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§1. Introduction

Let g be a complex semisimple Lie algebra. Despite the fact that finite representations of the alge-
bra g were one of the very first objects of study, there exist even simpler representations. Here a host of
properties of finite representations are essentially consequences of analogous properties of these simpler
modules. Categories of these modules, such as the so-called C-modules, were introduced by the authors,
and their definition was given in [1]. In this work there will be studied elementary objects of that charac~
ter, the modules My (see [1]). This work can be read independently of [1]. Study of the My module was be-
gun in Verma's work* which obtained a series of deep results on My modules.

The My modules (for a precise definition, see below) are of interest since they are the simplest mod-
uli generated by a single vector of highest weight x—p, where p as usual denotes a half-sum of positive
roots. All other modules generated by a single vector of highest weight, including also irreducible finite
representations, are factor modules of the modules My. In the present work there is a complete descrip-
tion of the categories of the modules My. This is to say, on the basis of the Verma Theorem, Hom(My;,
My,) is either 0 or C. The question arises, for such xy, Xz pairs, whether there exists a nontrivial mapping
of My; to My,. The main result of our article is the establishment of necessary conditions for the exist-
ence of such a mapping (Theorem 2). The proof of Theorem 2 is fairly involved; the authors have been
unable to come upon an easier proof. The form of the hypothesis in [2], for Theorem 2, was retained.?

The results obtained on My modules permit oneto understand from a single point of view the greater
part of the classical results in complex semisimple Lie algebras, in particular the Kostant theorem or
the equivalence to it of the Weil formula for characters, the Borel-Weil Theorem, etc.

§2. Notation and Background}

g is a complex semisimple Lie algebra of rank r; § is a Cartan subalgebra of the algebra a;
A is a system of roots of g relative to § with a fixed ordering; Z is the sum of the simple roots; A+

is the set of positive roots, ¢ =é >

YEAy

E’Y is the root vector corresponding to the root y €A, where vy ([E-y, E"Y]) = 2. It is known that
[Ea, E-g] =0 for @, B € Z, @ #B;

*The authors wish to express their gratitude to Prof. J. Dixmier for bringing the exceptionally interesting
work [2] to their notice.

tWe note that as formulated in [2] the theorem asserting that every submodule M in My has the form
M=4u My; is false. Counterexamples can be constructed, in particular for Lie algebra of the group

SL (4, C); see our last page.

{ For precise definitions and proofs, see also [4] and [5].
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n. is the subalgebra of g, natural in E_, vy € A4;
U(g), U(n.) are enveloping algebras of g and n_, respectively; Z(g) is the center of U(g);

U(g) (Xg, « « «» X} for elements xy, . . ., Xk from the U(g)-module M denotes the U(g)~submodule in M
generated by x4, . . ., Xt. The meaning of U(n-) (xy, . . ., Xk) is analogous;

b*is the space dual to §; B is the real linear subspace in §*, natural for all roots y €A; §* =
bR + ibR:

*, *> is the scalar product in §* constructed according to the Killing form of the algebra g, |- | is
the correspondmg norm in bR We note that x ([Ey, E_y]) =2<x, v>/Ry, y>, x €9*%, y €A4;

Y2 is the lattice in §* constructed from those y for which 2<x, y>/<vy, y> € Z for all y € A;

f @) is the fundamental weight correspondmg to the root & € Z,i.e., 2<f@) a>/<a, a>=1,<f(@),
B> =0 for B €Z\a. The weights f(®), @ €3, generate Y%;

X1 > X, for Xy, X, €9* signifies that X, — X, = 3 160, na€Z, 1, >0;
ac2

W is the Weil group of the algebra g;

0., €W is the reflection corresponding to the root vy € 4, i.e., 0yx = x—2<y, y><vy, 'y>"1-y, x €9*.
We recall that ifa € Z, yeA,, vy # a, then Igy €A,;

l(w) is the length of the element w € W, i.e., the least number of factors in a representation w = 0y "
* s 9y o’ak, ai Ez;

X1 ~ Xz for x4, x» € 9* signifies the existence of an element w € W for which x; = WXa;

