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ESTIMATES OF AUTOMORPHIC FUNCTIONS

JOSEPH BERNSTEIN AND ANDRE REZNIKOV

Abstract. We present a new method to estimate trilinear period for
automorphic representations of SL2(R). The method is based on the
uniqueness principle in representation theory. We show how to separate
the exponentially decaying factor in the triple period from the essential
automorphic factor which behaves polynomially. We also describe a gen-
eral method which gives an estimate for the average of the automorphic
factor and thus prove a convexity bound for the triple period.
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1. Introduction

1.1. Maass forms. Let Y be a compact Riemann surface with a Riemannian met-
ric of constant curvature−1 and the associated volume element dv. The correspond-
ing Laplace–Beltrami operator is non-negative and has purely discrete spectrum on
the space L2(Y, dv) of functions on Y . We will denote by 0 = µ0 < µ1 ≤ µ2 ≤ . . .
its eigenvalues and by φi = φµi

the corresponding eigenfunctions (normalized to
have L2 norm one). In the theory of automorphic forms the functions φµi are called
automorphic functions or Maass forms (after H. Maass, [M]).

The study of Maass forms plays an important role in analytic number theory.
We are interested in their analytic properties and will present a new method of

finding bounds for some important quantities arising from φi.

1.2. Triple products. For any three Maass forms φi, φj , φk we define the follow-
ing triple product or triple period:

cijk =
∫

Y

φiφjφk dv. (1)

We would like to bound the coefficient cijk as a function of eigenvalues µi, µj , µk.
In particular, we would like to find bounds for these coefficients when one or more
of these indices tend to infinity.
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1.3. Motivation. First of all we would like to explain why this problem is inter-
esting. The explanation goes back to pioneering works of Rankin and Selberg (see
[Ra], [Se]). They discovered that in special cases triple products as above give rise
to automorphic L-functions. That allowed them to obtain analytic continuation
and effective bounds for these L-functions and, as an application, to obtain bounds
for the Fourier coefficients of cusp forms towards the Ramanujan conjecture.

Since then the Rankin–Selberg method has had many generalizations. Recently,
for Y arising from the full modular group SL2(Z) and for cuspidal functions φ,
Watson (see [Wa]) proved the following beautiful formula:∣∣∣∣∫

Y

φiφjφk dv

∣∣∣∣2 = G(λi, λj , λk)
L(1/2, φi ⊗ φj ⊗ φk)

L(1, φi, Ad)L(1, φj , Ad)L(1, φk, Ad)
. (2)

Here λt is a natural parameter of an eigenfunction φt related to the eigenvalue
by µt = 1−λ2

t

4 . The functions L(s, φi ⊗ φj ⊗ φk) and L(s, φt, Ad) are appropriate
automorphic L-functions associated to φi, and the function G(λi, λj , λk) is an
explicit rational expression in the ordinary Γ-functions. The relation (2) can be
viewed as a far reaching generalization of the original Rankin–Selberg formula. It
was motivated by a work [HK] by Harris and Kudla on a conjecture of Jacquet.

1.4. Results. In this paper we will consider the following problem. We fix two
Maass forms φ = φτ , φ′ = φτ ′ as above and consider coefficients defined by the
triple period as above:

ci =
∫

Y

φφ′φi dv (3)

as {φi = φλi
} run over the basis of Maass forms.

Thus we see from (2) that the estimates of coefficients ci are equivalent to the es-
timates of the corresponding L-functions. One would like to have a general method
to estimate the coefficients ci and similar quantities. This problem was raised by
Selberg in his celebrated paper [Se].

Let us understand what kind of bounds on the left hand side of (2) one would
like to have in order to estimate effectively L-functions involved in the right hand
side of (2) (or at least the ratio of L-functions).

We note first that one expects that ci have exponential decay in |λi| as i goes to
∞. Namely, general experience from the analytic theory of automorphic L-functions
tells us that L-functions have at most polynomial growth when |λi| → ∞. Hence,
analyzing the function G(λ), one would expect from (2) and the Stirling formula
for the asymptotic of Γ-function that the normalized coefficients

bi = |ci|2 exp
(π

2
|λi|

)
(4)

have at most polynomial growth in |λi|, and hence ci decay exponentially. How-
ever, it is difficult to see from the definition of the coefficients ci that they have
exponential decay and it is not clear what should be the rate of this decay.

The fact that an exponential decay with the exponent π
2 holds for a general

Riemann surface was first shown by Good and Sarnak (see [G] and [Sa1]). Both
proofs used ingenious analytic continuation of automorphic functions in the variable
parameter.
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In this paper we will explain how to naturally separate the exponential decay
from a polynomial growth in coefficients ci using representation theory. We also
prove the following

Theorem. There exists an effectively computable constant A such that the following
bound holds for arbitrary T > 0: ∑

T≤|λi|≤2T

bi ≤ A. (5)

1.5. A conjecture. The estimate in the theorem is tight but if we try to use it
to get a bound for an individual term bi we get only an inequality

bi ≤ A. (6)

According to Weyl’s law there are approximately cT 2 eigenvalues µi with λi be-
tween T and 2T , so the individual bound for the coefficient bi is definitely not tight.
We would like to make the following conjecture concerning the size of coefficients bi:

Conjecture. For any ε > 0 there exists a constant Cε > 0 such that

bi ≤ Cε|λi|−2+ε,

as |λi| → ∞.

For Y arising from congruence subgroups this conjecture is consistent with the
Lindelöf conjecture for appropriate automorphic L-functions (see [BR1], [Sa2] and
[Wa] for more details). We note that the bound in the Theorem above corresponds
to the so-called convexity bound.

1.6. The method. The first proof of the (slightly weaker) version of Theorem 1.4
appeared in [BR1]. It was based on the analytic continuation of representations
from a real group to a complex group (generalizing methods of [Sa1]). The method
based on the analytic continuation was extended in [KS] to the case of higher rank
groups. While it gives bounds which are tight for general representations, it was
not able, so far, to cover cases relevant to L-functions.

