, i .e . ,  the leas t  number  of  f ac to r s  in a r ep re sen ta t i on  w = a a l ,  

.... ~ k ,  a i  E ~; 

X1 ~ )~2 for  ~l, ~ E }* signif ies  the exis tence  of an e lement  w E W for  which X1 = wx~; 

~ }* is the union of hyperp lanes  < Re X, V > -- 0 for  all  V EA; Weil c h a m b e r s  a r e  connected c o m -  
ponents } * \ ~  ; C is  the c losure  of the Well chamber  C; C + is the Weft chamber  containing p.  The group 
W acts  s imp ly  t r ans i t ive ly  on the se t  of  Weil c h a m b e r s .  It  can be shown that  if  ~ E-C and wx E~,  then 
Re X = Re w~. Two Weft chambe r s  C l and C 2 a r e  cal led adjacent  if  dimR(~l.N ~ )  = 2 r - 1 .  The re  then 
ex is t s  an e lement  V E A+,  such that  ~vCI  = C2; 

P(F) E }~. is the se t  of weights of the f in i te -d imensional  module F. 

§ 3 .  T h e  M o d u l e s  M~ 

D e f i n i t i o n  1 .  Suppose X E ~ .  We denote by J~ the left ideal (in U(~)), genera ted  by the e lements  
EV, V EA+,  and H-x (H)  +P(H),  H E}. We fur ther  put M~= U(~)/J~.  

The following readi ly  ver i f ied  l emma  desc r ibe s  the s imp le s t  p rope r t i e s  of the modules  M X. 

LEMMA 1. 1) A U(~)-module M X is genera ted  by  one g e n e r a t o r ~ x  of weight X - P  such that  E~fX = 0 
for  c~ E r.; 2) U(,_) ac ts  on M~ Without ze ro  d iv isors ;  3) U(n-) (~X) -- M~. 

Bes ides ,  P r o p e r t i e s  1) and 2) uniquely c h a r a c t e r i z e  the module MX. 

THEOREM 1. (Verma,  [2]). Let  X, ~ E }*. Two ca se s  a r e  poss ible :  1) Homu(~) (M~, M~) = 0, 
2) Homu(~) (Mx, M~) = C, and eve ry  nontr ivial  homomorph i sm MM --~ M~ is an imbedding. 

In the second case  we can consider  MX as a submodule of  M~. 

We shall  study in the p re sen t  note for what ~, ~ E}* the module M X c a n b e  imbedded in M~. This  is 
Obviously possible  only in case  ~ << ~.  

LEMMA 2. Let  ~ E Z,  ~ = ¢~M and ~ - ~ = n~,  where  n E Z, n -~ 0. Then MM ~ M~ • 

Proof .  I t  is e a sy  to show that  E~(Ek_cf~) = k ( n - k ) E ~ I f ~ .  P u t f  = E_n~f~. T h e n f  has weight X - P ,  
E ~ f  = 0 and, for  any/~ E P, ~ # ~ ,  E ~ f  = E ~ E n a f ~  = EnqE~je~ = O. By L e m m a  1, the submodule in M~, 

natura l  o n f  is i somorphic  to MX, which demons t r a t e s  the l emma.  

Suppose z E Z(~). Then z "f)~ is propor t iona l  t o f x ,  i .e . ,  z " fX = O X ( z ) f x ,  0X(z) E C. Sincef)~ is a 
gene ra to r  in M)~, z • x = 0X(z)x for  all  x E M X. In this waY we get the h o m o m o r p h i s m  O)~ : Z(I~) --~C. 



L E M M A 3 .  0 × t =  0x2 if  and only if T~i ~ X2. 

The p r o o f  of  L e m m a  3 fol lows r ead i ly  f r o m  a t h e o r e m  of H a r i s h - C h a n d r a  on e igenvalues  of Lap lace  
o p e r a t o r s  (see [3] and [8]). 

COROLLARY.  If  M~¢ ~ M~ then X ~ ~o. 

Cen t ra l  to this  w o r k  is T h e o r e m  2 giving,  along with T h e o r e m  3, n e c e s s a r y  and suff ic ient  condit ions 
tha t  M~ is imbedded  in M~.  

§ 4 .  N e c e s s i t y  o f  C o n d i t i o n  (A)  

Suppose X, ~0 E t~*, Tt,  T2 . . . . .  Tk E A + .  We shal l  s ay  that  the sequence  Ti . . . . .  Tk sa t i s f i e s  Condi-  
t ion (A) fo r  the p a i r  (~, ~), i f  

1) 7~ = a~/k • • • aTi~b. 