E < b*is the union of hyperplanes < Re x, y> =0 for all y €A; Weil chambers are connected com-
ponents B*\ E; C is the closure of the Weil chamber C; C* is the Weil chamber containing p. The group
W acts simply transitively on the set of Weil chambers. It can be shown that if y ¢ C and wy €C, then

Re x = Re wy. Two Weil chambers C; and C, are called adjacent if dimgr(C4.N C,) =2r—1. There then
exists an element y € A+, such that 0,Cy =Cy

P(F) €Y7 is the set of weights of the finite-dimensional module F.
§3. The Modules My

Definition 1. Suppose x € *. We denote by Jy the left ideal (in U(g)), generated by the elements
Ey,v €A+, and H-x(H) +P(H), H €Y. We further put My = U(g)/Jx.

The following readily verified lemma describes the simplest properties of the modules My.

LEMMA 1. 1) A U(g)-module My is generated by one generator fx of weight x—p such that Eqfx =0
fora €Z; 2) U(r.) acts on My without zero divisors; 3) U(n-) (fx) = Mx.

Besides, Properties 1) and 2) uniquely characterize the module My.

THEOREM 1. (Verma, [2]). Let y, ¥ ¢Y*, Two cases are possible: 1) Homyj (q) (My, My) = 0,
2) Homyy(g) (Mx, My) = C, and every nontrivial homomorphism My — My is an imbedding.

In the second case we can consider My as a submodule of My.

We shall study in the present note for what y, ¥ €9%* the module My can be imbedded in M#. This is
obviously possible only in case y < ¥.
LEMMA 2. leta ¢%,% =ogyand ¥ —y = na, where n € Z, n =0, Then Mx< My.

Proof. It is easy to show that Ea(E flll) = k(n—k)Ek‘lflp Putf =ED fzp Then f has weight x—p,
Eof =0 and, forany B €Z, 8 =a, Egf = EBE_aﬂp EN,Egfy =0. By Lemma 1, the submodule in My,
natural on f is isomorphic to My, which demonstrates the lemma.

Suppose z € Z(g). Then z * fx is proportional to fx, i.e., z - fx = 6x(z)fx, 9x(z) €C. Sincefy isa
generator in My, z * x = gx(z)x for all x ¢ My. In this way we get the homomorphism 8yx: Z(g) —C.



LEMMA 3. 6y, = ox, if and only if yq ~

The proof of Lemma 3 follows readily from a theorem of Harish-Chandra on eigenvalues of Laplace
operators (see [3] and [8]).

COROLLARY. If My C My then y ~¥.

Central to this work is Theorem 2 giving, along with Theorem 3, necessary and sufficient conditions
that My is imbedded in My.

§4. Necessity of Condition (A)

Suppose y, ¥ €9%, vy, v5, « .+ ., yk €A .. We shall say that the sequence vy, . . ., vk Satisfies Condi-
tion (A) for the pair (X, ¥, if

1) X za‘yk « o a"yld).
2) Putting X, =%, Xj =0 . . . 0., ¥, it is then true that 2<Xj_y, vi>/< vi, vi> € Z.
3) < xi"l’ "yi) = 0.

THEOREM 2. Let X, ¥ € 9* be such that My © My. Then there exists a sequence Yis« o o» Yk €A%,
satisfying Condition (A) for the pair (X, ¥).

We preface the proof of the theorem by a series of lemmas.

LEMMA 4. Let M be some U(g)-module, and 0 =M, & M;< .. .S Mp = M such that its filtration by
submodules Mj obeys Mk/Mg-; & Myk. Let Xs be maximal* in the set of those Xk, for which Xg ~Xj.
Then there is, in M, a submodule isomorphic to Myg.

Proof. Let Jj © Z(g) be the kernel of the homomorphism 0y; and J =Jy . . . J,. Then J annihilates
M, which is to say that there operates in M a commutative finite-dimensional algebra Z(g)/J. (Finiteness
of Z(g)/J follows from the Noether character of Z(g).) Since Z(g)/J decomposes into a direct sum of local
rings (see [12]), M = ® N{J) where the submodules N{J) correspond to the distinct ones among the maximal
ideals Jj € Z(g). Suppose submodule N corresponds to Jg; we put Li = N n Mg. Then Li/Lk-1 =Mxk,
if Jy =Js (i.e., Xk ~ Xg), and Lx/Lig—4 =0, if Jk # J5. Hence there is in N® an element f of weight Xg—p
and no elements of greater weight (since there are no such from the module Li/Lk-;). By Lemma 1, the
submodule in M generated by f is isomorphic to Myg.