The proof we present here is based on the uniqueness of triple product in repre-
sentation theory. It has an advantage that it could be generalized to higher rank
groups and gives bounds which are consistent with the theory of L-functions. The
present method also could be applied to p-adic groups (unlike methods of [BR1]).

It is known that the uniqueness principle plays a central role in the theory of
automorphic functions (see [PS]). The impact that the uniqueness has on the
analytic behavior of automorphic functions is yet another manifestation of this
principle.

We describe now the general ideas behind our new proof. It is based on ideas
from representation theory. Namely, we use the fact that every automorphic form
φ generates an automorphic representation of the group G = PGL2(R); this means
that starting from φ we produce a smooth irreducible representation of the group
G in a space V and its realization ν : V → C∞(X) in the space of smooth functions
on the automorphic space X = Γ\G.
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The triple product ci =
∫

Y
φφ′φi dv extends to a G-equivariant trilinear form

on the corresponding automorphic representations laut : V ⊗ V ′ ⊗ Vi → C, where
V = Vτ , V ′ = Vτ ′ , Vi = Vλi .

Then we use a general result from representation theory that such G-equivariant
trilinear form is unique up to a scalar. This implies that the automorphic form laut

is proportional to an explicit “model” form lmod which we describe using explicit
realizations of representations of the group G; it is an important fact that this last
form carries no arithmetic information.

Thus we can write laut = ai·lmod for a constant ai, hence ci = laut(eτ⊗eτ ′⊗eλi) =
ai · lmod(eτ ⊗ eτ ′ ⊗ eλi

), where eτ , eτ ′ , eλi
are K-invariant unit vectors in the

automorphic representations V , V ′, Vi corresponding to the automorphic forms φ,
φ′ and φi.

It turns out that the proportionality coefficient ai in the last formula carries an
important “automorphic” information while the second factor carries no arithmetic
information and can be computed in terms of Γ-functions using explicit realizations
of representations Vτ , Vτ ′ and Vλi

. This second factor is responsible for the expo-
nential decay, while the first factor ai has a polynomial behavior in parameter λi.

In order to bound the quantities ai, we use the fact that they appear as coef-
ficients in the spectral decomposition of the diagonal Hermitian form H∆ on the
space E = Vτ ⊗ Vτ ′ (see Sections 4.2, 4.3). This gives an inequality

∑
|ai|2Hi ≤

H∆ where Hi is an Hermitian form on E induced by the model trilinear form
lmod : V ⊗ V ′ ⊗ Vi → C as above.

Using the geometric properties of the diagonal form and simple explicit estimates
of forms Hi we establish the convexity bound for the coefficients ai.

2. Representation Theoretic Setting

We recall the standard connection of the above setting with representation theory
(see [GGPS]).

2.1. Automorphic functions and automorphic representations. Let us de-
scribe the geometric construction which allows one to pass from analysis on a Rie-
mann surface to representation theory.

Let H be the upper half plane with the hyperbolic metric of constant curva-
ture −1. The group SL2(R) acts on H by fractional linear transformations. This
action allows us to identify the group PSL2(R) with the group of all orientation
preserving motions of H. For reasons explained below we would like to work with
the group G of all motions of H; this group is isomorphic to PGL2(R). Hence
throughout the paper we denote G = PGL2(R).

Let us fix a discrete co-compact subgroup Γ ⊂ G and set Y = Γ\H. We consider
the Laplace operator on the Riemann surface Y and denote by µi its eigenvalues
and by φi the corresponding normalized eigenfunctions.

The case when Γ acts freely on H corresponds precisely to the case discussed
in the introduction (this follows from the uniformization theorem for the Riemann
surface Y ). Our results hold for general co-compact subgroup Γ (and in fact, with
slight modifications, for any lattice Γ ⊂ G).
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We will identify the upper half plane H with G/K, where K = PO(2) is a
maximal compact subgroup of G (this follows from the fact that G acts transitively
on H and the stabilizer in G of the point z0 = i ∈ H coincides with K).

We denote by X the compact quotient Γ \G (we call it the automorphic space).
In the case when Γ acts freely on H one can identify the space X with the bundle
of unit tangent vectors to the Riemann surface Y = Γ \H.

The group G acts on X (from the right) and hence on the space of functions on
X. We fix the unique G-invariant measure µX on X of total mass one. Let L2(X) =
L2(X, dµX) be the space of square integrable functions and (ΠX , G, L2(X)) the
corresponding unitary representation. We will denote by PX the Hermitian form
on L2(X) given by the scalar product. We denote by ‖ ‖X or simply ‖ ‖ the
corresponding norm and by 〈f, g〉X the corresponding scalar product.

The identification Y = Γ \ H ' X/K induces the embedding L2(Y ) ⊂ L2(X).
We will always identify the space L2(Y ) with the subspace of K-invariant functions
in L2(X).

Let φ be a normalized eigenfunction of the Laplace–Beltrami operator on Y .
Consider the closed G-invariant subspace Lφ ⊂ L2(X) generated by φ under the
action of G. It is well-known that (π, L) = (πφ, Lφ) is an irreducible unitary
representation of G (see [GGPS]).

Usually it is more convenient to work with the space V = L∞ of smooth vectors
in L. The unitary Hermitian form PX on V is G-invariant.

A smooth representation (π, G, V ) equipped with a positive G-invariant Her-
mitian form P we will call a smooth pre-unitary representation; this simply means
that V is the space of smooth vectors in the unitary representation obtained from
V by completion with respect to P .

Thus starting with an automorphic function φ we constructed an irreducible
smooth pre-unitary representation (π, V ). In fact we constructed this space to-
gether with a canonical morphism ν : V → C∞(X) since C∞(X) is the smooth
part of L2(X).

Definition. A smooth pre-unitary representation (π, G, V ) equipped with a G-
morphism ν : V → C∞(X) we will call an X-enhanced representation.

In this note we will assume that the morphism ν is normalized, i. e., it carries
the standard L2 Hermitian form PX on C∞(X) into Hermitian form P on V .

