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A GENERALIZATION OF CASSELMAN'S
SUBMODULE THEOREM

Alexander Beilinson and Joseph Bernstein

Let GlR be a real reductive Lie group, 8p its Lie algebra.
Let M be an irreducible Harish-Chandra module. Using some fine
"amalytic arguments, based on the study of asymptotic behavior of
matrix coefficients, Casselman has proved that M can be imbedded
into a principal series representation [2,3].

This statement can be formulated purely algebraically. Let g
be the'complexificat'lon of 8p and let ng be a maximal nilpotent
subalgebra of g, containing a maximal nilpotent subalgebra of SR -
Then Casselman's theorem claims that the space M“O = M/“OM

is not equal to zero.

We want to generalize this statement and to prove it by purely
algebraic methods. (Note that the first algebraic proof of Casselman's
theorem is due to 0. Gabber. It is based on Gabber's theorem on the
integrability of the characteristic variety.) First of all, we drop
the condition that M is a Harish-Chandra module. As a result we can
forget about G]R and SR and consider any g-module M and any
maximal nilpotent subalgebra n, € g. We suppose M to be finitely
generated, and we want to prove that Mn 0 # 0. Of course, this is

not true for any given subalgebra n, (see example in [5] where

"n = 0 although M 1is finitely generated even as an n'o-module).
0
But it turns out that Mn # 0 for "almost all" n, € g. The set
0

of all maximal nilpotent subalgebras of g has a natural structure of
an algebraic variety - its it the flag variety of 8 and "almost all"
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means "contains an open dense subset in the Zariski topology."
So our aim is

THEOREM 1. let g be a reductive Lie algebra over an
algebraically closed field k of characteristic 0 and X the flag
variety of g. Let M be a no zero finitely generated g-module.

Then for almost all x € X (i.e. for all points x in some open

dense subset U C X) the space M, = M/a M is not equal to 0.
X

Let us check that Theorem 1 implies Casselman's result. Indeed
suppose M is a Harish-Chandra module, i.e. a finitely generated
(g,K)-module, where K is the complexification of a maximal compact
subgroup of GR . Consider the natural action of K on X. If
points x,y belong to the same K-orbit, the spaces M”x and Mny

are isomorphic, so dim Mu is constant along K-orbits. Since ng
X .
contains a maximal unipotent subalgebra of B8R the Iwasawa decom-
position for GR implies that the K-orbit of the corresponding point
xg € X is open X. Hence, Theorem 1 implies that Mn # 0.
0

REMARK. N. Wallach explained to me that for (g,K)-modules one

can drop the condition that M is finitely generated (see [5]).

For any point x € X we denote by n, and hx the correspnding
nilpotent and Borel subalgebras (hx is the normalizer of nx) and
put . hx»= hx/nx. We denote by Rx C hx the root system hx in g
and by R; the set of roots of h in g/b . This ordering differs
from the usual one by sign, because we study coinvariants Mn instead
of invariants M".

Note that all triples (h_ ,R ,R+) are canonically isomorphic.

XXX
We will identify all these triples with an abstract Cartan triple
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(h,R,R+). The half-sum of positive roots we denote by p . and the
Weyl group of R by W.

Let M be a finitely generated g-module. We can assume that
M has an infinitesimal character o (for instance, M has an
irreducible quotient M and it is sufficient to prove that M; #0).
Moreover, if Mn = 0 , then for any finite-dimensional g-module V
(ve M)n =0 . Hence, decomposing in the usual way V ® M with
respect to ‘infinitesimal characters, we can assume that the character
8 1is nondegenerate, i.e. corresponding W-orbit in h* consists of
# elements.

For any x € X the module Mn has a natural structure of an
X
hx = h - module. By the Harish-Chandra theo<?m, Mnx can be

S

decomposed as

Moo= e MX
T xed &

where Mz consists of vectors of weiaht X - p in Mn and 8 is
X X
the W-orbit corresponding to 6. Fix a dominant weight Xg oOn the

oreit, 1.e. xg(hy) #.0, -1, -2, ..., forany y€ R* (here h e

is the dual root). Then any weight x € 6 can be written uniquely
as x = wxy with weW . Weput &(x) = 2(w); this is a distance

'_ from x to Xg - Note that (x) depends on the choice of a dominant

weight Xg + If x 1is nonintegral, this choice is not unique.
We will prove

THEOREM 2. Let M be a finitely generated a-module with a
nondegenerate infinitesimal character © . Then there exist a natural
% and a weight Y € 6 with (y) = % such that for almost all n

Mi=0 for 2(x) <2 and M’ #o0 .