LEMMA 5. Let F be a finite U(g)-module and let x € 9*. Then in My ® F there exists a filtration
by submodules 0 = Ly € Ly S Ly = Mx ® F such that Li/Lk~y & My + )y, where 2k € P(F).

Proof. Let ey, ..., ey be a basis of F consisting of weight elements with weights A4, . . ., 2n, and
suppose the indexing chosen so that i = j, if Aj; > Aj. Letaj =fx®ei €EMx® Fand Lk =U(@) (@, - .« -, 2K).
We verify that the modules Ly satisfy the hypotheses of the lemma. In fact the image 2k of the element @k
in Li/Lk-y is a generator in Lk/Lk-; of weight X + Xk—p and E, 2k =0 for a ¢ %, Hence Ly = U(n-) (24,

« «» #@%). We verify that Li is a free U(n-)-module. Suppose Xi €UMm.),1=i sk and llS the largest of

the degrees of elements X;j (relative to the natural filtration in U(n-)}). Then Z Xia »«S‘XL fr®e - Z Yifx &
i=0 =0

ej =0, since the degrees of the elements Yj € U(n.) are less than!. Applying Lemma 1, we conclude that

Li/Lig~y & My+x-

The following lemma provides the key to the proof of Theorem 2,

LEMMA 6, Suppose X, ¥ € B* are such that My < My, that F is a finite-dimensional U(g)-module, and
that A € P(F) is a weight such that the weight X + A is maximal in the set W(X + ) ﬂ (X + P(F)). Then there
exists a weight u € P(F) such that My4+)\< My +,,

Proof. It follows from Lemmas 4 and 5 that there is a submodule M in My ® F which is isomorphic
to My 4. Clearly, My ® F is imbedded in My ® F. Suppose that 0 = LiCcL;€...CLy =My ® Fis the
filtration entering in Lemma 5, and that Lk is the least submodule containing the image of M. Then the
image of M, isomorphic to My+3, maps nontrivially to Li/TLg—; = My 4y, 4 € P(F), and, according to
Theorem 1,this mapping is an imbedding.

*We say that weight x is maximal in the set D@ 9 if, from the condition ¢ € D, ¢ > y there follows ¢ = X.



LEMMA 7. Let Cy and C, be two Weil chambers, X €Cy, X' €Cy, ¥ €Cp, ¥' €Cy, X=X €Yy, ¥1—¥ ¢
b%, X ~¥, X' ~¥' and let the roots Y15 « « «» Yk € A4 satisfy Condition (A) for the pair (X, ¥). Then they
satisfy Condition (A) for the pair (x', ¥") too.

Proof. Point 2) of Condition (A) is obvious, Point 3) follows from the fact that for any y the sign of
<Re X, v> is constant in a Weil chamber, and Point 1) follows from the fact that x' ~ xl'( =O0yp ... 0y 121“,
X' €Cy, X € Cy, whence Re X' =Re Xj. Since x'—Xk €Y%, Im x' = Im xj,which is to say x' = Xj. '

Lemma 7 shows us how to extend Condition (A) foi’ one pair (X, ¥ to its confirmation for another
pair (x', ¥1).

LEMMA 8. Let C and C, be adjacent Weil chambers, and let ¢; € Cy, ¢, €C,and y € A, be such
that <Re @;,y><0,<Re ¢y, v>>0. Then 04Cy = C,.

Proof. Suppose the assertion of the lemma does not hold. Then we can choose ¢; € C4 N 1)1*{ and
@ €Cy N bR such that |#;— ¢}l is much smaller than <¢,, y>. Since the sign of <Re ¢, y> is constant in
a Weil chamber, the inequalities < ¢4, y><0,<@,, y>>0, hold, whence <@,— ¢4, y>> < ¢, y>, which
leads to a contradiction.