Thus starting with an automorphic function φ we constructed

(i) an X-enhanced irreducible pre-unitary representation (π, V, ν),
(ii) a K-invariant unit vector eV ∈ V (this vector is just our function φ).

Conversely, suppose we are given an irreducible smooth pre-unitary X-enhanced
representation (π, V, ν) of the group G and a K-fixed unit vector eV ∈ V . Then
the function φ = ν(eV ) ∈ C∞(X) is K-invariant and hence can be considered as a
function on Y . The fact that the representation (π, V ) is irreducible implies that
φ is an automorphic function.

Thus we have established a natural correspondence between Maass forms φ
and tuples (π, V, ν, eV ), where (π, V, ν) is an X-enhanced irreducible smooth pre-
unitary representation and eV ∈ V is a unit K-invariant vector.
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2.2. Decomposition of the representation (ΠX , G, L2(X)). It is well known
that in case when X is compact the representation (ΠX , G, L2(X)) decomposes
into a direct (infinite) sum

L2(X) =
⊕

j

(πj , Lj) (7)

of irreducible unitary representations of G (all representations appear with finite
multiplicities (see [GGPS])). Let (π, L) be one of these irreducible “automorphic”
representations and V = L∞ its smooth part. By definition V is given with a
G-equivariant isometric morphism ν : V → C∞(X), i. e., V is an X-enhanced rep-
resentation.

If V has a K-invariant vector it corresponds to a Maass form. There are other
spaces in this decomposition which correspond to discrete series representations.
Since they are not related to Maass forms we will not study them in more detail.

2.3. Representations of PGL2(R). All irreducible unitary representations of G
are classified. For simplicity we consider those with a nonzero K-fixed vector (so
called representations of class one) since only these representations arise from Maass
forms. These are the representations of the principal and the complementary series
and the trivial representation.

We will use the following standard explicit model for irreducible smooth repre-
sentations of G.

For every complex number λ consider the space Vλ of smooth even homogeneous
functions on R2 \ 0 of homogeneous degree λ − 1 (which means that f(ax, ay) =
|a|λ−1f(x, y) for all a ∈ R\0). The representation (πλ, Vλ) is induced by the action
of the group GL2(R) given by πλ(g)f(x, y) = f(g−1(x, y))|det g|(λ−1)/2. This ac-
tion is trivial on the center of GL2(R) and hence defines a representation of G. The
representation (πλ, Vλ) is called representation of the generalized principal series.

When λ = it is purely imaginary the representation (πλ, Vλ) is pre-unitary;
the G-invariant scalar product in Vλ is given by 〈f, g〉πλ

= 1
2π

∫
S1 fḡ dθ. These

representations are called representations of the principal series.
When λ ∈ (−1, 1) the representation (πλ, Vλ) is called a representation of the

complementary series. These representations are also pre-unitary, but the formula
for the scalar product is more complicated (see [GGV]).

All these representations have K-invariant vectors. We fix a K-invariant unit
vector eλ ∈ Vλ to be a function which is one on the unit circle in R2.

Representations of the principal and the complimentary series exhaust all non-
trivial irreducible pre-unitary representations of G of class one (see [GGV], [L]).

In what follows we will do necessary computations for representation of the prin-
cipal series. Computations for the complementary series are a little more involved
but essentially the same (compare with [BR1, Section 5.5], where similar computa-
tions are described in detail).

Suppose we are given a class one X-enhanced representation ν : Vλ → C∞(X);
we assume ν to be an isometric embedding. Such ν gives rise to an eigenfunction of
the Laplacian on the Riemann surface Y = X/K as before. Namely, if eλ ∈ Vλ is
a unit K-fixed vector then the function φ = ν(eλ) is a normalized eigenfunction of
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the Laplacian on the space Y = X/K with the eigenvalue µ = 1−λ2

4 . This explains
why λ is a natural parameter to describe Maass forms.

2.4. Triple products. We now introduce our main tool.

2.4.1. Automorphic triple products. Suppose we are given three X-enhanced repre-
sentations of G

νj : Vj → C∞(X), j = 1, 2, 3.

We define the G-invariant trilinear form laut
π1,π2,π3

: V1 ⊗ V2 ⊗ V3 → C by formula

laut
π1,π2,π3

(v1 ⊗ v2 ⊗ v3) =
∫

X

φv1(x)φv2(x)φv3(x) dµX , (8)

where φvj = νj(vj) ∈ C∞(X) for vj ∈ Vj .
In particular, the triple periods ci in (3) can be expressed in terms of this form

as ci = laut
π,π′,πi

(eτ ⊗ eτ ′ ⊗ eλi
), where eλ ∈ Vλ is the K-fixed unit vector.

2.4.2. Uniqueness of triple products. The central fact about invariant trilinear func-
tionals is the following uniqueness result:

Theorem. Let (πj , Vj), j = 1, 2, 3, be three irreducible smooth admissible repre-
sentations of G. Then dim HomG(V1 ⊗ V2 ⊗ V3, C) ≤ 1.

Remark. The uniqueness statement was proven by Oksak in [O] for the group
SL(2, C) and the proof could be adopted for PGL2(R) as well (see also [Mo] and
[Lo]). For the p-adic GL(2) more refined results were obtained by Prasad (see [P]).
He also proved the uniqueness when at least one representation is a discrete series
representation of GL2(R).

There is no uniqueness of trilinear functionals for representations of SL2(R) (the
space is two-dimensional). This is the reason why we prefer to work with PGL2(R).

For SL2(R) one has the following uniqueness statement instead. Let (π, V ) and
(σ, W ) be two irreducible smooth pre-unitary representations of SL2(R) of class
one. Then the space of SL2(R)-invariant trilinear functionals on V ⊗ V ⊗W which
are symmetric in the first two variables is one-dimensional. This is the correct
uniqueness result needed if one wants to work with SL2(R); this was implicitly
done in [Re2], where the second author missed the absence of the uniqueness for
SL2(R). We take an opportunity to correct this gap.

We note however, that the absence of uniqueness does not pose any problem for
the method we present. All that is really needed for our method is the fact that
the space of invariant functionals is finite dimensional.