Fix a weight x and let us study all spaces Mé simultaneously.

X
The key point is to understand the word "simultaneously". Studying
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these spaces simultaneously and separately is the same as studyina the

space I MX - for sure this is the wrona way. Our key tool
x € X X

will be an algebraic object A_(M) which contains all information
about all spaces Mz . Roughly speaking, we consider the space MO
X

of functions on X with values in M and put A(M) = Mo/noMo,
where no 'is the algebra of functions x - Ex € n . Since there are
very few global functions on X (we consider only reaular functions),
we should consider sheaves instead spaces of functions.

Now let us give precise definitions. Let Ox be the structure
sheaf of the algebraic variety X . Quasicoherent sheaves of 0X -

modules we shall call simply Ox-modu1es. Consider Ox-modules
0 _ 0 _
M—0X®kM,g-0X®kg

We shall consider sections of these sheaves as functions with values
in M and g . Put

0 {f e go |[f(x) € n, for all x € X},

n

X
0= (fe g’ |f(x) en, for all xe X,
aM) = MOaOM0,

It is clear that ho/n0 = OX ® I, so we have a natural imbedding
h-+h0/no » and hence an action of h on Oy-module  A(M). We
denote by AX(M) the x-component of A(M), i.e. the subsheaf of
sections of weight x - p . The Harish-Chandra theorem implies that
A(M) = @ AX(M), where y € 8 .

LEMMA . The fiber of the 0Oy -module AX(M) at a point x € X is

naturally isomorphic to Mé
X

Let us recall that the fiber of OX-modu1e F at x is the
linear space Fx = F/mx F, where My is the maximal ideal of OX
‘consisting of functions f such that f(x) = 0. The proof is
straightforward.
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The advantage of studying AX(M) is that this sheaf has an
additional structure - the structure of a g-module. Indeed,
let us define actions of g on M0 and no by the Leibnitz rule
(we consider the adjoint action of g on g and the natural
action of ‘g on O¢). Since the subsheaves no,hOC gO are
invariant under the action of the algebraic group G , corresponding
to g, they are g-invariant. Hence A(M) is a g-module. Actions
of g and h on A(M) commute, hence AX(M) is also a g-module.
Let us describe more thoroughly operators acting on A (M).
Consider the sheaf of algebras U0 generated by 1 and OX with
natural relations [A,f] = A(f) for Aeg, fe OX . As
Ox-module U0 is isomorphic to 0X 8& U(g). Since no is
g-invariant, the ideal nOUO is two-sided, and we can put
Dh = Uo/nOU0 . The image of h under the inclusion

n > 60/n0 0,

belongs to the center of Dh . Let us put

D, =D/

X {H - (x - o)(H)| Henlp, .

It is clear that AX(M) is a sheaf of DX- modules. We call a sheaf

of DX-modu1es quasicoherent (or simply a "D_-module") if it is
quasicoherent as an Ox-module. The category of Dx-modules we
- denote by M(DX) .

Consider the category of g-modules with the given infinitesimal

character 6. If we put Ug = U(;;)/{Z - 6(2) |Z € Center of U(n)}U(a),
then this category is the category M(Ue) of Ue -modules. UYe have
constructed, for any x € 8 , the functor

AX: M(Ue)—+ M(DX) .
f;ye can define the right adjoint functor TX: M(DX) - M(Ue) by

rX(F) = T(X,F) .

\
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Let us discuss the structure of the sheaf DX .

LEMMA (i) The sheaf of algebras DX is locally isomorphic to
the sheaf DX of differential operators on X.

(ii) o = DX. More generally, let A € h* be an integral weiaht
and 0(x) be the corresponding invertible sheaf of 0y -modules.
Then there is a canenical isomorphism DA . Diff(0(X)) - the sheaf
of differential operators in 0(1).

In other words, although we cannot define the sheaf 0(x) for
non-integral x , we can define the sheaf Diff(0(x)).

PROOF. Fix x € X and the nilpotent subalgebra n opposite to
n, . Let N be the corresponding unipotent subaroup. Then, in a
neighborhood of x , the variety X is isomorphic to N and

DX = OX ® U(n)." This implies (i). The proof of (ii) is analogous.