2) Put t ing  X0 =~, ~i =ff~/i • " " aTl~b'  i t  is then t rue  that  2<Xi_l ,  -yi>/< ~/i , ~/i > E Z. 

3) < Xi-1, Ti > -> 0. 

THEOREM 2. Le t  )~, ~b E I}* be such that  M ) ~  M~.  Then  there  ex i s t s  a sequence  ~i  . . . . .  ~k E A + ,  
sa t i s fy ing  Condi t ion (A) for  the p a i r  (X, ~). 

We p r e f a c e  the p roof  of the t h e o r e m  by a s e r i e s  of l e m m a s .  

LEMMA 4o Let  M be s o m e  U(Q)-module,  and 0 = M e ~ M i ~  . . . ~  Mn = M such that  i ts  f i l t r a t ion  by 
submodules  M i obeys  M k / M k - i  ~ MXk. Le t  Xs be m a x i m a l *  in the se t  of  those  Xk, fo r  which Xs ~)~k" 
Then  t h e r e  is ,  in M, a submodule  i s o m o r p h i c  to MXs° 

P roo f .  Let  J i  c Z(~) be the k e r n e l  of  the h o m o m o r p h i s m  OXi and J - J i  • • • Jn" Then  J annihi la tes  
M, which is to s a y  that  t he re  o p e r a t e s  in M a commuta t i ve  f in i te -d imens iona l  a lgebra  Z ( ~ ) / J .  (F in i teness  
of  Z(g)/J follows f r o m  the Noe the r  c h a r a c t e r  of Z(~).) Since Z(~) /J  d e c o m p o s e s  into a d i r e c t  s u m  of  local  
r ings  (see [12]), M = • N(J) whe re  the submodules  N{J) c o r r e s p o n d  to the d i s t inc t  ones among  the m a x i m a l  
idea ls  Ji  E Z(6). Suppose submodule  N {i) c o r r e s p o n d s  to Js ;  we put L k = N {i) f~ M k. Then  Lk /Lk_  i =MXk, 
if  Jk  = J s  (i .e. ,  ~k ~ Xs), and L k / L k _  I = 0, if Jk  ~ J s .  Hence t h e r e  is in N {i) an  e l e m e n t f  of  weight  X s - p  
and no e l emen t s  of  g r e a t e r  weight  {since t he re  a r e  no such  f r o m  the module  L k / L k - i ) .  By L e m m a  1, the 
submodule  in M g e n e r a t e d  b y f  is i s o m o r p h i c  to MXs. 

LEMMA 5. Le t  F be a finite U{g)-module  and let X E I ] . .  Then  in M~ @ F the re  ex i s t s  a f i l t ra t ion  
by  submodules  0 = L 0 ~ L i ~ L n = M X @ F such that  L k / L k - i  ~ MX+Xk, whe re  ~k E P(F) .  

P roo f .  Le t  e I . . . .  , en  be a b a s i s  of  F cons i s t ing  o f  weight  e l emen t s  with weights  X i . . . . .  ~n, and 
suppose  the indexing chosen  so  that  i - j, if  },i >> ~,j. L e t ~ i  = f x @  ei ~Mx @ F and Lk = U{I]) (a 1 . . . . .  ~k). 

We ve r i fy  that  the modules  L k sa t i s fy  the hypo theses  of  the l e m m a .  In fac t  the image  7~ k of  the e l eme n t  a k 
in L k / L k - i  is a g e n e r a t o r  in L k / L k - I  of  weight  X + Xk-p  and Ea '~  k = 0 for  a ~ 2;. Hence L k = U{a_) {~i, 
• • . ,  ~k). We v e r i f y  that  L k is a f r ee  U(~- ) -modu le .  Suppose Xi E U(~_), 1 - i --<k, and I is the l a rges t  of 

k n 

the d e g r e e s  of  e l emen t s  Xi ( re la t ive  to the na tu ra l  f i l t ra t ion  in U( , - ) ) .  Then  ~ X~a~ :=~, X~/x @ e~ !- ~ Yifx 

ej ~ 0, s ince  the d e g r e e s  of  the e l e m e n t s  Yj E U(~_) a r e  less  than I. Applying L e m m a  1, we conclude that  
L k / L k - I  ~ MX+ Xk- 

The  fol lowing l e m m a  p rov ides  the key  to the p r o o f  of T h e o r e m  2. 