3. Triple Products: Exponential Decay

We now explain our method how to bound coefficients ci. It is based on the
uniqueness of trilinear functionals.
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3.1. Model triple products. Let (π, V ) and (π′, V ′) be automorphic represen-
tations corresponding to Maass forms φ and φ′. Any Maass form φi gives us an
automorphic representation (πi, Vλi

) and hence defines a trilinear functional

laut
π,π′,πi

: V ⊗ V ′ ⊗ Vλi
→ C.

In Section 5.1 we use an explicit model for representations π1, π2, π3 to construct
a model invariant trilinear functional which is given by an explicit formula. We call
it the model triple product and denote it by lmod

π1,π2,π3
.

By the uniqueness principle for representations π, π′, πi there exists a constant
ai = aπ,π′,πi

such that:
laut
π,π′,πi

= ai · lmod
π,π′,πi

. (9)

3.2. Exponential decay. This gives a formula for the triple products ci

ci = laut
λi

(eτ ⊗ eτ ′ ⊗ eλi
) = ai · lmod

λi
(eτ ⊗ eτ ′ ⊗ eλi

). (10)

Here we denoted laut
λi

= laut
π,π′,πi

, lmod
λi

= lmod
π,π′,πi

and eλ is the unit K-fixed vector in
the representation Vλ.

The model triple product lmod
λi

(eτ ⊗ eτ ′ ⊗ eλi) constructed in Section 5.1 is given
by an explicit integral. In Appendix A we evaluate this integral by a direct com-
putation in the model. It turns out that it has an exponential decay in |λ| which
explains the exponential decay of coefficients ci. Namely, we prove the following

Proposition. Set kλ := |lmod
λ (eτ ⊗ eτ ′ ⊗ eλ)|2. Then there exists a constant c > 0

such that
kλ = c exp

(
−π

2
|λ|

)
· |λ|−2(1 + O(|λ|−1))

as |λ| → ∞ and λ ∈ iR.

4. Triple Products: Polynomial Bounds

We explain now how to obtain bounds on the coefficients ai (note that these
coefficients encode deep arithmetic information— values of L-functions).

Our method is based on the fact that these coefficients appear in the spectral
decomposition of some geometrically defined Hermitian form on the space E which
is essentially the tensor product of spaces V and V ′.

More precisely, denote by L and L′ the Hilbert completions of spaces V and V ′,
consider the unitary representation (Π, G × G, L ⊗ L′) of the group G × G and
denote by E its smooth part; so E is a smooth completion of V ⊗ V ′.

Denote by H(E) the (real) vector space of continuous Hermitian forms on E and
by H+(E) the cone of nonnegative Hermitian forms.

We will describe several classes of Hermitian forms on E; some of them have
spectral description, others are described geometrically.

4.1. Hermitian forms corresponding to trilinear functionals. Let W be a
smooth pre-unitary admissible representation of G. Any G-invariant functional
l : V ⊗ V ′ ⊗W → C defines a G-intertwining morphism T l : V ⊗ V ′ → W ∗ which
extends to a G-morphism

T l : E → W̄ , (11)
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where we identify the complex conjugate space W̄ with the smooth part of the
space W ∗.

The standard Hermitian form (scalar product) PW on the space W induces the
Hermitian form P̄ on W̄ . Using the operator T l we define the Hermitian form H l

on the space E by H l = (T l)∗(P̄ ), i. e., H l(u) = P̄ (T l(u)) for u ∈ E.
We note that if the representation of G in the space W is irreducible then starting

with the Hermitian form H l we can reconstruct the space W , the functional l and
the morphism T l uniquely up to an isomorphism.

Let us introduce a special notation for the particular case we are interested in.
For any number λ ∈ iR consider the representation of the principal series W = Vλ,
choose the model trilinear functional lmod : V ⊗V ′⊗Vλ → C described in Section 5.1
and denote the corresponding Hermitian form on E by Hmod

λ .

4.2. Diagonal form H∆. Consider the space C∞(X×X). The diagonal ∆: X →
X×X gives rise to the restriction morphism r∆ : C∞(X×X) → C∞(X). We define
a nonnegative Hermitian form H∆ on C∞(X ×X) by H∆ = (r∆)∗(PX), i. e.,

H∆(u) = PX(r∆(u)) =
∫

X

|r∆(u)|2 dµX for u ∈ C∞(X ×X).

We call H∆ the diagonal form.
More generally, if L is a closed subspace of L2(X) and prL : L2(X) → L the

orthogonal projection onto L, we can define a Hermitian form PL on C∞(X) by
PL = (prL)∗(PX) and consider the induced Hermitian form HL = (r∆)∗(PL) on
C∞(X ×X).

Clearly the correspondence L 7→ HL is additive (which means that HL+L′ =
HL + HL′ if L and L′ are orthogonal) and monotone.

4.3. First basic inequality. Let us realize the space E = V ⊗ V ′ as a G × G-
invariant subspace of C∞(X × X). We consider the restrictions of the Hermitian
forms H∆, HL discussed above to the space E and will denote them by the same
symbols.

Claim. Let φλi
be a Maass form. Consider the G-invariant subspace Li ⊂ L2(X)

generated by φλi
and its complex conjugate L̄i ⊂ L2(X).

Then on the space E the Hermitian form HL̄i
coincides with the form Haut

λi

corresponding to the automorphic trilinear form l = laut
π,π′,πi

: V ⊗ V ′ ⊗ Vλi
→ C.

Indeed, if we identify the space L̄i with L∗i , then the operator prL̄i
◦ r∆ : E → L̄i

coincides with the operator T l corresponding to the automorphic trilinear form
l = laut

π,π′,πi
.

This claim implies the first basic inequality∑
λi

|ai|2Hmod
λi

≤ H∆. (12)

Indeed, by the uniqueness principle (9) we have:

Haut
λi

= |ai|2 ·Hmod
λi

, (13)

where ai = aπ,π′,πi are as in (9).
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Since all the spaces L̄i are orthogonal we have
∑

i Haut
λi

≤ H∆ which proves the
first basic inequality.

