SCHUBERT CELLS AND COHOMOLOGY OF
THE SPACES G/P

I. N. Bernstein, I. M. Gel’fand, S. I. Gel’fand

We study the homological properties of the factor space G/P, where G is a complex semi-
simple Lie group and P a parabolic subgroup of G. To this end we compare two descriptions
of the cohomology of such spaces. One of these makes use of the partition of G/P into
cells (Schubert cells), while the other consists in identifying the cohomology of G/P with
certain polynomials on the Lie algebra of the Cartan subgroup H of G. The results obtained
are used to describe the algebraic action of the Weyl group W of G on the cohomology
of G/P.
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Introduction

Let G be a linear semisimple algebraic group over the' field C of complex
numbers and assume that G is connected and simply-connected. Let B be
a Borel subgroup of G and X = G/B the fundamental projective space of G.

The study of the topology of X occurs, explicitly or otherwise, in a
large number of different situations. Among these are the representation
theory of semisimple complex and real groups, integral geometry and a
number of problems in algebraic topology and algebraic geometry, in which
analogous spaces figure as important and useful examples. The study of
the homological properties of G/P can be carried out by two well-known
methods. The first of these methods is due to A. Borel [1] and involves
the identification of the cohomology ring of X with the quotient ring of
the ring of polynomials on the Lie algebra §) of the Cartan subgroup
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H C G by the ideal generated by the W-invariant polynomials (where W is
the Weyl group of G). An account of the second method, which goes back
to the classical work of Schubert, is in Borel’s note {2] (see also [3]); it
is based on the calculation of the homology with the aid of the partition
of X into cells (the so-called Schubert cells). Sometimes one of these
approaches turns out to be more convenient and sometimes the other, so
naturally we try to establish a connection between them. Namely, we must
know how to compute the correspondence between the polynomials
figuring in Borel’s model of the cohomology and the Schubert cells.
Furthermore, it is an interesting problem to find in the quotient ring of
the polynomial ring a symmetrical basis dual to the Schubert cells. These
problems are solved in this article. The techniques developed for this
purpose are applied to two other problems. The first of these is the
calculation of the action of the Weyl group on the homology of X in a
basis of Schuberts cells, which turns out to be very useful in the study of
the representations of the Chevalley groups.

We also study the action of W on X. This action is not algebraic (it
depends on the choice of a compact subgroup of G). The corresponding
action of W on the homology of X can, however, be specified in algebraic
terms. For this purpose we use the trajectories of G in X X X, and we
construct explicitly the correspondences on X (that is, cycles in X X X)
that specify the action of W on H, (X, Z). The study of such correspon-
dences forms the basis of many problems in integral geometry.

At the end of the article, we generalize our results to the case when B
is replaced by an arbitrary parabolic subgroup P C G. When G = GL(n)
and G/P is the Grassmann variety, analogous results are to be found in [4].

B. Kostant has previously found other formulae for a basis of
H*(X, Z), X = G/B, dual to the Schubert cells. We would like to express
our deep appreciation to him for drawing our attention to this series of
problems and for making his own results known to us.

The main results of this article have already been announced in [13].

We give a brief account of the structure of this article. At the
beginning of §1 we introduce our notation and state the known results
on the homology of X = G/B that are used repeatedly in the paper. The
rest of §1 is devoted to a statement of our main results.

In §2 we introduce an ordering on the Weyl group W of G that arises
naturally in connection with the geometry of X, and we investigate its
properties.

83 is concerned with the ring R of polynomials on the Lie algebra
of the Cartan subgroup H C G. In this section we introduce the functionals
D, on R and the elements P, in R and discuss their properties.

In §4 we prove that the elements D, introduced in §3 correspond to
the Schubert cells of X.
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&5 contains generalizations and applications of the results obtained, in
particular, to the case of manifolds X(P) = G/P, where P is an arbitrary
parabolic subgroup of G. We also study in §5 the correspondences on X
and in particular, we describe explicitly those correspondences that specify
the action of the Weyl group W on the cohomology of X. Finally, in this
section some of our results are put in the form in which they were earlier
obtained by B. Kostant, and we also interpret some of them in terms of
differential forms on X.

§ 1. Notation, preliminaries, and statement of the main results

We introduce the notation that is used throughout the article.

G is a complex semisimple Lie group, which is assumed to be connected
and simply-connected;

B is a fixed Borel subgroup of G;

X = G/B is a fundamental projective space of G,

N is the unipotent radical of B,

H is a fixed maximal torus of G, H C B,

& is the Lie algebra of G; b and M are the subalgebras of & correspond-
ing to H and N;

b* is the space dual to b;

A C Bb* is the root system of § in@ ;

A, is the set of positive roots, that is, the set of roots of § in N,
A_=-A,, T C A, is the system of simple roots;

W is the Weyl group of G; if y € A, then o, : H*-» §* is an element
of W, a reflection in the hyperplane orthogonal to y. For each element’
w € W = Norm(H)/H, the same letter is used to denote a representative
of w in Norm (H) C G.

{(w) is the length of an element w € W relative to the set of generators
{04, o € Z}of W, that is, the least number of factors in the decomposition

H W=0q,0q, .- Og;, i €2

The decomposition (1), with / = [(w), is called reduced; s € W is the
unique element of maximal length, r = I(s);

N_ = sNs~! is the subgroup of G “opposite” to N.

For any w € W we put N, = w N_w™' n N,

HOMOLOGY AND COHOMOLOGY OF THE SPACE X. We give at this
point two descriptions of the homological structure of X. The first of
these (Proposition [.2) makes use of the decomposition of X into cells,
while the second (Proposition 1.3) involves the realization of two-dimen-
sional cohomology classes as the Chern classes of one-dimensional bundles.

We recall (see [5]) that N, = w N_w NN is a unipotent subgroup of

! Norm H is the normalizer of H in G.
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G of (complex) dimension I(w).

1.1. PROPOSITION (see {5]), Let 0 € X be the image of B in X. The
open and closed subvarieties X,, = Nwo C X, w € W, yield a decompo-
sition of X into N-orbits. The natural mapping N, -~ X,, (n » nwo) is
an isomorphism of algebraic varieties.

Let X, be the closure! of X, in X, [X,] € H,,, (X, ,Z) the
fundamental cycle of the complex algebraic variety .Yw and
sw € Hawy (X,Z) the image of [X,, ] under the mapping induced by the
embedding X, & X.

1.2. PROPOSITION (see [2]). The elements s, form a free basis of
H, (X,Z2).

We now turn to the other approach to the description of the cohomo-
logy of X. For this purpose we introduce in §j the root system
{H,, v € A} dual to A. (This means that o,x = x — x (H,)y for all
X €E§*, vy € A). We denote by Yo — B the vector space over Q spanned
by the H,. We also set §z = {y €H* | x (H,) € Z for all y € A} and
b = bz ® 2Q.

Let R = § «(§§) be the algebra of polynomial functions on B with
rational coefficients. We extend the natural action of W on §* to R. We
denote by I the subring of W-invariant elements in R and set
I, = {f EI‘f(O) - O}, J = ]+R-

We construct a homomorphism a: R—> H*(X, Q) in the following way.
First let x € H%. Since G is simply-connected, there is a character
6 € Mor (H, C*) such that 6 (exp h) = exp x(h), h €Y. We extend 0
to a character of B by setting 6(n) = 1 for n € N. Since G—=X is a
principal fibre space with structure group B, this § defines a one-
dimensional vector bundle E, on X. We set a, (x) = ¢,. where
¢ € H?(X, Z) is the first Chern class of E,. Then a, is a homomorph-
ism of §} into H?(X, Z), which extends naturally to a homomorphism
of rings a: R - H*(X, Q).