LEMMA 6. Suppose X, ~ E ~* a r e  such  that  MX~ M~,that F is a f in i te -d imens iona l  U(~)-module ,  and 
that  X E P(F) is a weight  such  that  the weight  X + ~ is max ima l  in the se t  W(X + X) ~ (X + P(F)) .  Then there  
ex i s t s  a weight /~ ~ P(F) such that  MX+Xc M~+/~. 

P roo f .  It  follows f r o m  L e m m a s  4 and 5 that  t he re  is a submodule  M in MX @ F which is i somorph i c  
to M~/+~,. C l e a r l y ,  MX@ F is imbedded in Me ® F. Suppose that  0 = L 0 ~  L i ~  . . . ~ L n  = M e @  F i s  the 
f i l t ra t ion  en te r ing  in L e m m a  5, and that  Lk is the l eas t  submodule  conta in ing  the image  of  M. Then the 
image  of  M, i s o m o r p h i c  to MX+X, maps  nont r iv ia l ly  to L k / L k _  i ~ M~+/~,/~ E P(F) ,  and,  a c c o r d i n g  to 
T h e o r e m  1,this mapping  is an imbedding.  

*We say  that  weight  X is m a x i m a l  in the se t  D C  ~ if, f r o m  the condi t ion  ~O E D, ~o >> X the re  follows ~o = X. 



LEMMA 7. Let C I and C z be two Well chambers, X E CI, X' ECI, ~ E C 2, ~' EC 2, X'-X E ~, ~ '-~ E 
~, X N~, X' ~ ~b, and let the roots 71 ..... Tk E A+ satisfy Condition (A) for the pair (X, ~). Then they 
satisfy Condition (A) for the pair (X', ~') too. 

Proof. Point 2) of Condition (A) is obvious, Point 3) follows from the fact that for any T the sign of 
<Re X, T> is constant in a Weil chamber, and Point I) follows from the fact that X' ~ X~ = aTk . . . a71~', 
X' EC,, X~ EC I, whence Re X' = Re X~. Since X'-X~ E ~., Im X' =Im ~,which is to say X' = X~. 

Lemma 7 shows us how to extend Condition (A) for one pair (X, ~ to its confirmation for another 
pair (X', ~ '). 

LEMMA 8. Let C i and C~ be adjacent Well chambers, and let ql E C~, qz E C z and 7 E A+ be such 
that<He qi, T><0,<Req~,T>>0. ThenaTC ! =C 2. 

Proof. Suppose the assertion of the lemma does not hold. Then we can choose ~i E C i f~ ~* R and 
z E C z N ~R such that l q 2- qi[ is much smaller than < q ~, 7 >. Since the sign of <Re q, 7> is constant in 

a Weil chamber, the inequalities < ql, T ><0, <~2, T > >0, h°Id, whence <q~- qi,' ' 7 >>< q2,' 7 >, which 
leads to a contradiction. 

Proof of the Theorem. Suppose )~ E ~*. Denote by Y(YJ the following assertion: 

Y()O: for every @ E ~ * for which MX~ M~, there exists a sequence 71 ..... Tk E A+, satisfying 
Condition (A) for the pair (X, q). 

We proceed to prove Y0D for all )~. We first note that Y00 is true for all X EC +, since in this case 
there follows from ~ >> X and ~ ~ X the fact that @ = X. The arbitrary case is handled by the following 
steps.  

Step 1. Let  C be a Well chamber ,  let X E C and let 7 E A+ be a root  such that < 7 ,  Re X> < 0; let 
~7C be a Weil chamber  adjoint to C. Let F be a finite dimensional  U(~)-module for which X + P(F) c 
C U a T C  and k E P(F).  Then, if 7( + k E aTC, there follows f rom Y(~ + )0 the t ruth of Y(X). 

Proof .  Suppose MX c M@ and w E W are  such that ~ = wX. It  follows f rom the hypothesis that there  
exist  no more  than two weights ~ of the module F such that X + ), ~ ~ +/~. Suppose/~l is that one of these 
weights for  which ¢ +/~l E w~7C (it always exists) and /~  is the one for which ~ +/~2 E wC (it may not ex- 
ist).  By L e m m a  6, e i ther  MX+ ~ C M~b+p l, or  M)~+ ~ c M~ +/~. We give detailed considerat ion to both cases .  