Proof of the Theorem. Suppose X € Y*. Denote by Y(X) the following assertion:

Y(x): for every ¥ €Y* for which My S My, there exists a sequence vy, . . ., vk € A+, satisfying
Condition (A) for the pair (X, ¥).

We proceed to prove Y(X) for all X, We first note that Y(X) is true for all ¥ ¢ C*, since in this case
there follows from ¥ > x and ¥ ~ X the fact that ¥ =X. The arbitrary case is handled by the following
steps.

Step 1. Let C be a Weil chamber, let X € C and let v € A, be a root such that <y, Re x>< 0; let
9yC be a Weil chamber adjoint to C. Let F be a finite dimensional U(g)-module for which X + P(F) €
CU0,C and A € P(F). Then, if X + A €0 C, there follows from Y(x +2) the truth of Y(X).

Proof. Suppose My € M% and w ¢ W are such that ¥ =wX. It follows from the hypothesis that there
exist no more than two weights p of the module F such that X + A ~ ¥ + u. Suppose 4 is that one of these
weights for which ¥ + g € wo.,C (it always exists) and g, is the one for which ¥ + u, € wC (it may not ex-
ist). By Lemma 6, either Mx+)\= M¢+p g Oor My+2 S M¥ 4+ P We give detailed consideration to both cases.

‘1. Suppose My+) < My4,,. It follows from Y(x + A that there is a sequence vy, . . ., yk of ele~
ments of Ay, satisfying Condition (A) for the pair (X + A, ¥ +py) = (X, ¥). We shall construct a sequence
satisfying Condition (A) for the pair (X, ¥). Put Xj =0w;, ..., 0y, ¥, Xi =0yq, . . ., Oy 17. We remark that
X; and Xj are always different on the element ()E. Hence for any i,either Xj <« Xj-1, or Xi > Xj-{- If Xj <
Xi-1 for every i, then the sequence vy, . . ., yk satisfies Condition (A) for the pair (¥, ¥). In the contrary
case we denote by i, the first number for which Xi, > Xij~y. We show that the sequence vy, . . ., Yig-1
Yipgtes « o o vk, v satisfies Condition (A) for the pair (X, ¥). It follows from Lemma 8 that the elements
Xj;-1 and Xi, lie in the same Weil chamber. This means that 6,0y . . . Oyj 44 - Oyip=t - * T4 =w"1, and
Point 1) of Condition (A) is fulfilled. Moreover,0y =Ty ...0yj +10yj, Tyiptsr -+ Tyl 1€y =30y oo
Oyj,+1 vi,- Hence 2 <X, y>/<y, y>=%£2¢< Xig-1s Yip>/< Vigs Vi, € Z. Fulfillment of Point 2) of Condition
(A) for the remaining elements of the sequence is obvious. Fulfillment of Point 3) of Condition (A) follows
at once from Lemma 8 and Lemma 7.

2. Now suppose that My +; < M¢+”2 and that vy, . . ., Yk i8 a sequence of roots satisfying Condition
(A) for the pair (X + 2, ¥+ k). From Lemma 7 and from the condition <Re X, ¥> < 0 it at once follows
that the sequence vy, . . ., Yk, v satisfies this condition for the pair (X, ¥y.

Step 2. Let C be a Weil chamber, let X € C, and let F be a finite-dimensional module such that X +
P(F)C C, and A € P{(F). Then Y(X) follows from Y(x + N.

The proof of this assertion is analogous to the one conducted above, but simpler.

We note that applying Steps 1 and 2 in the required order, we can show Y(X) for every X € §*, "suffi-
ciently far" from the set 2 . More precisely, d being distance in bi'i, suppose that ¥ € B* is a weight such
that d (Re X, E) > 3 |pl. Then we can construct a sequence X = Xy, X, - - -» Xk of elements of h* such that
d(Re Xi, E) > 2 lol, Xi—Xj+1 € b%, Xk €C* and such that for every i one of the following two conditions is
fulfilled:



1) Xj and Xi+4 lie in two adjacent Weil chambers C and 64C, y € A+, and moreover <Re Xj, y> <0
and |X;4+—x;| is 2 much smaller distance from ¥; than all other Weil chambers;

2) Xj and Xj+q lie in the same Weil chamber and lxi+1"Xi|< 2/pl.