Note that W acts on the homology and cohomology of X. Namely,
let K C G be a maximal compact subgroup such that 7 = K 0 H is a
maximal torus in K. Then the natural mapping K/T-X is a homeomorph-
ism (see [1]). Now W acts on the homology and cohomology of X in
the same way as on K/T.

1.3. PROPOSITION ([1], [8]). () The homomorphism a commutes
with the action of W on R and H* (X, Q).

(ii) Ker a = J, and the natural mapping &: R/J - H* (X, Q) is an
isomorphism.

In the remainder of this section we state the main results of this article.

The integration formula. We have given two methods of describing the

' As X, is an open and closed variety, its closure in the Zariski topology is the same as in the ordinary

topology.
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cohomological structure of X. One of the basic aims of this article is to
establish a connection between these two approaches. By this we under-
stand the following. Each Schubert cell s, € H, (X, Z) gives rise to a
linear functional D, on R according to the formula

Dy, (h = (s o (D)

(where < , > is the natural pairing of homology and cohomology). We
indicate an explicit form for D, .
For each root v € A, we define an operator 4,: R - R by the formula

f—0,f
Ayf= L

v
(that is, A, f(h) = [f(h) - f(oyh)]/'y(h) for all k€Y ). Then we have the
following proposition.

PROPOSIT&ON Let w =0, ...0q,0q € Z.If1(w) <1, then
Ay . Ay = 0. If lw) =1, then the operator A, . .. A, depends
only on w and not on the representation of w in the form
W =0y ...0q;WeputA, =A, ...A,

This proposmon is proved in §3 (Theorem 3.4).

The functional D,, is easily described in terms of the A, : we define for
each w € W another functional D, on R by the formula D, f = 4, f(0).
The following theorem is proved in §4 (Theorem 4.1).

THEOREM.D, =D, for all w € W.

We can give another more explicit description of D, (and thus of D,).
To do this, we write w, % wy, wy, Wy, € W, y€ A,, to express.the fact
that w, = oyw, and! (w,) =17 (w,) =1+ L

THEOREM. Let w€ W, l(w) = 1.

R () If f € R is a homogeneous polynomial of degree k # I, then
b,(h = 0. )

Gi) If xi, - - - x; €83 ,then Dy (xy - - - x) = X xa(Hy,) - . - xi(Hyy),

where the sum is taken over all chains of the form

g/ " Y =
€=w0—l>w1—2>...'—l>wl_wl

(see Theorem 3.12 (i), (v)).

The next theorem describes the basis of H*(X, Q) dual to the basis
{sw | w € W} of H*(X, Z). We identify the ring R = R/J with H*(X, Q)
by means of the isomorphism « of Proposition 1.3. Let {P, jw € W} be
the basis of R dual to the basis {s,, | w € Wy of H (X, Z). To specify P,
we note that the operators A, : R - R preserve the ideal J C R (lemma
3.3 (v)), and so the operators 71;,: R — R are well-defined.

THEOREM. (i) Let s € W be the element of maximal length, r = I(s)
Then P, = p*/r! (mod J) = Wit [[ v (mod J), (where p € §§ is half

VEA+



6 L N. Bernstein, I. M. Gel'fand, S. I. Gel’fand

the sum of the positive roots and Wl is the order of W)

) If w € W, then P, = 4,_,,P, (see Theorem 3.15, Corollary 3.16,
Theorem 3.14(1)).

Another expression for the P, has been obtained earlier by B. Kostant
(see Theorem 5.9).

The following theorem gives a couple of important properties of the P, .

THEOREM (i). Let % €88, w € W. Then y-P,, = D) wy(Hy) P

w.?,w'

(see Theorem 3.14 (ii)).

(ii) Let & : H(X, Q — H*(X, Q) be the Poincaré duality. Then
P (5p) = & (P ) (see Corollary 3.19).

THE ACTION OF THE WEYL GROUP. The action of W on H* (X, Q)
can easily be described using the isomorphism a: R/J - H*(X, Q), but we
are interested in the problem of describing the action of W on the basis

{sw} of H (X, Q).

THEOREM. Let a« €3, wEW. Then a,s, = — s, if (woy) = (w) — 1
and Go$y = — Sy, + X wolHy) s, if Hwog) = Iw) + 1 (see
s
w'—»wca

Theorem 3.12 (iv)).

In §5 we consider some applications of the results obtained. To avoid
overburdening the presentation, we do not make precise statements at
this point. We merely mention that Theorem 5.5 appears important to us,
in which a number of results is generalized to the case of the varieties
X(P) = G/P (P being an arbitrary parabolic subgroup of G), and also
Theorem 5.7, in which we investigate certain correspondences on X.

§2. The ordering on the Weyl group and the mutual
disposition of the Schubert cells

2.1 DEFINITION (i) Let w,, w, € W, y € A,. Then w, % w, indicates
the fact that o,w, = w, and l(w,) = l(w,) + 1.
(i) We put w < w' if there is a chain

W=w —> Wy~ ...>Wwy=uw.

It is helpful to picture W in the form of a directed graph with edges drawn
in accordance with Definition 2.1 (i).

Here are some properties of this ordering.

2.2 LEMMA. Let w = 05, . .. 04 be the reduced decomposition of an
element w € W. We put v; = 04 . . . oai_l(a,-). Then the roots
Y15 - - Y1 are distinct and the set {V1>» - .., Y1} coincides with A, 0 wA_.

This lemma is proved in [6].

2.3 COROLLARY. (i) Let w = 0, . . .0y be the reduced decompo-
sition and let v € A, be a root such that w 'y € A~ Then for some i

(2) Oy0a, + + + Oq; = Ogy - -« Oa, .
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(i) Letw € W, v € A,.Then | (w) < (o,w),if and only if wy € A,.

PROOF (i) From Lemma 2.2 we deduce that y = o, ... 04, (&) for
some i, and (2) follows.
(i) If wly € A_, then by (2) oyw = 0y, . . . aq;, Oq;, - - - Og that is

l{o,w) < l(w). Interchanging w and o,w, we see that if w='y € A,, then
l(w) < l(oyw).
2.4 LEMMA. Letw,, w, € W, a € 2, v € A,,and v # a. Let v = g,y. If

N w2
(3) Oulog /Q? s
\ .

then

wy o
(4) T o
/ wlls.
Wy
Conversely, (3) follows from (4).

PROOF. Since o € 3 and v # «, we have v = g,y € A,. It is there-
fore sufficient to show that /(e ,w,) > (w,) = I(w,). This follows from
Corollary 2.3, because o w, = o, w; and (0aw,) ™y = wilo,y’ = wily € A
by (3). The second assertion of the lemma is proved similarly.

2.5 LEMMA. Let w, w' € W, o € 2 and assume that w < w’'. Then

a) either gaw < W or suw < o W',

b) either w < o,w' oF ow < o w'.

PROOF a) Let

lU=w1—>w2—> e e . —»wk=w’_

We proceed by induction on k. If o,w < w or o,w = w,, the assertion is
obvious. Let w < oqw, o,w # w,. Then o,w < o,w, by Lemma 2.4. We
obtain a) by applying the inductive hypothesis to the pair (w,, w').

b) is proved in a similar fashion.