PROPOSITION. Let F be a coherent (i.e. locally finitely
generated) D _-module. Then the restriciton of F on some open
dense subset U C X is free as OU-modu1e.

PROOF. Restrict F to some affine open subset V C X . Then
we can replace F and D_ by their - global sections: F = F(V) and
D= DX(V) = D(V) - the algebra of differential operators on V .
Consider the filtration D0 C D1 C ... of D by the dearee of
differential operators, and put I = §b Dn/Dn-l . Then I is a
commutative alagebra, finitely neneratéd over k , and OX = D0 cz.

Fi; generators f],...gfk of F and consider the filtration

Fl=n'f 40, + .+ D'f,} CF . Associated graded module

FZ ® Fg » where F; = 59;n-1 » 1is a finitely generated I -module.

Now, we have reduced the problem to the commutative case. Cfeneral
results from alaebraic ceometry imply that, after the restriction to
some open dense subset UcCV , FZ is a free OU-modu1e (see [4,
lecture 8, p.ZO]). Since Fg is a direct summand of FZ , it is a
projective OU-module, and hence F" =~ Fn'1 ® F; . This imnlies
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that F =~ FZ as OU-modules, i.e. F 1is a free OU-modu1e.

For a free Ox-module the dimension of a fiber doég/not depend
on a point. Hence, Theorem 2 is equivalent to the followina statement
about functors AX:

supp AX(M) #X for &(x) <2
supp Aw(M) =X.

The following theorem describes the functor AX for
dominant x .

THEOREM (see [1]). Suppose Xg is a dominant reaular weiaht.
Then the functors Ax and T
0

are mutually inverse and aive an

Xo
equivalence of categories.

AXO
HUg) == U, ) .
FXO

In particular, if M # 0 , then AX (M) # 0 . If we denote the
0
support of AX(H) by SX this means that SX #90 . It is far from
0

what we need (we need SX = X) , but at least it is somethina to start
with,

7.

In order to prove Theorem 2 we will move from one weicht x to
another in such a way that dimS. will increase.
Let x be a weight, « a simple root and ¢ = OuX - Supnose
¢ is o - dominant, i.e. ¢(ha) # 0,-1,-2,.... He will construct
the intertwining functor

IX:¢ : M(D¢) > M(DX)

such that AX = IX’¢ . A¢: M(Ue) > M(DX) .
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This functor will be described aeometrically, as some operation
with D-modules. But firstly we shall describe how it chanaes the
support of a sheaf.

Let us assian to a Borel subalgebra bX the parabolic
subalgebra Fx,a of type o by adding a root vector corresponding t?//
a . This gives us a G-equivariant morphism Py’ X+ Xa » where
Xa is an algebraic variety of parabolic subaloebras of tvpe o .

For any point x € X we denote by Px the fiber of this morphismv
containing x , i.e. Py = p&] pa(x) . As an alaebraic variety
Px is isomorphic to projective line.

For any closed subset S C X put

Env’ ()= U P_= p'1

¢} XGSX [+

pas .
We say that a fiber P of the morphism Py, is quasitransversal to
S if it intersects S , all points of intersection are nonsinaular
in S and the morphism pals: $ > X, 1s an immersion at all these
points.

We put Env;(s) = union of all fibers P quasitransversal to S.

STATEMENT. Let F be a D -module and S = Supp F . Then

¢

(1) Supp I (F) € Env (S)
(i) supp IX,¢(F) ? Env;(s).

We shall prove the statement in 11.
We shall derive Theorem 2 from Statement and the following
geometric Temma.

LEMMA. Let S be a nonempty closed subset such that
Env; (S) =S for any simple root. Then S = X .

Indeed, let us identify X with G/B, where B 1is a Borel subaroun
of G, and denote by S the preimace of S in G . The set S
is-invariant under (right) multiplication by B . The condition
Env;(S) =S means that S 1is invariant under the multiplication by
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the parabolic subgroup Pa . Since the arouns Pa for all simple

roots o generate G , S is G-invariant, i.e. S=6 and S=X.