Considering the finite-dimensional modules Fj of least weights X;+1—Xj and applying respectively
Steps 1 and 2, we extend Y(x) to truth of the assertion Y(xx). Here the fact is used that the length of all
weights Fj does not surpass lxi+1-xil (see [5]).

The case of arbitrary X is analyzed with the help of the following considerations.

Step 3. Let x 6%, Re x # 0. For eacha> 0 we denote by Dy the cone in §ﬁ consisting of those non-
zero ¢ such that the angle between ¢ and Re X is less thana. We can choose 2 small enough that the Weil
chamber C intersects Dy if and only if X € C. We choose A € b%, such that 1) d (Re(x + N, E) >3 lol, 2)
Re(X +)) is maximal in the set W(Re(Xx + A) N Dg.

We now show that Y(x) follows from Y(X + N).

Suppose F is a finite~-dimensional module with least weight A. We show that for all weights X+ A
the premises of Lemma 6 are fulfilled. Suppose the weight p € P(F) is such that Re (X +2) ~ Re (x + ).
Since |Re (x + M| =IRe (x + Wl and A} = lul, it follows that Re(x + M) € D, , which means the inequality
Re(x + N < Re(X + p) cannot be fulfilled. Hence we can take Lemma 6 and the assertion that if My< My,
then My 4+ © My 4+ for some p € P(F). Reasoning analogous to that adduced above shows that the angle be-
tween Re (¥ + 1) and Re ¥ is not greater than a and hence ¥ + pu and ¥ lie in the same Weil chamber. We
may now apply Lemma 7 which completes the proof of Step 3 and of the whole of Theorem 2.

§5. Sufficiency of Condition (A)

THEOREM3 (see [11]). Let X, ¥ € 9*. If there exists a sequence of roots Yis o » o Yk € Ay, satisfy-
ing Condition (A) for the pair (X, ¥, then My © M.

Proof.* It suffices to consider the case where the sequence consists of a single root v € A .
LEMMA 9. If X, ¥ €9*and @ €Z are such that My < My and Mogx © My, then Mogx < Mo, Y.

Proof. Tt follows immediately from the conditions of the lemma that ¥ ~04,% =n@, where n € Z. By
Lemma 2 it is enough to consider the case n > 0, where Mg, ¥ < My. Suppose f¥ is the image of fy in
My/Mgy¥. Then ER, 7% =0. The image of the element fy in My /Mg, ¥ has the form fx= Xf¥, where
X €U(g). The element ElfaX can be written in the form EfgX = XiElf& , where k; increases unboundedly

with k. Hence Elf?jx =0 for large k. Since EaElfafx = k(n'—k)Ek'_':xfx (where n' = 2<X, a>/<a, &> ¢ 2Z),
it follows that E?Qfx =0, i.e., that Mg, x < Mg, ¥.
LEMMA 10. The assertion of the theorem is true for y € b;, ¥ = Ty X.

Proof, We can suppose that y # ¥, We choose elements Wy oo oy B € Z, such that in the sequence of
weights Xj =0Oq; . . . Oa,x the relations Xj+1 > Xj, Xk € C* are fulfilled. Suppose ¥ =0q; . ..0a¥.
Each ¥j is obtained from X; by some mapping which we denote by Ois vi €44. By Lemma 9 it is enough
to show that My; < My, for some i.

We take as i the last index for which ¥ »x; (i < k, since X > ¥k and xk *¥c). Then ¥j—x; = Nyi,
where n >0, and ¢i+1"Xi+1 = traHl(‘Pi—xi) = n"aiﬂ’yi « 0, which is only possible if @j+; = vi, but then
Myi © My; by Lemma 2. ‘

We now prove Theorem 3. Let y €A4, X, ¥ ¢ 9* be such that X =0.,¥, Py = ny, where n € Z. De-
note by finy the finite dimensional subspace in U(n_), consisting of elements of weight —ny.