2.6. COROLLARY. Let 2 € Z, wy % w;, w, % w,. If one of the
elements w,, wy is smaller (in the sense of the above ordering) than one
of w,, wy, then w, < w, < wy, and w, < w; < w;.

The property in Lemma 2.5 characterizes the ordering <. More precisely,
we have the following proposition:

2.7 PROPOSITION. Suppose that we are given a partial ordering w — w'
on W with the following properties:

a) If a € D), we W with l(oqw) = l(w) + 1, then w | o w.

b) If w4 w, o € X, then either oqw - w' or o,w - c,w'.

Then w 4 w' if and only if w < w'.
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PROOF. Let s be the element of maximal length in W. It follows from
a) that e w —{ s torall w € W

1. We prove that w < w' implies that w 4 w'. We proceed by induction
on l(w). If (w') =0, then w' = ¢, w=¢ and so w 4 w'. Let l(w') > 0
and let « € = be a root such that [(c,w') = I(w') — 1. Then by Lemma
2.5 a), either aquw < o,w’ or w < o w'.

(i) w < ouw' = w - o,w (by the inductive hypothesis), = w - w'.
(using a)).

(ii) oqw < ow' = o,w — o,w' (by the inductive hypothesis), = either
w - oqw' or w - w' (applying b) to the pair (o,w, o,w")), = w - w'.

II. We now show that w - w' implies that w < w'. We proceed by
backward induction on I(w). If I{w) = r = I(s), then w = s, w' = s, and so
w < w'. Let l(w) < r and let o be an element of = such that
l(o,w) = l(w) + 1. By b) either o,w - w' or o,w | o w'.

(i) gow 4 W' = g,w < w' (by the inductive hypothesis) = w < w'.

(ii) oqw - ow' = ouw < gw' = w < w' (by Corollary 2.6).
Proposition 2.7 is now proved.

2.8 PROPOSITION. Let w € W and let w = oo, . . . 04, be the reduced
decomposition of w.

a)If‘<i1 <i2<...<ik < [ and

() W' =0a; ... O,

then w' < w.

b) If w' < w, then w' can be represented in the form (5) for some
indexing set {i;).

c) If w - w, then there is a unique index i, | < i < I, such that

(6) w' =0q, ... 0 Oa,, - Oqp-
PROOF. Let us prove c). Let w' 3 w. Then by Lemma 2.2 there is at
least one index i for which (6) holds. Now suppose that (6) holds for two

indices i, j, i < j. Then oy, - - - %; = Oa; - -  Oa;_, - Thus,
Ou; - - - Og; = Oy =+ Oojys which contradicts the assumption that the
decomposition w = 0, . . . 0g, is reduced.

b) follows at once from c) if we take into account the fact that the
decomposition (6) is reduced. We now prove a) by induction on /. We
treat two cases separately.

(i) iy > 1. Then by the inductive hypothesis w' < Oy, - - - Og that is,
w < o, w < w.

(ii) i, = 1. Then, by the inductive hypothesis,

O, W = Oy - -+ %ay < 0Oq, W = 0y, - . . 0Oq,. By Corollary 2.6, w' < w.

Proposition 2.8 yields an alternative definition of the ordering on W
(see [7]). The geometrical interpretation of this ordering is very interesting
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and useful in what follows.
2.9 THEOREM. Let V be a finite-dimensional representation of a Lie
algebra & with dominant weight \. Assume that all the weights w\
w € W, are distinct and select for each w a non-zero vector f, € V of
weight wi\. Then
W wesfr €U R f

(where U (R) is the enveloping algebra of the Lie algebra N).

PROOF. For each root y € A we fix a root vector £, € 8 in such a
way that [E,, E.,] = H,. Denote by ¥, the subalgebra of &, generated by
E, E > and H,. Uy is isomorphic to the Lie algebra s/, (C). Let

w 2 w and let V be the smallest A, -invariant subspace of ¥V containing
Jw'

2.10 LEMMA. Let n = w)\(H YEZ, n > 0. The elements
{ELyfw li =0, 1, ..., n} form a basis of V. Put f=ELf,. Then
E—7=07 ng’:c'fw ("% 0)and fp, = cf(c:;EO)

PROOF. By Lemma 2.2, w''y € A, hence E, fy =
=cE,w'fe=cw' Eyyfe = 0, that is, f, is a vector of dominant weight
relative to %, . All the assertions of the lemma, except the last, follow
from standard facts about the representations of the algebra U, = si, (C).
Furthermore, f and f,, are two non-zero vectors of weight wx in ¥, and
since the multiplicity of wX in V is equal to 1, these vectors are propor-
tional. The lemma is now proved.

To prove Theorem 2.9 we introduce a partial ordering on W by putting
w ~ w if £, € UM)f,- Since all the weights wh are distinct, the
relation — is indeed an ordering; we show that it satisfies conditions a)
and b) of Proposition 2.7.

a) Let « € £ and l(o,w) = I(w) + 1. Then w % o,w, and by Lemma
2.10, f, e U (M) fa w» that is, w - o w.

b) Let w 4 w'. We choose an @ € £ such that w % oaw Replacing
w' by o,w', if necessary, we may assume that o,w’ - w’. We prove that
o,w — w', that is, fgawEU(S)}) Jor. It follows from Lemma 2.10 that
E.fy = 0and f5 v = cE%.f,. Let o be the subalgebra of & generated
by R, b and ¥,. Since w H w', fu €U (RN) fuwr and so fo . = cEZf, = Xfy.
where X EU (Bs). Any element X of U (Fa) can be represented in the

form X = EY Y; +VE_q, where Y, €U (W), Yi €U(D), YEU (Pa)-

Therefore, fo w= NYiYifw=2¢Yifw €U (R) fuand Theorem 2.9 is
proved.

We use Theorem 2.9 to describe the mutual disposition of the
Schubert cells.

2.11. THEOREM (Steinberg [7]) Let w € W, X,, C X a Schubert cell,
and X, its closure. Then X, C X, if and only if w' < w.
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To prove this theorem, we give a geometric description of the variety
X, .

Let V be a finite-dimensional representation of G with regular dominant
weight A (that is, all the weights w) distinct). As above, we choose for
each w € W a non-zero vector f, € V of weight wA. We consider the
space P(V) of lines in V, if f € V, f # 0, then we denote by [f] € P(V)
a line passing through f. Since A is regular, the stabilizer of the point
[,] € P(V) under the natural action of G on P(V) is B. The G-orbit of
[f.]1 in P(V) is therefore naturally isomorphic to X = G/B. In what follows,
we regard X as a subvariety of P(V).

For each w € W we denote by ¢, the linear function on V given by
¢ () = 1, ¢, () = 0if f € V is a vector of weight distinct from wa.

2.12 LEMMA. Let f € Vand [f] € X. Then

le€Xy <=>fEU R fuw, o) *0.

PROOF. We may assume that f = gf, for some g € G.

Let {f1 € X, , that is, g € NwB. Then f = ¢, exp (Y)wf, for some
Y € %, hence f € UMR)fw and ¢, () # 0.

On the other hand, it 1s clear that for each f € V there is at most one
w € W such that f€ U (R) f, and ¢,(f) # 0. The Lemma now follows
from the fact thatX = (J X,.