1 .  Suppose M X + k c  M~+p~. It follows f rom YO( + D that there  is a sequence 71 . . . . .  7k of e le-  
ments of A+,  sat isfying Condition (A) for  the pair  (X + ~, ~ +/~l) = (X, ~) • We shall const ruct  a sequence 
satisfying Condition (A) for the pa i r  (X, ~). Put 7( i =~7i  . . . . .  aTl@, X--i = aTi . . . . .  aTl~. We r emark  that 
X l and Xi a re  always different on the  element ~ . .  Hence for any i, ei ther  Xi << Xi-1, or  ~i >> Xi-1. If  Xi << 
Xi-1 for eve ry  i, then the sequence 71 . . . . .  7k sat isf ies Condition (A) for  the pai r  0~, ~b). I n  the con t ra ry  
case we denote b y i  0 the f i rs t  number for  which Xi 0 >> Xi0-~- We show that the sequence 7~ . . . . .  7i0-1, 
7i0+1, . . . .  "fk, 7 sat isf ies Condition (A) for the pair  (X, v). It follows f rom Lemma 8 that the elements 
Xi0-1 and Xi0 lie in the same Weil chamber .  This means that a T a T k  . . . aTi0+ 1 • aTi - I  " • " ~Tl =w-i ,  and 
Point 1) of Condition (A) is fulfilled. M o r e o v e r , a  7 =aTk ...aTi~+laTi_ a~ i + . . . .  a ~  °, i .e. ,  7 = +a~l. 
aTi0+ ~ Ti 0- Hence 2 <X, 7 > / <  7, 7>  = + 2 < Xi0-1, 7i0>/< 7i0, Ti0 > E Z. Fulfillment of Point 2) of Condition 
(A) for the remaining elements of the sequence is obvious. Fulfillment of Point 3) of Condition (A) follows 
at once f rom Lemma 8 and Lemma 7. 

2. Now suppose that MX +)t ~ M~#+#2 and that 7! . . . .  , 7k is a sequence of roots sat isfying Condition 
(A) for the pai r  (~ + X, t # +/~2). F r o m  Lemma 7 and f rom the condition < Re )~, 7 > < 0 it at once follows 
that the sequence 71, . . . .  7k,  7 sat isf ies this condition for the pai r  (X, ~). 

Step 2. Let  C be a Well chamber ,  let X E C, and let F be a finite-dimensional module such that X + 
P(F) ~ C, and ~ E P(F).  Then Y(X) follows f rom Y(X + )0. 

The proof  of this asse r t ion  is analogous to the one conducted above, but s impler .  

We note that applying Steps 1 and 2 in the required order ,  we can show Y(YJ for  every  ~ E ~*, "suffi- 
ciently far"  f rom the set E . More prec ise ly ,  d being distance in l~t, suppose that X E ~* is a weight such 
that d (Re X, E) > 3 ~Pl. Then we can const ruct  a sequence X = X0, Xl . . . . .  Xq< of  elements of  ~* such that 
diRe )~i, ~ ) > 2 Lot, x i - x i + l  E ~ . ,  Xk E C +"and such that for every  i one of the following two conditions is 
fulfilled: 



1) ){i and Xi+l lie in two adjacent Well chambers  C and a3/C, 3/ EA+, and moreover  <Re Xi, 3/> <0 
and l)~i+l-)~il is a much sma l l e r  distance f rom ){i than all other  Weil chambers ;  

2) Xi and Xi+l lie in the same Well chamber  and IXi+l-Xi] < 2Ipl. 

Considering the f ini te-dimensional  modules Fi of least  weights ~i+l-Xi  and applying respect ively 
Steps 1 and 2, we extend Y(X) to truth of the asse r t ion  Y(Xk). Here the fact is used that the length of all 
weights Fi does not surpass  l xi+l-)~i] (see [5]). 

The case of a rb i t r a ry  3/is analyzed with the help of the following considerat ions.  

Step 3. Let X E I)*, Re X ¢ 0. For  e a c h a >  0 we denote by Da the cone in l)i~ consist ing of those non- 
zero  ~ such that the angle between ~0 and Re ){ is less t h a n a .  We can choose ~ small  enough that the Well 
chamber  C in tersects  Da if and only if X EC. We choose ~ E t)~, such that 1) d (Re(x + 70, E ) > 3 ]P I, 2) 
Re(~ +D is maximal in the set W(Re(X + ~)) • D~. 