8. N

PROOF OF THEOREM 2. For any x € 8 put S, = supp (AX(M)). If
X = 0,9 and ¢ is o-dominant, we have AX(M) = IX’¢(A¢(M)) and

Statement 7. dimplies
+ -
Env, (S¢) > SX > Env, (S¢) .
In particular,

(i) dim SX < dim S¢ + 1

(ii) If dim SX = gim S¢ + 1 , then any irreducible
component SX of maximal dimension of SX is a union
of fibers PX .

let & =codim S_ . From (i) follows that codim (S ) < & - 2(X)
Xo X

for any x € 6. Let us prove by induction in i that for

i € % there exists a weight x € 8 with 2(x) = 1 such that
codimS._ = & -1 . Let ¢ be a corresponding weight with

2(¢) = i-1. Consider an irreducible component S of S¢ of the
maximal dimension. Since S # X , the above lemma implies that there
exists a simple root o such that Env;(S) ; S. Put x = oa¢

From (ii) we see that &(x) = i and, in particular, ¢ is
a-dominant. e want to prove that codim SX =8 -1,

Condition Env;(s) # S means that dim pa(S) = dim S . Sard's
lemma implies that for some dense subset U C pa(S) the morphism
p, 1s an immersion on p;1(U) NS . Hence, Env&(s) o) p&1(U).

Therefore, using the statement above, we obtain

s, @ ClE;, (5)) CipT (V) = Env(5)
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i.e.
codim SX = codim S¢ “1=92-1. \\\

In-order to construct the functors IX,¢ we shall introduce
some definitions and constructionsfrom the theory of D --modules.

Let Y be a nonsingular algebraic variety, OY the
structure sheaf of Y , DY the sheaf of differential operators-on
Y and i : 0Y Dy the standard inclusion.

DEFINITION. A twisted sheaf of differential operators
(t.d.o for short) on Y is a pair (i,D), where D is a sheaf of

algebras on Y and i: Oy ~ D is an inclusion of algebras; which
is locally isomorphic to the standard pair i: OY > DY .

A D-module is a sheaf of (1eft) D-modules, quasicoherent as
a sheaf of OY—modu1es. The category of D-modules we denote by
M(D).

Examples. 1. Let L be an invertible Oy-module and Diff(L)
the sheaf of differential operators in L . Then Diff(L) s
a t.d.o.

2. Let L be an invertible 0 -modu]e and D a t.d.o. on Y.
Consider the sheaf L eb D and put D =End(right D-module L €, D).

Then 0% is a t.d.o. ,
3. Let D bea t.d.o and DO be the opposite algebra (i.e.
the same sheaf with opposite multiplication). Then DO is a t.d.o.

To prove this it is sufficient to ver1fy that (DY) is a
t.d.o. But it is easy to check that (DY) is canonically
isomorphic to D1ff(QY), where ,QY is the sheaf of differential
forms of the highest degree. The isomorphism is given by & ~ —Lieg-,
where ¢ € DY is a vector field and Lie £ is the Lie derivative
along &.
In the case of the flag variety X all sheaves DX are t.d.o.,

o(x) - 0_
DX DX + and (DX)
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Constructions.

1. shift. Let L be an invertible Oy-module and D -a
td.o on Y. Then L® D disa DF - D -bimdule. Define the
functor L: M(D) - M(®Y) 7 by \

L(F) = L @OY F=(L ®Oyv) ) F.

2. Inverse image. Let m: Y = Z be a morphism of nonsingular

algebraic varieties and D a t.d.o on Z . Consider the sheaf of
Oy-modules m*(D) - the inverse image of 0,-module D in the

category of (O-modules and denote it by vY»Z . Recall that, by
definition, m*(F) = OY ®n°0 m°F where 7° 1is the inverse image

in the category of sheaves, i.e. locally, m*(F) = 0Y ® OZ F.

Let us define the sheaf of algebras ?" on Y as a sheaf of
differential endomorphisms of OY-module m* (D) commuting with the
right action of m°(D). It is easy to verify that the sheaf (DZ)Tr
is canonically isomorphic to Dy. Hence, for any t.d.o D on Z
the sheaf D" is also a t.d.o.

Sheaf DY -7 is a 'Dﬁ - m°(D) - bimodule. Using it we define
the functor of inverse image g M(D) - M(o™) by

+ o

m(F) =0y, 5 ﬂ?DnF

(i.e. locally n+(F) =D ® F ). As Oy-module w+(F) is
Y -7 D Y

canonically isomorphic to m*(F).