4.4. Second basic inequality. We would like to use the inequality (12) to bound
the coefficients ai. In order to do this we have to establish some bounds for the
diagonal form H∆.

The group G×G naturally acts on the space of Hermitian forms on C∞(X×X);
we denote this action by Π. We extend this action to the action of the algebra
H(G×G) = C∞

c (G×G, R) of smooth real valued functions with compact support.
Note that if h ∈ H(G × G) is a nonnegative function then the operator Π(h)
preserves the cone of positive forms.

We have then the second basic inequality

Claim. Let h ∈ H(G×G) be a non-negative function. Then there exists a constant
C, depending on h, such that we have Π(h)H∆ ≤ C · PX×X , where PX×X is the
standard L2 Hermitian form on the space C∞(X ×X).

Proof. Let u∈C∞(X×X) and f = |u|2. Then PX×X(u) = 〈µ, f〉 and Π(h)H∆(u) =
〈µ′, f〉, where µ = µX×X and µ′ = Π(h)(∆∗(µX)) are two measures on X ×X.

Since the measure µ′ is smooth it is bounded by Cµ. �

Note that the bound in the claim is essentially tight. Namely if the function h
has large enough support, then we also have a bound in the opposite direction.

4.5. Positive functionals. We can now prove that the coefficients ai have at
most polynomial growth in |λi|.

We start with the inequality (12) of non-negative forms. We want to produce
out of it an inequality for coefficients ai. There is a standard way to do this by
means of positive functionals on the space of Hermitian forms H(E).

Definition. A positive functional onH(E) is an additive map ρ : H(E)+ → R+∪∞.

It is easy to see that the positive functional ρ is automatically monotone and
homogeneous, i. e., ρ(H) ≤ ρ(H ′) if H ≤ H ′ and ρ(aH) = aρ(H) for a > 0.

Example. Any vector u ∈ E gives us an elementary positive functional ρu defined
by ρu(H) = H(u).

Fix a positive functional ρ and consider the weight function h(λ) = ρ(Hmod
λ ).

Then from the first basic inequality (12) we can deduce the following inequality for
a weighted sum of coefficients |ai|2:∑

i

h(λi)|ai|2 ≤ ρ(H∆).

4.6. Test functional ρT . For any real T we construct in Section 5.2 the positive
“test” functional ρT onH(E) with the properties described in the proposition below.
Let us fix automorphic representations V, V ′ ⊂ C∞(X), E = V ⊗V ′ ⊂ C∞(X×X)
as above.
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Proposition. We can find a constant C which depends only on G and Γ and a
constant T0 which depends on V and V ′ such that for any T ≥ T0 there exists a
positive functional ρT on H(E) satisfying

ρT (H∆) ≤ CT 2, (14)

hT (λ) := ρT (Hmod
λ ) ≥ 1 for any |λ| ≤ 2T. (15)

4.7. Proof of Theorem 1.4. Consider the inequality
∑

i |ai|2ρT (Hmod
λi

)≤ρT (H∆).
The right hand side ρT (H∆) is bounded by CT 2. In the left hand side we can

leave only terms with |λi| ≤ 2T . Thus we arrive at inequality∑
|λi|≤2T

|ai|2 ≤ CT 2. (16)

This gives the desired bound for
∑
|ai|2.

According to Proposition 3.2 there exists a constant B such that biT
2 ≤ B|ai|2

for T ≤ |λi| ≤ 2T . This shows that
∑

T<|λi|<2T bi ≤ A for some constant A, which
finishes the proof of Theorem 1.4.

4.7.1. A conjecture. One can show (see [Re1]) that the mean-value result in (16) is
essentially sharp. One expects that for T ≤ |λi| ≤ 2T all terms in the sum (16) are
at most of order T ε for any ε > 0. Hence, we have established a sharp bound on the
average and a rather weak bound for each term. This is a typical situation which
one often encounters in the analytic theory of L-functions, the so-called convexity
bound. The major problem is thus to find a method which would allow us to obtain
a better bound for a single term or for a short interval — the so-called subconvexity
bounds.

We would like to make the following conjecture concerning the size of coefficients
aπ,π′,πi which is equivalent to Conjecture 1.5:

Conjecture. For fixed π, π′ and for any ε > 0 there exists Cε > 0 independent of
λi such that

|aπ,π′,πλi
| ≤ Cε|λi|ε,

as |λi| → ∞.

5. Construction of Model Trilinear Functionals and of Test
Functionals

5.1. Model trilinear functionals. For every λ ∈ C we denote by (πλ, Vλ) the
smooth class one representation of the generalized principal series of the group
G = PGL2(R) described in Section 2.3. We will use the realization of (πλ, Vλ) in
the space of smooth homogeneous functions on R2 \0 of homogeneous degree λ−1.

For explicit computations it is often convenient to pass from plane model to a
circle model. Namely, the restriction of functions in Vλ to the unit circle S1 ⊂ R2

defines an isomorphism of the space Vλ with the space C∞(S1)even of even smooth
functions on S1 so we can think about vectors in Vλ as functions on S1.

In this section we describe the model invariant trilinear functional using the
geometric models. Namely, for three given complex numbers λj , j = 1, 2, 3, we
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construct explicitly a nontrivial trilinear functional lmod : Vλ1 ⊗ Vλ2 ⊗ Vλ3 → C by
means of its kernel.

5.1.1. Kernel of lmod. Let ω(ξ, η) = ξ1η2 − ξ2η1 be the SL2(R)-invariant of a pair
of vectors ξ, η ∈ R2. We set

Kλ1,λ2,λ3(s1, s2, s3) = |ω(s2, s3)|(α−1)/2 |ω(s1, s3)|(β−1)/2|ω(s1, s2)|(γ−1)/2 (17)

for s1, s2, s3 ∈ R2\0, where α = λ1−λ2−λ3, β = −λ1+λ2−λ3, γ = −λ1−λ2+λ3.
The kernel function Kλ1,λ2,λ3(s1, s2, s3) satisfies two main properties:

(1) K is invariant with respect to the diagonal action of SL2(R);
(2) K is homogeneous of degree −1− λj in each variable sj .