We now show that Y(X) follows f rom Y(X + 70. 

Suppose F is a f ini te-dimensional  module with least weight ~. We show that for all weights ~ + 
the p remises  of Lemma 6 are  fulfilled. Suppose the weight ~ E P(F) is such that Re (X + ~) ~ Re (X + ~). 
Since IRe (X + )01 = IRe (~ +p)I and I},l -> ]#l, it follows that Re{){ +p) E D a , which means the inequality 
Re(X + ~) << Re(~ + p) cannot be fulfilled. Hence we can take Lemma 6 and the a s se r t ion  that if M){~ M~b, 
then MX+~ c M~+# for some ~ E P(F). Reasoning analogous to that adduced above shows that the angle be-  
tween Re (~ + /~) and Re ~b is not g rea t e r  than ~ and hence ~v + ~ and ~ lie in the same Well chamber.  We 
may now apply Lemma 7 which completes the proof  of Step3 and of the whole of Theorem 2. 

§ 5 .  S u f f i c i e n c y  o f  C o n d i t i o n  (A) 

THEOREM3 (see [11]). Let ~, ~ E ~*. If  there exists a sequence of roots  3/I . . . . .  3/k E A+, sa t isfy-  
ing Condition (A) for the pa i r  ()~, ~), then MX ~ M~. 

Proof .* It suffices to consider  the case where the sequence consis ts  of a single root T E A+. 

LEMMA 9. If  X, ~ E ~* and ~ E Z a re  such that M ~  M~ and Maot X ~ MX, then Maaxc=-  IVIzrot~. 

Proof.  It follows immediately  f rom the conditions of the lemma that ¢ - ~ a ~  = n~, where n E Z. By 
Lemma 2 it is enough to consider  the case  n > 0, where M a n i c  Me.  Suppose~¢ is the image o f f~  in 
M ¢ / M a ~ .  Then E nod~ ~ = 0. The image of the elementf~kin M~b/Maa~ has the f o r m ] - x -  xf-'~, where 
X E U(~). The e lement  Ekc~x can be wri t ten in the fo rm E_,~X = xiEl~l , where kl inc reases  unboundedly 

with k. Hence E )~ = 0 for large k. Since E a E k a f  X k ( n ' -  k) E k-_ (where n'  = 2 < )~, ot > /<  a ,  a> E Z), 

it follows that E _ n ~  = 0, i .e. ,  that M(raX~ Mao~q~. 

LEMMA 10. The asser t ion  of the theorem is t rue for X E ~*Z, ~ = a3/X. 

Proof .  We can suppose that X ~ ¢. We choose elements  ~ . . . . .  Otk E 2], such that in the sequence of 
weights Xi = a a  i • • . a a i X  the relat ions Xi÷l >> Xi, Xk EC ÷ are  fulfilled. Suppose ~i = aa  i • • • n a i l .  
Each ~i is obtained f rom )/i by some mapping which we denote by ~3/i, 3]i ~ A+. By Lemma 9 it is enough 
to show that MXi ~ M¢i for some i. 

We take as i the last index for which ¢i >> Xi (i < k, since Xk >> q~k and Xk ;~ ~k). Then q~i- Hi = n3/i, 
where n > 0, and ¢ i + l - X i + t  = aoti÷l(~i-  Xi) = naai+13/i << 0, which is only possible if a i + l  = 3/i, but then 
M)fi z M~i by Lemma 2. 

We now prove Theorem 3. Let 3/ EA+, )~, ~ E ~* be such that ) / = a 3 / ~ ,  ~ - X  = n3/, where n E Z. De- 
note by ~nT the finite dimensional subspace in u(~_), consist ing of elements of weight - n  T. 

The module Me, considered as a U(~-)-module,  is a free module with image f ~ .  Hence for the proof  
of the theorem we need to find a nonnull e lement  X E nn3/ such that EaX)e~ = 0 for all o~ E Z. The equations 
wri t ten give a sys t em of linear homogeneous equations in the space ~n3,, whose coefficients depend lin- 
ea r ly  on ~. Consider  the hyperplane S in t)* consist ing of those weights ~ such that 2 < ~ ,  T > / <  3/, 3/> = n. 
By Lemma 10 the given sys tem has a nontrivial  solution for all ¢ ~S N }~. If  3, =wv~, w EW, o~ E )-, then 

*This proof  differs f rom that in [11]. In par t icu lar  it does not use enumerations of simple Lie a lgebras .  
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system has a nontrivial solution for all q E S and in particular for ~o = ~o This completely proves Theorem3. 