3. Direct image. We want to define the functor of direct
image m,: M(D") - M(D). In order to do this, we will construct
a 70 - 0" - bimodule D, _y and put

TT*(H) = Te (DZ « Y ®D1TH)9

where H € M(D") and 7, is the direct image in the category of
sheaves. The functor ~m, has good properties only in the case of
an affine morphism m (i.e. when the preimage of open affine subset
Ucz is affine).
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For the general case this functor can be correctly defined only
in derived categories. We will consider here only affine morphisms,
because this is enough for our purposes. In this case the functor
T, 1S right exact.

By definition, we put

_ -1 0
D7y =Y ®0Y m™(Q7 @020 ).

This module has a natural structure of right n°(Do)-modu1e, i.e.
of left m°D - module. Now, we claim that the algebra of differential
endomorphisms of OY-module DZ <y commuting with left action of
D s canonically isomorphic to (D“)O, i.e. D; .y has a
canonical structure of a right D"- module.
Indeed, it is sufficient to consider the case D = DZ. Then
Q}J sz 20 = 0y ebzgg] and hence w*(Qil ebzvo) is a left

" = DY - module. Therefore DZ <y has the structure of a left
D?Y = 03 - module, i.e. the structure of a right D" = Dy - module.
This structure does not depend on a local isomorphism D+ DZ .

REMARK. The direct image of a sheaf isoften denoted by /F
because the functor m, 1is an algebraic version of integration along
fibers (see Example 1. below).

Examples. 1. Let Y =Ax1Z, where A is an affine line and
m the projection w: Y > Z . We suppose Z to be affine and
identify sheaves with their global sections. Then ‘

't (F)

m(H)

O(A) @ F =kit] @ F
a(A) €0, " 3 (a(A) %, H) =

n

H/BtH & k(dt)

|
&

where t ds a linear parameter on A and at =

2, let m: Y >2Z bea closed imbeddina (i.e. Y 1is a closed
subvariety of Z). Then s the usual restriction of O-modules.
Direct image m, 1in this case is an exact functor. Locally, it
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can be described as follows:

Let 2 = codim Y and let 31,...,32 be vector fields trans-
versal to Y . Then

n1 nyp n
T (F) = { ® N 31132 g 0
Nseeosny € y/i
where '
0 -1
FP=F® q ® O
OY Y OZ VA

The following technical theorem, due to Kashiwara, is often very
-useful,

THEOREM. Let m: Y > Z be a closed imbedding. Then Ty
defines an equivalence of the category M(D") and the subcategory
My (D) € M(D) consisting of sheaves supported on Y .

10.

Now we can define intertwining functor IX 6

We have fixed simp]é root o and weights ¢ and x = ca¢

such that ¢ is a-dominant. Consider the projection Py * X - Xq

and put
N = {0xx') € X x X Ipg,(x) = pa(x]), x# X}

Denote by PPy 5 Pry : N> X projecfibns of N on the first and
second factor respectively. They both are G - equivariant fibrations
- With fibers isomorphic to the affine line A . Denote by L the
invertible sheaf of ON - modules corresponding to the tangent bundle -
to fibers of the projection pry -

pry . Pra |
LEMMA, DX is canonically isomorphic to (D¢ )- .

; We will not prove the lemma, but explain it in the case when x is
integral. We want to check that
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pr5(0(¢ - o)) = L@ pri(o(x - o)) .

Since N is a homogeneous G - space, it is sufficient to prove the
equality at one point n = (x,y) € N . The stationary subgroup Gn
is equal to Bx N By . Let us choose a Cartan subgroup H C Bx N By
and compare weights of the fibers of both sheaves at the point n .
We identify H with a standard Cartan aroup using the subgroup By.
If we use the subgroup BX » We obtain weights changed by §he auto-
morphism Oye

pr§(0(¢ - p))n has a weight ¢ - p,
pri(0(x - o)), has a weight o (x - p)
L has a weight cra(-cx) = o (recall that o ¢ {roots of

n .
h in on} ).

The equality (¢ - p) + o = oa(x - p) implies the lemma.
11.

DEFINITION. Define the intertwining functor
IX:¢: M(D¢) > M(DX) by

I olF) = (pry)y (L @ pr]F)

X
Informally
(I F).= [ F|P .
X9 /X X
’ PAX

i.e. it really is intertwining.
The functor IX P is right exact.