Hence if fj are homogeneous functions of degree −1 + λj , then the function

F (s1, s2, s3) = f1(s1)f2(s2)f3(s3)Kλ1,λ2,λ3(s1, s2, s3),

is homogeneous of degree −2 in each variable sj ∈ R2 \ 0.

5.1.2. Functional lmod. To define the model trilinear functional lmod we notice that
on the space V of functions of homogeneous degree −2 on R2\0 there exists a natural
SL2(R)-invariant functional L : V → C. It is given by the formula L(f) =

∫
Σ

f dσ

where the integral is taken over any closed curve Σ ⊂ R2 \ 0 which goes around 0,
and the measure dσ on Σ is given by the area element inside of Σ divided by π; this
last normalization factor is chosen so that L(Q−1) = 1 for the standard quadratic
form Q on R2.

Applying L separately to each variable si ∈ R2 \ 0 of the function F (s1, s2, s3)
above we obtain the G-invariant functional

lmod
π1,π2,π3

(f1 ⊗ f2 ⊗ f3) := 〈L⊗ L⊗ L, F 〉. (18)

In the circle model this functional is expressed by the following integral:

lmod
π1,π2,π3

(f1 ⊗ f2 ⊗ f3) = (2π)−3

∫∫∫
f1(x)f2(y)f3(z)Kλ1,λ2,λ3(x, y, z) dx dy dz,

(19)
where x, y, z are the standard angular parameters on the circle.

Remark. The integral defining the trilinear functional is often divergent and the
functional should be defined using a regularization of this integral. There are stan-
dard procedures how to make such a regularization (see, e. g., [GS]).

Fortunately in the case of unitary representations, all integrals converge abso-
lutely so we need not discuss the regularization procedure.

5.2. Construction of test functionals. In this section we will present a con-
struction of a family of test functionals ρT on the space H(E).

Fix smooth irreducible pre-unitary representations of class one, V = Vτ , V = Vτ ′

and denote by E the smooth completion of V ⊗ V ′ as in Section 4. We will do the
computations only for representations of the principal series; complementary series
are treated similarly.

For computations we will identify the spaces V and V ′ with C∞(S1)even.
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Our aim is to prove the following

Proposition. There exist constants T0, C, c > 0 such that for any T ≥ T0 there
exists a positive functional ρ on H(E) satisfying

ρ(H∆) ≤ CT 2, (20)

hT (λ) := ρ(Hmod
λ ) ≥ c for any |λ| ≤ 2T. (21)

The functional ρT = c−1ρ is the required test functional in Section 4.6.

5.3. Proof of Proposition 5.2. We will construct a functional ρ as an integral
of elementary functionals. Namely, we find a positive function h ∈ H(G × G) ⊂
C∞(G × G) and a vector u ∈ E and define ρ(H) = ρu(Π(h)(H)), where ρu is the
elementary functional on the space H(E) corresponding to the vector u.

5.3.1. Construction of function h. We construct the function h independent of pa-
rameter T . Let D1 ⊂ SL2(R) ⊂ G be the subset of matrices g with ‖g‖ ≤ 2.
We consider the subset D = D1 × D1 ⊂ G × G and choose a positive function
h ∈ H(G × G) = C∞

c (G × G) which is ≥ 1 on the subset D and is supported in
some neighborhood of D. We also assume that the function h is invariant under
left and right translations by elements of the maximal compact subgroup K ×K.

5.3.2. Construction of vector u. Let us identify the space E = V ⊗ V ′ with the
space of smooth functions C∞(S1 × S1)even. Let S be a disc in S1 × S1 of radius
(100T )−1. We construct u as a smooth non-negative real valued function on S1×S1

supported in S such that
(i)

∫
u dx dy = 1,

(ii) ‖u‖2
L2 ≤ 105T 2.

We would like to show that the functional ρ constructed in Section 5.3 satisfies
conditions formulated in Proposition 5.2.

5.3.3. Geometric bound. We have

ρ(H∆) = ρu(Π(h)(H∆)) ≤ C ′ρu(PE) = C ′PE(u) ≤ CT 2,

see Claim 4.4 and Section 5.3.2.

5.3.4. Spectral bound. First we would like to give another description of the Her-
mitian form Hmod

λ . Consider the model trilinear functional l = lmod
π,π′,πi

described in
Section 5.1 and the corresponding operator T l : E → V̄λ.

We will identify the space V̄λ with the space C∞(S1)even. Fix a point z ∈
S1. Consider the functional δz on V̄λ given by evaluation at the point z and the
corresponding rank-one Hermitian form Pz(v) = |δz(v)|2. Define a functional fz

on E by fz(u) = δz(T l(u)) and consider the corresponding rank-one Hermitian
form Pf (u) = |fz(u)|2.

We claim that Hmod
λ =

∫
K

(Π(k, k)(Pf )) dk. This immediately follows from the
fact that the standard invariant Hermitian form PV̄λ

on V̄λ ' C∞(S1)even is equal
to the integral PV̄λ

=
∫

K
π(k)(Pz) dk.

Since we assumed the function h ∈ H(G×G) to be K×K-invariant we see that

ρ(Hmod
λ ) = ρu(Π(h)(Pf )).
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Thus we see that in order to prove a lower bound for ρ(Hmod
λ ) it is enough to

establish a lower bound for ρu(Π(g)Pf ) := |〈Π(g)f, u〉|2, for a subset of g ∈ D of a
measure bounded from below by a constant.

The desired lower bound follows from the following

Lemma. Let T0 be large enough. Then there exists an open non-empty subset
D0 ⊂ D such that for T ≥ T0 and for g ∈ D0 we have |〈Π(g)f, u〉| ≥ 1/2.