We now prove_”l"heoréﬁ?lll

a) Let X, C X,. Then {fy] € X, and by Lemma 2.12, fu € U)f -
So w' < w, by Theorem 2.9.

b) To prove the converse it is sufficient to consider the case w' > w.
Let n = w)\(HA,) €Z. Just as in the proof of Theorem 2.9, a) we can show
that » > 0, E;’ w = Cfyw and E;'*‘ fo = 0.

Therefore lim =" exp (tE)) f,, ==t fw, that is, [f,] € X,,. Hence,

X, CcX,.

§ 3. Discussion of the ring of polynomials on §)

In this section we study the rings R and R. For each w € W we define
an element P, ¢ R and a functional D, on R and investigate their proper-
ties. In the next section we shall show that the D, correspond to Schubert
cells, and that the P, yield a basis, dual to the Schubert cell basis, for the
cohomology of X.

3.1 DEFINITION. (i) R =@ R, is the graded ring of polynomial
functions on Yo with rational coefficients. W acts on R according to the
rule wflh) = flwh).

(i) 7 is the subring of W-invariant elements in R,

I.={fel|f(0)=0}
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(iii) J is the ideal of R generated by I,.
(iv) R = R/J.
3.2 DEFINITION. Let v € A. We specify an operator A, on R by the

rule
f—o,f

A,f lies in R, since f — o,f = 0 on the hyperplane y = 0 inYo-
The simplest properties of the A, are described in the following lemma.

3

3.3 LEMMA.(G) A_, = —-4,, A = 0.

(i1) wAYw‘1 = Ay,

(iii) 044, =~ Ayo, = A,, 0, = —yA, + 1 = A,y — L.
(V) Ayf = 0 ® o,f = f.

) A J C J.

(vi) Let x € b5. Then the commutator of A, with the operator of
multiplication by X has the form [A,, x] = x(H,)o,.
PROOF. (i) — (iv) are clear. To prove (v), let f = f,f,, where
fi1 €14, fy € R. It is then clear that A,f = fi.A,f, € J. As to (vi), since
oyx = x — x(#,)y, we have
[Av, 1 f= Ay (D) — 1y () == (4F — Oy 0y — 47 + 3041) =
—0
% - X soyf=1y (Hy)-0,f.
The following property of the A, is fundamental in what follows.
3.4 THEOREM. Let ay, . . ., 4 € Z, and put w = 04, . . . Oq;;
@ o ap = Aa, o Ay
a) If (w) < 1, then Ao, . . . op =0
b) If l(w) =1, then Ay, . . . o« depends only on w and not on the
set oy, . . ., a. In this case we put A, = Ayq . . -
The proof is by induction on /, the result being obvious when / = 1.
For the proof of a), we may assume by the inductive hypothesis that

l oo, - - - 04,)=1— 1, consequently l(og, . .. 0q_ 0s) =1 — 2.

A

Then 04, 04, - - - Oayy = Oa;41 - - - Oa;_, Oa, fOr some i ( we have applied
Corollary 2.3 to the case w = 04y, . .. 04, ¥ = ;). We show that
A(ai, L oap T 0.
Since / — i < [, the inductive hypothesis shows that
AqAg, |+ Aoy = Aa,,, --- Ao‘l—lA"‘l’ and so by lemma 3.3 (i)
;- Ay =Aa, , - AgAa,=0.
To prove b), we introduce auxiliary operators Ba,, . . ..ap> by setting

B(ai, e = Gal .o OaiA(oci, L

We put w; = g, . 05 Then in view of Lemma 3.3 (ii, iii) we have

'R
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w;
R )

) Bay, ..., qp=Aa 42" ... Ag' Aq,

(where AY stands for wA,w™).
3.5 LEMMA. Let X€84. The commutator of B, . . . .. opWith the
operator of multiplication by x is given by the following formula:’

H
(8) [B(al, Cee s xl = i\=21 X (wi+1Hai) wi“wi—lB(ai, B A
PROOF. We have
w,
[B(a'i' N F23) X] = [AsizAa; .. Aap X] =

A
;Ti'

i
w, w, w,
= 2 Aaan: v [AailH: %l Aal:‘
i=1

i
By Lemma 3.3 (ii, vi), [43/*, x] = x(wi,1Hy) 0,
Since 0,,,,0; = Wi W', we have

i+1%°

w, w; w,
. 2 i —~1 i+2
Ti=y%winla,) Ao, .. Aai_iwiﬂwi A“i+1 ee A“l’

We want to move the term w;,, w' to the left. To do this we note

that forj < i
-1 -1

w _ _ w w;W; g AW Wiag

Aa;+1wi+1wi1=wi-f-iwil(Aa}Hi) i l+1=wi+1wil-Aa; i TH
[\ J: S . N
= Wiy IAG?I B A 2

Therefore,

~

[y .0 [+ g, g Cppo040
i = ; LT el B AR ) XTG4 R Rise
Ti=y (leHa,-) Wiy W; Aa'l oee A“i—i Aai+1 R A“l'

~

By (7), applied to the sequence or roots (e, . . ., &, . . ., &), we have

Ti=y, (wi+iHoni) w;Wwi'B

[C 7PN &i, vees al)’
and Lemma 3.5 is proved.

If llog, - - - Oy - - - 0y) < 1~ 1, then T; = O by the inductive
hypothesis. If /{04, . . - 84; - - - 04) =1 — 1, then, putting
W =0y . ..0q;-.-0g and y = 0y ... 0, (0;), We see from Lemma

2.2 that w'» w, and also
X (wiHHo&i) = w’X (w’wiHchi) =w'y (Gai vew oai_jHai) = w,X (Hv)
and

-1
Wiwsi B,

_y,, = -
@pr s ap = WinWT W A wA

CT - A Oy eaey Gy vens EP°

1" *indicates that the corresponding term must be omitted.
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Using Proposition 2.8 c¢) and the inductive hypothesis, (8) can be
rewritten in the following form:

[Bay, .v., aps X1= D Wy (Hy) w Ay
w'—v—>w

The right-hand side of this formula does not depend on the represen-
tation of w in the form of a product oo, . . . 04, The proof of theorem
3.4 is thus completed by the following obvious lemma.

3.6. LEMMA. Let B be an operator in R such that B(1) = 0 and
[B, x] = O for all % € 94 Then B = 0.

3.7. COROLLARY. The operators A, satisfy the following commutator
relation:

(W 4w, xl= 2 @t (Hy)w Au.
w’ _’V_) w

We put S; = R* (where R; C R is the space of homogeneous poly-
nomials of degree i) and S =@ S;. We denote by ( , ) the natural pairing
S X R - Q Then W acts naturally on S.

3.8 DEFINITION. (i) For any y € %4 we let x* denote the transform-
vtion of S adjoint to the operator of multiplication by x in R,

(ii) We denote by F,: S > S the linear transformation adjoint to
A,: R > R,

The next lemma gives an explicit description of the F

3.9 LEMMA. Let v € A. For any D € S there is a_ D € S such that
v* (D) = D. If D is any such operator, then D — o,,D F, (D), (in par-
ticular, the left-hand side of this equation does not depend on the choice
of D)

PROOF. The existence of D follows from the fact that multiplication by
v is a monomorphism of R. Furthermore, for any f € R we have

(D—o03yD, f)=(D, f—0oyf)=(D, 4Ayf-¥)=(G* (D), Ayf)=(D, 4;f),
hence D — 075 =F,.