The module My, considered as a U(n-)-module, is a free module with image f§. Hence for the proof
of the theorem we need to find a nonnull element X € nny such that E,Xfy =0 for all @ € Z. The equations
written give a system of linear homogeneous equations in the space npy, whose coefficients depend lin-
early on ¥. Consider the hyperplane S in $* consisting of those weights ¢ such that 2<¢, y>/<y, y>=n.
By Lemma 10 the given system has a nontrivial solution for all ¢ €S N f)i. If vy =wa,weéW, a €, then

*This proof differs from that in [11]. In particular it does not use enumerations of simple Lie algebras.



snNy%= { w (nf(u)—i— » naf(m) , ng € z}, i.e., it constitutes an (n—1)~dimensional lattice in S. Hence our
: pER\e
~ system has a nontrivial solution for all ¢ €8 and in particular for ¢ = ¥. This completely proves Theorem 3.

Theorems 2 and 3 permit introduction of the following partial ordering into the group W.
Definition 2. Let y, €C*NY7. We put Wy <w, for elements wy, wy €W, if Mw,y, S My, y,-
THEOREM 4. 1) The ordering introduced in Theorem 4 does not depend on the choice of X, € C*N 9;.

2) Suppose wy, wy € W. The inequality wy < w, is fulfilled if and only if there exists a sequence of im-
ages Oyy, « o o Oy €W, such that wy =0y . . . Oy, Wy and I (@yjuq oo e Oy W) 21 (0y5.. .. Gy!wz) for every i.
Here I (w) is the length of the element w ¢ W, '

The proof of the first part of the theorem follows immediately from Theorems 2 and 3 and Lemma 7.
For proving the second part we need the following result on constructing the system of roots (see [9]).
Suppose w € W. Then! (w) coincides with the number of those roots y € A+, for which Wy €Ay,

As remarked in [2], the adduced ordering can be given the following geometrical meaning. Let G be
a simply-connected Lie group with Lie algebra g, let BC G be the Borel subgroup corresponding to the
subalgebra generated by Y and Ey, v € A4. Suppose moreover that P =G/B is the fundamental projective
space of the group G, Each element w € W we put in correspondence with the subspace Py = BwB<C P,
These subspaces are the key to the splitting of P (see [10]). Here wy <w, if and only if PW1 > Py,. We
also note the connection of this ordering with the Paley-Wiener Theorem for complex semisimple Lie
groups G ([6]).

§6. Appendix. Multiplicity of the Weight of a Finite-Dimensional

Representation

We introduce here a simple algebraic proof of the Kostant formula for the multiplicity of a weight of
a finite-dimensional representation (see [7]). To do this we shall use only the definition of the module
My (Def. 1) and Lemmas 1 and 3. To make it possible to use Lemma 3 we note that in [8] there was intro-
duced a proof of the Harish-Chandra Theorem on the eigenvalues of a Laplace operator without using the
formula of H. Weil for characters.

Let g be the space of all functions in 8*. Foru Efg we place supp u = {X € y*{u(x) = 0}. The group
W acts in & by the formula (wu) (X) =uw™1x). Let #C & be a subspace consisting of all functions u for
which supp u is contained in the union of a finite number of sets of the form {X —_ 2 nyln ez, ny> 0}.
YEA4
The space € is a commutative algebra with respect to the convolution operation uy *u,(X) = 2 u (X —1)
uz('l‘) (in this sum only a finite number of terms are different from zero). Let 6,6 & be a function such
that 8x(x) =1, 6x (%) =0 for ¥ = X. Then §, is the unit of the ring &.

Definition 3. 1) Q(X) is the number of families {n»y}.y €A+ Dy €Z,1ny =0, such that 2 nyy = —X.

YEAL
9L=1] (ol—«s_y_).

TEAL 2 2

We shall call the function Q(X) the Kostant function.*
LEMMA 11. L #Q * d_p =&,

Proof. Leta, =§, + 5-—y + 5_27 +... € &. ThenclearlyQ = H ay # (§— 8+) #ay =9, . The lem-
- YEA4
ma at once follows from the fact that L= []| (8 —8_) * 8.