Proof. As before we identify the space E = V ⊗V ′ with the space C∞(S1×S1)even.
Denote by (x, y) coordinates on S1 × S1. It follows from definition (19) that the
functional f = fz corresponding to the point z is given by the function f = f(x, y)
on S1 × S1 described by

f(x, y) = |sin(y − z)|(α−1)/2 |sin(x− z)|(β−1)/2 |sin(x− y)|(γ−1)/2,

where α, β, γ ∈ iR.
Let D0 ⊂ D be the subset of elements g ∈ D such that the restriction of Π(g)(f)

to the subset S ⊂ S1 × S1 has the absolute value ≤ 10. (Note that the absolute
value |Π(g)(f)| is bounded from below for any g ∈ D by a constant depending only
on D.) It is easy to see that, for large T , the set D0 is a non empty subset of
D ⊂ G×G of a measure bounded from below by a constant which is independent
of T .

On the other hand, for g ∈ D0 we see that the gradient of the function Π(g)(f)
on the subset S is bounded by 3T . We note now that the diameter of S is bounded
by (100T )−1 and hence the lower bound on |〈Π(g)f, u〉| for g ∈ D0 is a direct
consequence of the following easy

Claim. Let S be a set with a measure ν and u, h be two measurable functions on S.
Let us assume that

(i) u is real valued positive function and
∫

u dν = 1.
(ii) sup |h(s)| ≥ 1 and the variation Var(h) := sup |h(s) − h(s′)| is bounded

by 1/2.
Then

∣∣∫ hu dν
∣∣ ≥ 1/2.

The lemma is proved. �

5.4. Construction of test functionals via Sobolev norms. In this section
we outline another, slightly more conceptual, construction of test functionals. This
construction uses the notion of Sobolev norms on representation spaces (see [BR2]).

5.4.1. Sobolev norms. Let G be a Lie group and (π, G, V ) a smooth pre-unitary
representation. Then we can construct a family of positive definite Hermitian forms
on the space V as follows.

Fix a basis {Xj : j = 1, . . . , r} of the Lie algebra g of the group G. Then for
any natural number l and any T > 0 we define a Hermitian form Ql,T on V by

Ql,T (v) =
∑

ν

T 2(l−|ν|)P (Xν(v)).

Here the sum is over all multi indexes ν = (n1, . . . , nr) with the norm |ν| :=
∑

nj

bounded by l, and P = PV is the Hermitian form defining the unitary structure
on V .
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5.4.2. Positive functionals defined by forms. Every positive definite Hermitian form
Q on V defines a positive functional ρQ on H(V ) by ρQ(H) = tr(H|Q). Here
tr(H|Q) denotes the relative trace of forms H and Q; by definition it is equal to
the square of the Hilbert–Schmidt norm of the identity operator on V considered
as a morphism of pre-Hilbert spaces (V, Q) → (V, H). This notion is discussed in
detail in [BR2].

5.4.3. Construction of Sobolev test functionals. Let us apply these constructions to
the representation (Π, G×G, E) discussed in Section 4.

Fix l and T , consider the Sobolev Hermitian form Q = Ql,T on the space E and
define the positive functional ρ on H(E) to be ρ = ρQ.

Proposition. Suppose l ≥ 2. Then
(i) ρ(H∆) ≤ CT 2−2l,
(ii) There exists c > 0 such that ρ(Hmod

λ ) ≥ cT−2l for |λ| ≤ 2T .

This gives another proof of Proposition 4.6.

5.4.4. Sketch of the proof of Proposition 5.4.3. (i) Since the representation Π is
continuous with respect to the form Ql,T the second basic inequality (Claim 4.4)
implies that ρ(H∆) ≤ C ′ρ(PE). The proof of the inequality ρ(PE) ≤ C ′′T 2−2l is
the same as in [BR2, Section 4].

In order to prove (ii) it is enough to find a vector u ∈ E such that Ql,T (u) ≤ T 2l

and |〈f, u〉| ≥ c, where f = fz is the function described in Section 5.3.4. We can
take a function u ∈ C∞(S1 × S1) of the form u = φf where φ is a smooth cut-off
function which equals 0 around singularities of the function f .

We leave details to the reader.

Appendix A.

In this appendix we prove the Proposition 3.2 which describes the asymptotic
behavior of the function kλ.

A.1. Computation of lmod for K-fixed vectors. One can prove this proposition
applying the stationary phase method directly to the integral (19). To do this
we need to consider the complexification of the functions eλ(si) and the function
Kλ1,λ2,λ3(s1, s2, s3) in the variables si and move contour of integration towards the
singularities of the complexified integral. This could be done either in a classical
language or using analytic continuation of representations in the spirit of [BR1].

A.2. Computation of the integral. We prefer to prove this proposition in a
different way. Namely we explicitly compute the value of the model functional on
the unit vectors in terms of Γ- functions and then prove the proposition by applying
the Stirling formulas for the asymptotic behavior of Γ-functions.

Let πλi
, i = 1, 2, 3, be three representations of the generalized principal series,

and eλi be the corresponding K-fixed unit vectors (they correspond to function 1
in the circle model). Set A(λ1, λ2, λ3) := lmod

πλ1 ,πλ2 ,πλ3
(eλ1 ⊗ eλ2 ⊗ eλ3).

In Sections A.4, A.5 we explicitly compute the function A(λ1, λ2, λ3) (see the
final expression in Section A.5).
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A.3. Gaussian. We would like to compute our integral by comparing it with
Gaussian integrals which are much easier to manipulate.

Suppose we are given a finite-dimensional Euclidean vector space L. Then we
introduce the Gaussian probability measure G on L by dG = π− dim L/2 exp(−Q) dl,
where Q is the quadratic form which defines the Euclidean structure on L and dl
is the standard Euclidean measure on L.

We are interested in the quantities 〈f, G〉 = 〈f, G〉L :=
∫

f dG for various (usu-
ally homogeneous) functions f on L. The main properties of the Gaussian which
we use are the following:

(i) Normalization. 〈1, G〉 = 1.
(ii) Product formula. Suppose that the Euclidean space L is a product of

Euclidean spaces L1 and L2. Then the Gaussian measure G on L is the prod-
uct of Gaussian measures G1 and G2 on L1 and L2. In particular, if a func-
tion f decomposes as a product of functions f1 and f2 on L1 and L2 we have
〈f, G〉 = 〈f1, G1〉〈f2, G2〉.