REMARK. It is often convenient to interpret S as a ring of differ-
ential operators on fj with constant rational coefficients. Then the pairing
(, ) is given by the formula (D, f) = (Df) (0), D € S, 'f € R. Also, it is easy
to check that x*(D) = [D, x1, where X € b§ and D € S are regarded as
operators on R.

Theorem 3.4 and Corollary 3.7 can be restated in terms of the operators
F.
y-

3.10 THEOREM. Let a4, ..., ;€ 3, W= Og,. .. Oq

) If lw) < I, then Fy, . . . F, =0.

(i) If (w) =1, then Fa .- . By, depends only on w and not on
@, ..., o In this case the transformation Fo, - . . Fy, is denoted by

F,,. (Note that F, = A}).
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(iii) [x*, Fuwl= 2 w'y(H,)Fyw.
Y

W —> w

3.11. DEFINITION. We ser D, F ).
As we shall show in §4, the functionals D, correspond to the Schubert
cells in H, (X, Q) in the sense that (D, , f) = ¢, a()) for all f € R.
The properties of the D, are listed in the following theorem.
3.12. THEOREM. (i) D € Siuw-
(i) Let we W, a € 2. Then
FD, = {0 %f Hwog) = l(w) — 1,
Dwoa if {wo,) = l(w) + 1.
(iii) Let X €9%- Then

x* (Dy) = % W'y (Hy) Dyre

w—>w
(iv) Let « € Z. Then
— Dy, if L(wog)=1(w)—1,
%Do={ =D+ 3 wollly)Dw i l(woe)=1(w)+1.
L w’—z>waa
) Let we W, l(w) =1, 4o . .., %1 €B3. Then
Dy s X15 - - X)) =2 xalHyy . . . x,(H), where the summation extends
over all chains
Vi V2 vy

e~—> Wy —>Wy—> .., —> W =wTl,

PROOF. (i) and (ii) follow from the definition of D, and Theorem
3.10 ().

(iii) x* (D) = x*F,w(l) = [x*, F,w] (1) (since x* (1) = 0), and (iii)
follows from Theorem 3.10 (iii).

It follows from Lemma 3.3 (iii) that ¢, = a*F, — 1. Thus, (iv) follows
from (ii) and (jji).

(v) We put D, = Dy,-1_ Then the D, satisfy the relation

(9) (D)= 2 %(Hy) Do

w’—Lw

Since (D, xf) = (x*D), /), (v) is a consequence of (9) by induction on /.

Let &% be the subspace of S orthogonal to the ideal J € R. It follows
from Lemma 3.3 (vi) that & is invariant with respect to all the F7. It is
also clear that 1 ¢ g%¢. Thus, D, € # for all w € H

3.13. THEOREM. The functionals D, , w € W, form a basis for .

PROOF. a) We first prove that the D,, are linearly independent. Let
s € W be the element of maximal length and r = I(s). Then, by Theorem
3.12 (v), D,(p") > 0 and so D, # 0. Now let 2 ¢, D, = 0 and let @ be
one of the elements of maximal length for which ¢, # 0. Put I = I(0).
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There is a sequence o, . . ., a; for which iu’o‘,[l c . Og, = 8. Let
F = Far-z ... Fy . It follows from Theorem 3.10 that FDy = D; and
FD, = 0 if l(w) > I, w # W. Therefore F(Q\c,D,) = czD, # 0.

b) We now show that the D, spand#. It 1s sufficient to prove that if
fE€ R and D,, /) =0 for all w € W, then f € J. We may assume that f
is a homogeneous element of degree k. For £ = O the assertion is clear.

Now let £ > 0 and assume that the result is true for all polynomials f
of degree less than k. Then for all « € £ and w € W,

Dy, , A = F,D,, ) = 0, by Thecrem 3.10 (i) and (ii). By the inductive

hypothesis, 4,f € J, that is, f — ¢,f = ad,f € J. Hence for all w € W,

f = wf (mod J). Thus, | W | Ev]vwf = f {mod J). Since the left-hand side
wE

belongs to /., we see that f € J. Theorem 3.13 is now proved.

The form ( , ) gives rise to a non-degenerate pairing between R =R/J
and§#. Let {£,} be the basis of R dual to {D,}. The following properties
of the P, are immediate consequences of Theorem 3.12.

3.14 THEOREM. (i) Let w € W, o € . Then

AP, = {O if {woy) = (w) + 1,
Py if lwoy) = Iw) — 1.
(i) XPo= 2 wx(Hy) Py for y€Ws.
w-l> w’
(iii) Let « € Z. Then
j P, if  l(wog)=1(w)+1,
Gan:‘ Py,— D woa(H)Py, if 1(woy)=1(w)—1.
L wca—v)w’

From (i) it is clear that all the £, can be expressed in terms of the
P,. More precisely, let w = o4 . . . 04, I(w) =r — L Then

Py=A4,, ... Ay Ps.
To find an explicit form for the P, it therefore suffices to compute the
P € R
3.15 THEOREM. P, = | W | [A] v (mod J).
VEA+
PROOF. We divide the proof into a number of steps. We fix an element
k € b such that all the wh, w € W, are distinct.

1. We first prove that there is a polynomial Q@ € R of degree r such
that

(10) Q(shy = 1, Q(wh) = 0 for w=s.

For each w € W we choose in R a homogeneous polynomial 13;, of degree
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I(w) whose image in R = R/J is P,,. Since {Pw} is a basis of R, any polynomial
f € R can be written in the form f= ), ﬁwfw, where f,€ I (this is easily proved
by induction on the degree of f). Now let Q" € R be an arbitrary poly-
nomial satisfying (10) and let Q' = > P,g,, gw€ 1. It is clear that

Q=2 gw (h) P, meets our requirements.

2. Let Q be the image of Q in R, and let Q = 2 cw P, be the represen-
tation of Q in terms of the basis {Pw} of R. We now prove that

N O

To prove this we consider Asé. On the one hand Asa = ¢,, by Theorem
3.13 (i); on the other hand, 4,0 is a constant, since ¢ is a polynomial of
degree r. Hence, A0 = c,.

We now calculate 4,0, Let s = o, . .. 0., be the reduced decompo-
sition. We put w; = 04, . . . 04, (in particular, w, =€), v; = W «a,
Q= Asy, - - - 44,0

LEMMA. @; is a polynomial of degree i,
Qs (wil) = (=1~ I (vs (™

Zi>i
and Qi(wh) = 0if w * w;.

PROOF. We prove the lemma by backward induction on i. Fori =r
we have w, = s, Q. = @, and the assertion of the lemma follows from the
definition of Q.