YEA+

LEMMA 12. wL = (~)IWIL for w ¢ W.

*Our definition of Q(y) differs from that provided in [7] in replacement of x by —x.



Proof. It suffices to verify that o1 =— 1L for a@ € Z. Since 0y transposes elements of the set A+\ @
and carries @ to —a, caL:(é_E—ég) « 1l (G_Y_——é Y) =-—1L.
! X

2 YEA4Na \ 2 2

\

Definition 4. Suppose the U(g)-module M is a direct sum of weights of spaces Vy of weight y and
dim Vy <= for all x € b*. We call the function 7y € &, given by the formula Tp(x) =dim Vy by the name
character of M.

LEMMA 13. mMy(¥) =Q(¥—X +p).

Proof. Suppose vy, . . ., Ys is an arbitrary indexing of the roots ¥ € A;. From the theorem of Poin-
caré-Birkhoff-Witt (see [4], Ch. 1) it follows from Lemma 1 that the elements ERt ... E’_‘,SY ofx (nj € Z,
nj =0) form a basis in My, and Lemma 13 follows from the definition of Q.

'COROLLARY. L * T\y = Ox.

LEMMA 14. Let U(g)-module M and element X, € C* be suchthat 1) there is a basis in M of weight
vectors; 2) z + x = 9y (z)x for every x €M, z € Z(g); 3) M exists and M € &.

Let Dy = {x €9*[x ~ Xy, X <« ¥ +p for some ¥ € supp Ty}.

Then Ty = 2 CX nM%’ Cy € Z.
XED M

Proof. In view of Condition 3) there exists in supp "M at least one maximal element y. Then EgX=0
for any x € Vy, @ ¢Z. Hence for any z € Z(g), v € Vy we have z - x = 0y+p(z)x, and hence, X +P ~ X», i.e.,
X +P € DM. Letk =dim Vy. By definition of My it follows thatwe can construct a mapping w: (Mx+p)k —-M,
translating the generators f y+p to k linearly independent elements Vy. Suppose L and N are the kernel and
co-kernel of w. It follows from the exact sequence 6 —1L — (Mx+p)k X M —N —0 that TN =TL—TN™
KTMy4p- The moduli L and M satisfy the hypotheses of Lemma 14 and in addition Dy, and D lie in DM\
(X +P). Induction on the number of elements of Dy concludes the proof of Lemma 14.

Remark. The foregoing reasoning establishes that the moduli My generate the group of Grothendieck
category of the moduli M satisfying the conditions of Lemma 14. '

COROLLARY. Under the hypotheses of Lemma 14, L * ¥ & Dp.

Suppose now that F is a continuous finite-dimensional U(g)-module with highest weight A. Then 7
is invariant with respect to W (see [5]). By Lemma 12, w(L * ¥p) = (—1)1{(W) (L, x Tp). By the Corollary to
Lemma 14, L+ TF = 3 coduirie) Since dimV) =1 in the module F, it follows that ¢, = 1 (see the

proof of Lemma 14), hence L * TF= 3 (=844 . Applying Lemma 11, we get TR =Q+6p 3
wew wEW
EDEW sy a +p). In conclusion, we get the following theorem.

THEOREM 5 (Kostant formula). Let F be a finite-dimensional continuous representation of q with
highest weight A. Then

e (p) = 3 (—1)'Qu-ro—w 4 p).
weW

Note, In conclusion we append an example of a submodule M in My which does not have the form
U Myj. Let g be the Lie algebra of the group SL(4, C), Ejk (i #k),and let Eji —Ejj be a basis of g with
Ejk(i < k) corresponding to roots from A;. We consider the module My, wherein all weights x are given
by the equations X (Eqy~Eyy) = X(Egg~E,y) =0, X(Egp~Eg) =1. Suppose fy =Eg,fx and M=u(@g (fy. It
follows from Theorem 2 that if Ejka =0 for i <k, thena =@, +cfx, where @; ¢ M, ¢ € C. Put x = E,E,fx +
EgEsyfy. Then x & M and Eikx € M for i <k. Hence the submodule generated by x and M is a proper sub-
module of My not having the form U My.
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