Theorems 2 and 3 permit introduction of the following partial ordering into the group W. 

Definition 2. Let X0 E C + N ~,. We put w I <w z for elements wt, w 2 E W, if Mwlx0 e Mw2x0. 

THEOREM 4. 1) The ordering introduced in Theorem 4 does not depend on the choice of X0 E C+N I]~. 

2) Suppose w i, w z EW. The inequality wl< w 2 is fulfilled if and only if there exists a sequence of im- 

ages uYl ...... aVk E W, such that w i =~Vk • • • ~Tiwz and I (#Vi+l • • • ~71w2 ) >~ (~Vi .... aylw 2) for every i. 
Here I (w) is the length of the element w E W. 

The proof of the first part of the theorem follows immediately from Theorems 2 and 3 and Lemrna 7. 
For proving the second part we need the following result on constructing the system of roots (see [9]). 
Suppose w 6 W. Then I (w) coincides with the number of those roots ~/6 A+, for which w~/E-A+. 

As remarked in [2], the adduced ordering can be given the following geometrical meaning. Let G be 
a simply-connected Lie group with Lie algebra ~, let B c G be the Borel subgroup corresponding to the 
subalgebra generated by ~ and E V, ~/E A+. Suppose moreover that P =G/B is the fundamental projective 
space of the group G. Each element w E W we put in correspondence with the subspace Pw = BwB ~ P. 

These subspaces are the key to the splitting of P (see [10]). Here w I <w 2 if and only if Pwl ~ Pw~. We 
also note the connection of this ordering with the Paley-Wiener Theorem for complex semisimple Lie 
groups G ([6]). 

§6. Appendix. Multiplicity of the Weight of a Finite-Dimensional 

Representation 

We introduce here a simple algebraic proof of the Kostant formula for the multiplicity of a weight of 
a finite-dimensional representation (see [7]). To do this we shall use only the definition of the module 
M)~ (Def. 1) and Lemrnas 1 and 3. To make it possible to use LemmR 3 we note that in [8] there was intro- 
duced a proof of the Harish-Chandra Theorem on the eigenvalues of a Laplace operator without using the 
formula of H. Weil for characters. 

Let ~ be the space of all functions in ~*. For u E ~ we place supp u = {X E I~*[u(x) = 0j. The group 
W acts in ~ by the formula (wu) (X) =u(w-IX), Let g~ be a subspace consisting of all functions u for 
which  supp u i s  con ta ined  in  the  un ion  of  a f in i te  n u m b e r  of s e t s  of  the  f o r m  {Z -- Z n~T ln, E Z, nr > 0 } .  

• 6 A+ 

The space g is a commutative algebra with respect to the convolution operation u i * u2(X) = ~ u~ (X -- ~) 

uz(q) (in th i s  s u m  only  a f in i te  n u m b e r  of  t e r m s  a r e  d i f f e r e n t  f r o m  z e r o ) .  L e t  8x ~ ~ be  a func t ion  such  

tha t  8 X (X) = 1, 8 X (~) = 0 fo r  ¢ ~ X. Then  8 0 i s  the  un i t  of  the  r i n g  ~ .  

Def in i t ion  3.  1) Q(X) i s  the  n u m b e r  of  f a m i l i e s  {ny}~/EA +,  n.y E Z,  n~/ > 0 ,  such  tha t  n-c"( ---= - -  X. 
'zEA+ !- 

We shall call the function Q00 the Kostant function.* 

LEMMA 11. L*Q*8_p =80. 

Proof. Leta T =60 +6_ T +8_2~ +... E ~. Then clearly Q --- 

mR at once follows from the fact that L = I~ (80-- 8_~) • 8p. 
"~EA+ 

H av a (60--  6v) * a~ = 6 0 .  ,The l e m -  
~EA+ 

LEMMA 19,. wL = {-1)l(w)L forw EW. 

*Our definition of Q(X) differs from that provided in [7] in replacement of X by -X. 
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Proof.  It suffices to verify that aaL = - L  for ot E Z. Since as t ransposes  elements of the set  a + \ a  

a n d c a r r i e s a t o - o t ,  a~L=(6,,_V~--6~I,V] ~E~+\~H (6~_--b_~_)=--L.  