We now assume the lemma proved for Q;, i > 0. In the first place, it
is clear that Q;, = A4,,Q; is a polynomial of degree i — 1.
Furthermore,
Qi (wh)— Q; (0gwh)

Qi-1 (wh) = Ag,Q; (wh) = o k)

If w=w,, then w < w;, o,w = w; and
(Wi ) = (wh o) (h) = — (wieg) (h) = — v,(h). Therefore, using the
inductive hypothesis, we have

Qics i) = — 22 = (=1 T ()™
rej>i-1
But if w > w;,, Corollary 2.6 implies that w > w; and o,,w * w;. So
Q;_, (wh) = 0, and the lemma is proved.
Note that by Lemma 2.2, as i goes from | to r, y; ranges over all the
positive roots exactly once. Therefore

€s = AsQ = Q= (—1)" g (¥ (B) %

3. Consider the polynomial Alt (Q) = > (— D'wQ; Alt (Q) is skew-
symmetric, that is, o, Alt(Q)= —Alt(Q) for all ¥ € A.Therefore Alt(Q) is divisible
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(in R) by [[ v. Since the degrees of Alt(Q) and n v are equal (to 7),
VEA+
Alt(Q) = H . Furthermore, Alt(Q) (h) = (— 1)’, so that
(11) A @ == [ Gy I
ViAy VEA4

4. We put Alt(Q) = 3 (— 1)» w0. By Theorem 3.14 (iii),
Alt(2) = Di(— 1) wP, = IWI| P,. Therefore Alt(Q) = ¢, IWI P, + terms
of smaller degree. Since Alt(Q) is a homogeneous polynomial of degree r,
we have

(12) Al (Q) = ¢s | W | Ps.
By comparing (11) and (12) we find that
Ps=|W |t [] y(modJ).
YEA4

The theorem is now proved.

3.16 COROLLARY. Let p be half the sum of the positive roots. Then
P = p"/r! (mod J).

PROOF. For each i € h* we consider the formal power series exp x on
b given by

expy= 2 xY/n!.
n=0

Then we have (see [9])
2 (—1)'™ exp (wp) = II [exp——exp (——%)]
weW VEA4
Comparing the terms of degree r we see that
i
= D (=) wp) = ]] v
PEAL
If p"(mod J) = AP,, » € C, then (wp™) (mod J) = AwP, = \(— 1)®P_,
Thus, WZ( 1) (p)” = AP (mod J). The result now follows from
Theorem 3.15.

To conclude this section we prove some results on products of the
P, in R.

w

3.17. THEOREM. (i) Let « € 2, w € W. Then

Poapw: Z Yo (Hw-19) P,
u;—2> w’
where Xa € B2 is the fundamental dominant weight corresponding to the
root o (that is, xo (Hg) = 0 for a # g € Z, xo (Hy) = 1).
(i) Let wy, w, € W, w,) + lw,) =r. Then P, P,, =0 for
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w, # wys, Py P~ P
Gii) Let w€ W, f € R. Then f P, = 21 ¢, Py

w 2w

(iv) If w, € w,s, then Pwle2= 0.

PROOF. (i) By Theorem 3.12 (v), £y, = Xo {mod J). Therefore (i)
follows from Theorem 3.14 (ii).

(ii) The proof goes by backward induction on l(w,). If {(w,) = r, then
w, =5, w; =eand P, =1

To deal with the general case we find the following simple lemma useful,
which is an easy consequence of the definition of the 4,.

3.18 LEMMA. Let v € A, f, g € R. Then A, (A,fg) = A,[-A,8.

Thus, let wy, € W, w,) =1 < r, and choose a« € T so that

& -
w, - g,w,. We consider two cases separately.

A) wy % oqw,. We observe that the following equation holds for any
w e W

(13) Wws) = r — Yw).

Since in our case l(oqw,) =1+ 1 and l(o,w,) = r — [ + 1, we see that
O0uW; S # 0 W, and so w;s # w,. On the other hand, £, = AuPy w, and
P, = AP, wy by Theorem 3.14 (i). Therefore, an application of Lemma

3.18 shows that
Pw1Pw2= Aapcawi‘AapcawzzAa (Paawl'AaPGawz) =Aa (Poawi‘sz)-

Since Hoqw,) + Kw,)=r — 1+ 1 + 1> r, we have F,
Hence P, P,, = 0 as well

awi Pwy, = 0.

B) oaw; % w;. In this case, P, = AoPy, and Py, = APy 0, by
Theorem 3.14 (i). Again applying Lemma 3.18, we have

(14) AOL (Pwipwz)—'—._"Aa (Pwi'A“PGocwz) = Aapwl'AocPUau;z:

= Aoc (Aocpwi'Po'awz) = Aoc (Poocwi'P“awz)'
Since the P, form a basis of R, any element f of degree r in R has the
form f = AP,, X € C. Furthermore, 4,F, = £, # 0. But
deg P, Pv, =deg Pypw, - Py w, = r. Therefore (14) is equivalent to
pwipwz-_—‘Pquipaawz-

Applying the inductive hypothesis to the pair (c,w;, oW, ), we obtain
part (ii) of the theorem.

(iii) is an immediate consequence of Theorem 3.14 (ii).

@iv) follows from (ii) and (iii).

We define the operator &: R — ¥ of Poincaré duality by the formula

(FN(g) = Dfe), f, g € R, &t € K.
3.19. COROLLARY. &P, = D,
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§4. Schubert cells

We prove in this section that the functionals D,, w € W introduced in
83 correspond to Schubert cells s,,, w € W.

Let s, € Hy (X, Q) be a Schubert cell. It gives rise to a linear functional
on H*(X, Q), which, by means of the homomorphism «: R -~ H*(X, Q)
(see Theorem 1.3), can be regarded as a linear functional on R. This
functional takes the value O on all homogeneous components P, with
k # Kw), and thus determines an element D, € Sy,

4.1. THEOREM. D, = D, (cf. Definition 3.11).

This theorem is a natural consequence of the next two propositions.

PROPOSITION 1. D, = 1, and for any %€0%

(15) v* (D)= 2 w'y (Hy) Dy

v
w—>w

PROPOSITION 2. Suppose that for each w € W we are given an
element Dw € Sywy, With D, = 1, for which (15) holds for anyy € b3 .
Then D, = D,.

Proposition 2 follows at once from Theorem 3.12 (iii) by induction
on l(w).

We turn now to the proof of Proposition I.

We recall (see [10]) that for any topological space Y there is a bilinear
mapping

HA(Y, Q)% I (Y, Q) H, (Y, Q)

(the cap-product). It satisfies the condition:
(16) 1. {eny, z0={y, ¢z

for all y€H; (Y, Q), zEH (Y, Q), c£H (Y, Q).
2. Let f: Y, -~ Y, be a continuous mapping. Then

(17) Te(ffery) =cnm fuy

for ally € H; (Y, Q). cc H (Y, Q).
By virtue of (17) we have for anyy€%0%, f€R

(1 (Dw)s 1) = Doy 2y = (810, 01 () o (1)) = (S0 O @ty (%), o ().

Therefore (15) is equivalent to the following geometrical fact.
PROPOSITION 3. For all €07

(18) sw o ()= > w'yH,) s,

w—>w
We restrict the fibering £, to X, © X and let e € H*(X,, Q) be the
first Chern class of £ . By (17) and the definition of the homomorphism
a:h3 — H2 (X, Q), it is sufficient to prove that
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19) swney= 2 wy(Hy) sw.
N w'——v>w
il’l H2l(w)—2 (Xw: Q)

To prove (19), we use the following simple lemma, which can be verified
by standard arguments involving relative Poincaré duality.

4.2 LEMMA. Let Y be a compact complex analytic space of dimension
n, such that the codimension of the space of singularities of Y is greater
than 1. Let E be an analytic linear fibering on Y, and ¢ € H*(Y, Q) the
first Chern class of E. Let p be a non-zero analytic section of E and
SmY; = div y the divisor of u. Then [Y] N ¢ = X mlY;] € Hyua (Y, Q),
where [ Y] and [Y] are the fundamental classes of Y and Y,.