PROOF of Statement 7. Let F be a D¢ -module, S = supp F.
Put F' =L ® pr;(F) , §' = prz'1 (S). It is clear that

S' = supp F'. We replace X by a small open subset Z and N by
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Y =Z x A, such that the natural morphism w: Y = Z is the .
projection pry - We want to prove that

(i) supp (mc(F ")) < (s")
(i1) If 7|S': S' > Z 1{s an immersion, then supp T (F') = w(S').

The assertion (i) ds trivial and (ii) follows from Kashiwara's
theorem, because F' is the direct imaae of a DS.-modu1e F" and
hence m,(F') = (m|S'),(F") has suoport m(S') .

12.

THEOREM. A A

x T T T %

We will sketch the proof of the theorem. (i) Fix a Ue -module
M and let us first prove that, for any point x € X , the fibers
(AX(M))X and (Ix,¢(A¢(M))))x are canonically isomorphic. It
means that

(a M), = s (Le A¢(M)|Px\x) .

PX\ X

Consider the parabolic subalaebra w, = "x,a (see 7) and its

. nilpotent radical n, and put g, = na/na . The semisimple part of
8, is isomorphic to s1(2). The flaa variety for g, is naturally
isomorphic to Px .

Put q = M/n M - We will consider Q as an g, -module. It
a

» is easy to see that the restriction of the sheaf A (M) to PX is
é naturally isomornhic to AX.(Q) s Wwhere x' =yx+ (p - D(Ba)) , and
? the same for ¢ . Usinnbthis fact we can (and will) reduce the problem
to the case g = s1(2), X = P

let x€X=P!, A=X\x is the affine Tine. We

shall prove that A (M), = (Wn M) coincides with / (L ® A (M) .
XX X A [}

"Put F = A¢(M) [S M(ﬂ¢), H = F[A s Fy - the direct image of H
on X . We have an exact sequence

O+K>F-+>F,>C=>0
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where D¢-modu1es K and C are supported in x . Since ¢ 1is a
dominant weight with respect to g, we have the exact sequence

0> T(K) = T(F) - I(F,) »1(C) ~ 0

and T(F) =M (see 6). Using Kashiwara's theorem, one can verifv that,
for any D¢ - module E supported in x , we have 'Ho(“x’ T(E)X =
r(g)X =0 . Hence M* =T(F)X =T(F )X .
fy ny fy *ny
Since T(F,) = T(A,H), we should prove

[ LeH = T(AHX
A X

Let e,h be generators of the Lie algebras n, and h C hx such
that [h,e] = -e . Then there exists a unique linear coordinate t
on A= X\x such that e and h acton A as 93, and td
Then

t t

\
i LeH=(A)®LE H)/Bt(QA ®LOH) = H/aH = 1“(A,H)n .
X

Let us check that h acts on this space as multiplication by
(x - p)(h) = x(h) + % . Indeed, h acts on H as
-td, = (¢(h) + %) = -3,t + 1 - ¢(h) - %=-3;t + (x(h) +3%) . Hence

on the quotient space H/3,H the element h acts as x(h) +% .

ii) We have proved that the fibers of the sheaves AX(M) and
IX’¢(A¢(M)) at any point x are canonically isomorphic. From this
it follows that these sheaves are isomorphic in the case when M is
a G-equivariant a-module and hence AX(M) and IX’¢(A¢(M)) are
G-equivariant. In particular, these sheaves are canonically P
isomorphic for any free Ue-modu1e. Since both functors A, and

IX 6" A¢ are right exact, they are isomorphic for any Ue - module M.

This finishes the proof of Theorem 12 and hence of Theorem 2.
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13. SEVERAL REMARKS ON n-HOMOLOGY.

THEOREM. The intertwining functor 1 6 has homological

————

dimension <1 . The corresponding derived’functor L(IX ¢): D(M(D¢))

-+ D(M(DX)) ‘is an equivalence of derived categories.

COROLLARY. Functors AX and PX have homological dimensions
< 2(x) . The corresponding derived functors

Lo, & D(M(Ug)) > D(M(D,))
and
RT, ¢ D(M(D,)) > D(M(Ug))

are mutually inverse and give an equivalence of derived categories.

COROLLARY. Let M bea finitely generated Ue -module and

% = codim supp AXO(M) . Then for almost all x € X Y
Hi(nX,M)X =0 for &(x) <& andany i,

X
H'i (nX’M)

n
o

for 2(x) =2 and 1>0

(and, as we have seen, there exists ¥ with 2(y) = & such that
Hy(n, M) #0) .
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