Definition 4. Suppose the U(g)-module M is a d i rec t  sum of weights of spaces VX of weight X and 
dim VX <,o for all X E t ) *  We call the function ~r M E ~,  given by the formula 7rM(X) = dim VX by the name 
cha rac te r  of M. 

LEMMA 13. 7rMx(~ ) = Q(~b- X +p) .  

Proof.  Suppose ~/1, • • -, Ys is an a r b i t r a r y  indexing of the roots 3/ EA+.  F r o m  the theorem of Poin- 
_ • • • E r ~  (n i  E Z ,  car~-Birkhoff-Wit t  (see [4], Ch. I) it follows f rom Lemma 1 that the elements EnlT1 sfx 

ni >- 0) form a basis  in MX, and Lemma 13 follows from the definition of Q. 

COROLLARY. L * ~Mx = ~X. 

LEMMA 14. Let U(~)-module M and element X0 E ~+  be suchthat  1) there is a basis  in M of weight 
vectors ;  2) z . x =  0X0(z)x for e v e r y x E M ,  z 6Z(g); 3) 7r M e x i s t s a n d z r  M E ~ .  

Let D M = {X E I~*[X ~ X0, ~ << ~ + P for some ~0 E supp ~rM}. 

Then ~ =  ~ Cz~M z,czEZ- 
x~.D M 

Proof.  In view of Condition 3) there exists in supp 7r M at least one maximal element X- Then EaX= 0 
for a n y x  E V ~ , ~  E2;. Hence for a n y z  EZ(~) ,v  E V x w e h a v e z  . x =  0X+p(z)x, a n d h e n c e , ~ + P  ~Y~,Le. ,  
X ÷P E DM. Let k = dim VX. By definition of M X it follows thatwe can construct  a mapping ~ :  (Mx+p) k--*M, 
t ransla t ing the g e n e r a t o r s f x + p  to k l inearly independent elements VX. Suppose L and N are  the kernel  and 
co-kerne l  of ~ .  It follows f rom the exact sequence 0 --*L ~ (Mx+p) k ~ M ~ N --* 0 that 7r M = 7rL-~N-  
kTrMX+ p. The moduli L and M sat isfy the hypotheses of Lemma 14 and in addition DL and DN lie in DM\ 
(X + P). Induction on the number of elements of DM concludes the proof of Lemma 14. 

Remark.  The foregoing reasoning establishes that the moduli MX generate  the group of Grothendieck 
category of the moduli M satisfying the conditions of Lemma 14. 

COROLLARY. Under the hypotheses of Lemma 14, L * ~rM c DM. 

Suppose now that F is a continuous f ini te-dimensional  U(g)-module with highest weight X. Then 7r F 
is invariant with respec t  to W (see [5]). By Lemma 12, w(L * ir F) = (-1)/(TM) (L * 7rF). By the Corol lary  to 
Lemma 14, L .  7r F = ~c~5~(~+~). Since dim V~t = 1 in the module F, it follows that c e = 1 (see the 

proof  of Lemma 14), hence L * ~r F = ~, (--1)t(~)6~¢~e~) . Applying Lemma 11, we get ~r F = Q * 6_p 
wEW ~vE W 

(-1)l(W)6wOt +p). In conclusion, we get the following theorem.  

THEOREM 5 ~Kostant formula).  Let  F be a f inite-dimensional continuous representa t ion  of q with 
highest weight ;t. Then 

nF (I ~) = ~ (--i)~(*) Q (I~ -[- o -- w (k ~. p)). 
wEW 

Note. In conclusion we append an example of a submodule M in MX which does not have the fo rm 
U MXi. Let ~ be the Lie algebra of the group SL(4, C), Elk (i ~ k), and let E i i - E j j  be a basis of ~ with 
Eik(i < k) corresponding to roots f rom ~+ .  We consider  the module M X, wherein all weights X are given 
by the equations )¢ (Ell-E12) = X(Ess-E4~ ) = 0, X(E~2-E33) =1. Suppose /1  =E~2f ~ and ~I = U(~) ( f l ) .  It 
follows f rom Theorem 2 that if  Eika  = 0 for i <k,  then a =a I + c / x ,  where a l  E M, c 6 C. Put x = E42E21f X + 
E4sE~lf X. Then x ~ M and Eikx E ~I for i < k. Hence the submodule generated by x and ~I is a p roper  sub- 
module of M X not having the form U MX. 
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