Let w € W, and let X,, C X be the corresponding Schubert cell. From
Lemma 4.2 and Theorem 2.11 it is clear that to prove Proposition 3 it is
sufficient to verify the following facts.

4.3. PROPOSITION. Let w' > w. Then X, is non-singular at points
x € X, .

4.4. PROPOSITION. There 4s a section p of the fibering E, over X,
such that

divp= D wy(H,) Xw.

w—>w

To verify these facts we use the geometrical description of Schubert
cells given in 2.9. We consider a finite-dimensional representation of G on
a space V with regular dominant weight X, and we realize X as a subvariety
of (V). For each w € W we fix a vector f,, € V of weight wA.

PROOF OF PROPOSITION 4.3. For a root v € A, we construct a
three-dimensional subalgebra %, < & (as in the proof of Theorem 2.9).
Let i: SL,(C) > G be the homomorphism corresponding to the embedding

| . (fa b \1 (fa 0 \1
Ay — @. Consider in SL,(C) the subgroups B’ = i( )Jh H = i( )J}

0 at
(/1 0 01
and N. = zl(w 1)} and the element ¢ = (_1 o) We may assume that

i(H) C H, i(B') C B.

Let ¥ be the smallest A -invariant subspace of V containing f,. It is
clear that ¥ is invariant under i(SL, (C)), and that the stabilizer of the line
[f,’] is B'. This determines a mapping §: SL,(C)/B* > X. The space
SL,(C)/B' is naturally identified with the projective line P'. Let 0, « € P!
be the images of e, ¢ € SL,(C).

We define a mapping £: N,y X P! - X by the rule

(z, 2) > z-8(z).
4.5. LEMMA. The mapping ¢ has the following properties:
(D) E(Nwr X {0}) = Xy, E(Ny X (P1N 0)) = Xy
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(ii) The restriction of ¢ to (N, X P! \ »)) is an isomorphism onto a
certain open subset of X, .

Proposition 4.3 clearly follows from this lemma.

PROOF OF LEMMA 4.5. The first assertion of (i) follows at once from
the definition of X, . Since the cell X, is invariant under N, the proof of
the second assertion of (i) is reduced to showing that 6(z)-€ X, for
z € P! \o. Let h € SL,(C) be an inverse image of z. Then A can be
written in the form h = b,6b,, where b,, b, € B'. It is clear that

by )fw = ¢,f, and i(o)f, = c,f,, where c;, c, are constants. Therefore
inf, = cici(by)f,, that is, §(z) € X,,.
To prove (ii), we consider the mapping
w ol Ny X (PN o) > X.
The space P!\eo is naturally isomorphic to the one-parameter subgroup
N_ c SL,(0O).
The mapping &: N,yX N. - X is given by the rule
E(n’ ngy) = ni(nr,) lfwl, n € Ny, ng €N".
Thus,
w' e E(n, ny) = (W nw'") (W (ny) W') [fel.
We now observe that w''N,w' C N_ (by definition of N,), and
w N YW €.N_ (since w'™t ¥y € A,). Furthermore, the intersection of the
tangent spaces to these subgroups consists only of 0, because N, C N,
i(N') € N_. The mapping N_ -~ X (n + n[f,]) is an isomorphism onto an
open subset of X. Therefore (ii) follows from the next simple lemma,
which is proved in [5], for example.

4.6. LEMMA. Let N, and N, be two closed algebraic subgroups of a
unipotent group N whose tangent spaces at the unit element intersect only
in 0. Then the product mapping N, X N, = N gives an isomorphism of
N; X N, with a closed subvariety of N.

This completes the proof of Proposition 4.3.

PROOF OF PROPOSITION 4.4. Any element of §% has the form
X = A — A, where A\, \' are regular dominant weights. In this case,

E, = E, ® E;*, and it is therefore sufficient to find a section u with the
required properties in the case y = A.

We consider the space P(V), where V is a representation of G with
dominant weight A. Let nybe the linear fibering on P(V) consisting of
pairs (P, ¢), where ¢ is a linear functional on the line 7 € V. Then
E\ = i*(ny), where i: X -~ P(V) is the embedding described in § 2.

The linear functional ¢, on V (see the proof of Theorem 2.11) yields a
section of the bundle . We shall prove that the restriction of u to this
section on X, is a section of the fibering E, having the requisite properties.

By Lemma 2.12, u(x) # O for all x € X, . The support of the divisor
div p is therefore contained in X, \ X, = Ly) X, .

’
w w



22 I N. Bernstein, I. M. Gel'fand, S. . Gel'fard

Since /ﬁ, is an irreducible variety, we see that div u = 27 av)?w', where
w - w
a, € Z, a, > 0. It remains to show that a, = w'x(H,).

In view of Lemma 4.5 (i) and (ii), the coefficient a, is equal to the
multiplicity of zero of the section 8*(u) of the fibering §*(E\) on P! at
the point o, that is, the multiplicity of zero of the function
Y(t) = ¢ ((exp tE_y)fy) for ¢ = 0. It follows from Lemma 2.10 that
Y(t) = ct™, hence a, = n = w'x(Hy). This completes the proof of Proposi-
tion 4.4 and with it of Theorem 4.1.

§ 5. Generalizations and supplements

1. Degenerate flag varieties. We extend the results of the previous sec-
tions to spaces X(P) = G/P, where P is an arbitrary parabolic subgroup of
G. For this purpose we recall some facts about the structure of parabolic
subgroups P C G (see [7]).

Let ® be some subset of X, and Ag the subset of A, consisting of
linear combinations of elements of @. Let Gg be the subgroup of G
generated by H together with the subgroups N, = {exp tE,|t € C} for
Y € Ag U - Ag, and let Ny be the subgroup of N generated by the N,
for v € A\\Ag. Then Gg is a reductive group normalizing Ng, and
Py = GgNg is a parabolic subgroup of G containing B.

It is well known (see [7], for example) that every parabolic subgroup
P C G is conjugate in G to one of the subgroups Py. We assume in what
follows that P = Pg, where © is a fixed subset of . Let Wg be the Weyl
group of Gg. It is the subgroup of W generated by the reflections o,,

a € 0.

We describe the decomposition of X(P) into orbits under the action of B.

5.1. PROPOSITION. (i) X(P) =wléJW Bwo, where o € X(P) is the image
of Pin G/P.

(i) The orbits Bw,0 and Bw,o are identical if w,w;' € Wg and other-
wise are disjoint.

(iii) Let Wg be the set of w € W such that w® C A,. Then each coset
of W/Weg contains exactly one element of Wg. Furthermore, the element
w € W§ is characterized by the fact that its length is less than that of
any other element in the coset wWg.

Gv) If w € W, then the mapping N, - X(P) (n > nwo) is an iso-
morphism of N, with the subvariety Bwo C X(P).

PROOF. (i)—(ii) follow easily from the Bruhat decomposition for G and
Go . The proof of (iii) can be found in [7], for example, and (iv) follows
at once from (iii) and Proposition 1.1.

Let w € Wg, X, (P) = Bwo, let X,, (P) be the closure of X, (P) and
(Xo (P} € Hyyuy(X, (P), Z) its fundamental class. Let

S (P) € Hyyy(X(P), Z) be the image of [X,(P)] under the mapping
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induced by the embedding X,, (P)\—»>X(P). The next proposition is an
analogue of Proposition 1.2.