The following integrals are classical

Proposition. Let L = Rn be the standard Euclidean space.
(i) Let r denote the radius function on L. Then 〈rs, G〉 = Γ((s + n)/2)/Γ(n/2).
(ii) Let h be a linear functional on L. Then 〈|h|s, G〉 = ‖h‖sΓ((s+1)/2)/Γ(1/2).
(iii) Let L be the space M2,2 of 2×2 matrices with the standard Euclidean struc-

ture. Then 〈|det|s, G〉 = Γ((s + 1)/2)Γ(s/2 + 1)/Γ(1/2).

Proof. In (i) passing to spherical coordinates we get the integral

2c

∫
rs+n−1 exp(−r2) dr = c

∫
u(s+n)/2 exp(−u) du/u = cΓ((s + n)/2).

The normalization at s = 0 defines the constant c = 1/Γ(n/2).
The proof of (ii) is reduced to the one variable case using the product formula

and then it follows from (i).
In (iii) we can write L as a product of two column spaces L1 and L2. Then we

have

〈|det|s, G〉 =
∫
|ω(x, y)|s dG1(x) dG2(y) =

∫ (∫
|ω(x, y)|s dG1(x)

)
dG2(y)

=
Γ((s + 1)/2)

Γ(1/2)
·
∫
|y|s dG2(y) =

Γ((s + 1)/2) Γ(s/2 + 1)
Γ(1/2)

since Γ(1) = 1. �

A.4. Reduction 1. Proposition A.3 allows us to write the integrals which we
would like to compute as some Gaussian integrals.

Corollary. For any function h ∈ V−λ we have

〈h, G〉 = Γ((1− λ)/2) · L(h · eλ),

where the functional L is defined in Section 5.1.2.
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Indeed, after averaging h with respect to the action of SO(2) we can assume
that it is proportional to the function e−λ. Then the formula follows from Propo-
sition A.3(i).

Using this corollary we can rewrite the integral for the function A(λ1, λ2, λ3).

Proposition. Consider the Euclidean space L=R2×R2×R2 and define the function
B(λ1, λ2, λ3) by the Gaussian integral B(λ1, λ2, λ3) := 〈Kλ1,λ2,λ3(s1, s2, s3), G〉.
Then

B(λ1, λ2, λ3) = A(λ1, λ2, λ3) · Γ((1− λ1)/2) Γ((1− λ2)/2) Γ((1− λ3)/2).

A.5. Reduction 2. Let us rewrite the integral defining the function B. First, we
identify the Euclidean space L in Section A.4 with the space M2,3 of 2×3 matrices.
We consider the Euclidean space W ≈ R3 and define the map ν : M2,3 → W using
2× 2 minors. Let us define the function f on W by the formula

f(w1, w2, w3) = |w1|(α−1)/2|w2|(β−1)/2|w3|(γ−1)/2.

We can write Kλ1,λ2,λ3 = ν∗(f) and hence B(λ1, λ2, λ3) = 〈ν∗(f), G〉 (here α =
λ1 − λ2 − λ3, β = −λ1 + λ2 − λ3, γ = −λ1 − λ2 + λ3 as in Section 5.1.1).

Now we will use the following general lemma which we prove in Section A.6.

Lemma. Let h be a homogeneous function on the space W of homogeneous degree s.
Then

〈ν∗(h), G〉L = 〈h, G〉W · Γ(s/2 + 1).

From this lemma we see that the computation of the function B(λ1, λ2, λ3) is
reduced to the computation of the function C(α, β, γ) := 〈f, G〉.

Since the Gaussian G on W is a direct product of three one-dimensional Gaus-
sians and the function f is a product of functions depending only on one coordinate,
we deduce that the integral 〈f, G〉 is a product of three one-dimensional integrals
which can be computed using Proposition A.3.

Thus we obtain C(α, β, γ) = Γ((α + 1)/4)Γ((β + 1)/4)Γ((γ + 1)/4)/Γ(1/2)3.
The final expression for the function A(λ1, λ2, λ3) is

A(λ1, λ2, λ3) =
Γ((α + 1)/4) Γ((β + 1)/4) Γ((γ + 1)/4) Γ((δ + 1)/4)
Γ(1/2)3 Γ((1− λ1)/2) Γ((1− λ2)/2) Γ((1− λ3)/2)

,

where α = λ1−λ2−λ3, β = −λ1 +λ2−λ3, γ = −λ1−λ2 +λ3, δ = −λ1−λ2−λ3.

A.6. Proof of Lemma A.5. Consider the natural actions of the group SO(3)
on the Euclidean spaces M2,3 ≈ W × W and W ; these actions preserve Gaussian
measures.

The map ν : M2,3 → W is SO(3)-equivariant; it is nothing else than the exterior
product map W × W →

∧2(W ) = W ∗ = W . Hence we can replace the function
h by its average with respect to the action of the group SO(3), i. e., up to some
constant by a function h = rs. This shows that 〈ν∗(h), G〉 = a(s)〈h, G〉, where
a(s) depends on s but not on h.

In order to compute the function a(s) we can consider the identity above for
the function h(w) = |w3|s. According to Proposition A.3(ii) we have 〈h, G〉 =
Γ((s + 1)/2)/Γ(1/2).
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On the other hand it is clear that the function ν∗(h) depends only on four
variables and hence the integral 〈ν∗(h), G〉 coincides with the integral 〈h′, G〉 over
the space M2,2 of 2× 2 matrices, where h′(m) = |det(m)|s.

From Proposition A.3(iii) we deduce that a(s) = Γ(s/2 + 1).

A.7. Proof of Proposition 3.2. According to the Stirling formulas, for any fixed
σ and large t, we have Γ(σ + it) =

√
2π exp(−π

2 |t|)|t|
σ−1/2(1 + O(|t|−1)).

This and the explicit formula for the function A(λ1, λ2, λ3) implies the propo-
sition.
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