5.2. PROPOSITION ([2]). The elements s, (P), w € W§, form a free
basis in H (X (P), Z).

5.3. COROLLARY. Let ap: X » X(P) be the natural mapping. Then
(O‘P)*Sw = 0 lf w $ W(l-D, (ap)*sw = Sw(P) lf w e W(1)

5.4. COROLLARY. (ap)y: H (X, Z) > H (X(P), Z) is an epimorphism,
and (ap)*: H¥X(P), Z) » H* (X, Z) is a monomorphism.

5.5. THEOREM. (i) Im(ap)* € H*(X, Z) = R coincides with the set of
We-invariant elements of R.

() P, € Imlap)* for w € W§ and {(ocp)*'lpw}wewé is the basis in
H*(X(P), Z) dual to the basis {s,(P)},cwy in H(X(P), Z).

PROOF. Let w € Wg. Since (B, s, = O for w, ¢ W§, P, is orthog-
onal to Ker(ap),, that is, £, € Im(ap)*. Now (ii) follows from the fact
that (ap)*P,,, s, (P) = B, , s, for w, w' € W§. To prove (i), it is
sufficient to verify that the P,, w € W}, form a basis for the space of
We-invariant elements of R. We observe that an element f € R is
Wg-invariant if and only if A,f = 0 for all « € ©. Since w € W} if and
only if l(wo,) = l(w) + 1 for all &« € ©, (i) follows from Theorem 3.14(i).

2. CORRESPONDENCES. Let Y be a non-singular oriented manifold.
An arbitrary element z € H, (Y X Y, Z) is called a correspondence on Y.
Any such element z gives rise to an operator z,: H (Y, Z) ~ H (Y, Z),

according to
Z*((,‘) = (n2)*((n1)*(530) N Z)7 ¢ € H* (Y7 Z)»

where 7., m,: Y X Y = Y are the projections onto the first and second
components, and & is the Poincaré duality operator. We also define an
operator z*: H*(Y, Z) >~ H*(Y, Z) by setting z*(§) = Pl(mn),((ma)*(E) N 2)],
E € H*(Y, Z). It is clear that z, and z* are adjoint operators.

Let z be assigned to a (possibly singular) submanifold Z C Y X Y, in
such a way that z is the image of the fundamental cycle [Z] € H (Z. Z)
under the mapping induced by the embedding Z <Y X Y. Then

Z*(C) = (pZ)* ([Z] N (Pi)*@cpc)»
where p(, py: Z -~ Y are the restrictions of n,, 7, to Z.

If, in this situation, p,: Z = Y is a fibering and c is given by a sub-

manifold C C Y, then the cycle
Z1 n (p*dc

is given by the submanifold p7* (C) C Z.
We want to study correspondences in the case Y = X = G/B.
5.6. DEFINITION. Let w € W. We put Z, = {(gwo, go)} C X X X
and denote by z,, the correspondence z,, = [Z,] C HJ (X X X, Z).
5.7. THEOREM. (2, )y = F,,.

PROOF. We calculate (z,,), (sy).
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Since the variety Zw is G-invariant and G acts transitively on X, the
mapping p,: Z, - X is a fibering. Thus,

(Ze)a (8w7) = (P2) [07* (X1

It is easily verified that o' (X,) = 77" (X,) N Z,. We put
Y=aX, )N Z, C X X X. Then
(20) Y = {(nw'o, nw'bwo)|n € N, b € B).

Since the dimension of the fibre of p,: Z, - X is equal to 2/(w), we see
that dim Y = 2l(w) + 2l(w'). It is clear from (20) that
pY) = {nw'dbwo | n € N, b € B} = Bw'Buwo.
it is well known (see [6]. Ch. IV, §2.1 Lemma 1) that
Bw'Bwo = Bw'wo (J ( U Buw,0).
L (w<<lw)+(w”)
Thus, two cases can arise.

a) l(w'w) < Iw") + l(w). In this case, dim p, (Y) < 2l(w') + 2l(w), and
SO (Zy ) (Sw) = (p2 ) [Y] = 0.

b) w'w) = l(w') + l(w). In this case, p,(Y) = X, + X', where
dim X' < dim X, = 2lw") + 2l(w). Thus, (p,),[Y] = [X,, ], that is,
(2, )5x(Sw') = S, - Comparing the formulae obtained with 3.12 (ii), we see
that (z,), = F,,.

5.8. COROLLARY. z,, = 2S5 ® Sy, Where the summation extends
over those w' € W for which l(w'w) = l(w) + l(w').

In §1 we have defined an action of W on H, (X, Z). This definition
depended on the choice of a compact subgroup K. Using Theorem 5.7 we
can find explicitly the correspondences giving this action.

In fact, it follows from Lemma 3.3 (iii) that o, = a*F, — 1 for any
o € Z. The transformation F, is given by the correspondence Z,,. The
operator o* can also be given by a correspondence: if U, = ZqU; is a
divisor in X giving the cycle &(a) € Hyr o X, Z) (for example,

U, = BEEE a(HB)X,,ﬂ), then the cycle U, = Z¢U, where

U= {{z, 2) |2€U;} = X X X, determines the correspondence that gives
the operator a*. The operator o, in H (X, Z) is therefore given by the
correspondence U;*Za o — 1 (where * denotes the product of correspon-
dences, as in [11]). Using the geometrical realization of the product of
correspondences (see [11]), we can explicitly determine the correspondence
S, that gives the transformation 1 + o, in H (X, Z), namely, S, = =qU,
where U, = {(z, y) € X X X |z €U,, -y € P(o,} - In this expression,
¥, ¥ € G are arbitrary representatives of x, y, and Pi«) is the parabolic
subgroup corresponding to the root e.

3. B. Kostant has described the P, in another way. We state his result.
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Let 7 € bh4 be an element such that a(k) > O for all « € Z. Let
J, ={f€ R | flwh) =0 forall w e W} be an ideal of R.

5.9, THEOREM. (i) Let w € W, l(w) = l. There is a polynomial Q, € R
of degree 1 such that

(21) Qulwh) =1, @y (wh) =0 if () <IlWw), v +w
The Q, are uniquely determined by (21) to within elements of J,. (ii) Let
Q> be the form of highest degree in the polynomial Q,. The image of QF
in R is equal to 1T (y(R))-1.P,,.

VEA- N w-1A4

The proof is analogous to that of Theorem 3.15.

4. We choose a maximal compact subgroup K CG such that K N B C H
(see §1). The cohomology of X can be described by means of the
K-invariant closed differential forms on X. For let x € b, and let E, be the
corresponding one-dimensional complex G-fibering on X. Let &, be the
2-form on X which is the curvature form of connectedness associated with
the K-invariant metric on £y (see [12]). Then the class of the form

Wy i?lr—z @y is ¢ € H*(X, Z). The mapping x ~> w, extends to a mapping

8: R » QX (X), where QF, is the space of differential forms of even degree
on X. One can prove the following theorem, which is a refinement of
Proposition 1.3 (ii) and Theorem 3.17.

5.10. THEOREM (i) Ker 6 = J, that is, 8 induces a homomorphism of
rings 8: R » QX(X). (i) Let wy, w, € W, w, & w,s. Then the restriction
of the form ?(Pwl) to X, is equal to 0. (iii) Let wy, w, € W, w, € wys.
Then 6(P, ) 6(P,,) = 0.
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