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1. Introduction

One of the most important developments in the theory of quantum groups has
been the discovery of canonical bases which have remarkable integrality and posi-
tivity properties ([Lu]). Using these bases one expects to formulate the represen-
tation theory of quantum groups entirely over natural numbers. In the case of
the simplest quantum group Uq(sl2), such a formulation can be achieved via the
Penrose-Kauffman graphical calculus (see [FK]). The positive integral structure
of representation theory suggests that it is itself a Grothendieck ring of a certain
tensor 2-category. A strong support of this anticipation comes from identifying
coefficients of the transition matrix between the canonical and elementary bases
in the n-th tensor power of the two-dimensional fundamental representation V1 of
Uq(sl2) with the Kazhdan-Lusztig polynomials associated to gln for the maximal
parabolic subalgebras ([FKK]).

In this paper we will take one more step towards constructing a tensor 2-
category with the Grothendieck ring isomorphic to the representation category for
Uq(sl2). The construction of tensor categories or 2-categories with given Grothen-
dieck groups will be referred to as “categorification”. We obtain a categorification
of the U(sl2) action in V ⊗n1 and the action of its commutant, the Temperley-Lieb
algebra, using projective and Zuckerman functors between certain representation
categories of gln. We extend this categorification to the comultiplication of U(sl2).
Our results are strongly motivated by the papers [BLM], [GrL] and [Gr], where
the authors use the geometric rather than algebraic approach. In the geometric
setting the categorification can be obtained via the categories of perverse sheaves.
It is expected that the algebraic and geometric languages will be equivalent, how-
ever, at the present moment the dictionary is still incomplete and the majority of
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our results do not allow a direct translation into the geometric language. Such a
translation would require a nice geometric realization, so far unknown, of singu-
lar blocks of the highest weight categories for gln and projective functors between
these blocks.

The main results of the paper are contained in Sections 3 and 4 and provide
two categorifications of U(sl2) and Temperley-Lieb algebra actions. Preliminary
facts and definitions are collected in Section 2. The basis constituents of our con-
struction are singular and parabolic categories of highest weight modules together
with projective and Zuckerman functors acting on these categories. Projective
functors in categories of gln modules, defined as direct summands of functors of
tensoring with a finite-dimensional gln-modules [J], [Zu], are extensively used in
representation theory, (see [BG] and [KV]). Being exact, projective functors induce
linear maps in Grothendieck groups of categories of representations. Zuckerman
functors are defined for any parabolic subalgebra p of gln by taking the maximal
U(p)-locally finite submodule [KV]. Derived functors of Zuckerman functors are
exact and also descend to Grothendieck groups. An important property of Zucker-
man functors, namely their commutativity with the projective functors, yields in
both categorifications what we consider the Schur-Weyl duality for Uq(sl2) and the
Temperley-Lieb algebra actions.

In Section 3 we construct a categorification via singular blocks of the cate-
gory O(gln) of highest weight gln-modules. More specifically, we realize V ⊗n1 as a
Grothendieck group of the category

On =
n
⊕
k=0
Ok,n−k, (1)

where Ok,n−k is a singular block of O(gln) corresponding to the subgroup Sk×Sn−k
of Sn. The simplest projective functors constructed by means of tensoring with the
fundamental representation of gln and its dual descend on the Grothendieck group
level to the action of generators E and F of sl2 (Section 3.1.1). Various equalities
between products of E and F result from functor isomorphisms (Section 3.1.2).
Moreover, we show that indecomposable projective functors in On correspond to
elements of Lusztig canonical basis in the modified universal enveloping algebra
U̇(sl2) (Section 3.1.3). Construction of the comultiplication for U(sl2) requires
studying the relation between categories O(gln) × O(glm) and O(gln+m), given
by the induction functor from the maximal parabolic subalgebra of gln+m that
contains gln⊕glm. In particular, a categorification of the comultiplication formulas
∆E = E⊗ 1 + 1⊗E and ∆F = F ⊗ 1 + 1⊗F for generators E and F is expressed
by short exact sequences that employ certain properties of the induction functor
(Section 3.1.4).

To categorify the action of the Temperley-Lieb algebra on V ⊗n1 , we use de-
rived functors of Zuckerman functors. We verify that defining relations for the
Temperley-Lieb algebra result from appropriate functor isomorphisms. Projective
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and Zuckerman functors commute and that can be considered a “functor” version
of the commutativity between the action of U̇(sl2) and the Temperley-Lieb algebra
(Section 3.2).

In Section 4 we construct another categorification, this time using parabolic
subcategories of gln to realize V ⊗n1 as a Grothendieck group. There we consider
the category

On =
n
⊕
k=0
Ok,n−k, (2)

where Ok,n−k is a parabolic subcategory of a regular block, corresponding to the
parabolic subalgebra of gln that contains glk ⊕ gln−k. In this picture the role of
projective and Zuckerman functors is reversed, namely, the categorification of the
Temperley-Lieb algebra action is given by projective functors, while the action
of U(sl2) is achieved via Zuckerman functors. We show that the composition of
translation functors on and off the i-th wall at the Grothendieck group level yields
the i-th generator of the Temperley-Lieb algebra by verifying that equivalences
between these projective functors correspond to relations of the Temperley-Lieb
algebra (Section 4.1). This realization of the Temperley-Lieb algebra by functors
was inspired and can be derived from the work [ES] of Enright and Shelton.

In the second picture the action of U(sl2) is categorified by Zuckerman functors
(Section 4.2). This result can be extracted from the geometric approach of [BLM]
and [Gr], which uses correspondences between flag varieties. The latter correspon-
dences define functors between derived categories of sheaves, which are equivalent
to the derived category of On.

To summarize, we have two categorifications of the Temperley-Lieb algebra
action on the n-th tensor power of the fundamental representation V ⊗n1 : one by
Zuckerman functors acting in singular blocks and the other by projective functors
acting in parabolic categories. We also have two categorifications of the U(sl2)
algebra action on the same space: by projective functors between singular categories
and by Zuckerman functors between parabolic categories. We conjecture that the
Koszul duality functor of [BGS] exchanges these pairs of categorifications and that,
more generally, the Koszul duality functor exchanges projective and Zuckerman
functors.

The categorification of the representation theory of U(sl2) presented in our work
explains the nature of integrality and positivity properties established in [FK] by a
direct approach based on the Penrose-Kauffman calculus. However, in this paper
we did not reconsider some of the positivity and integrality results of [FK], e.g.,
positivity and integrality of the 6j-symbol factorization coefficients. We expect that
an extension of our approach will allow us to interpret these coefficients as dimen-
sions of vector spaces of equivalences between appropriate functors. The problem
of passing from categorifying U(sl2)-representations to Uq(sl2)-representations can
most likely be solved by working with mixed versions of projective and Zuckerman
functors and the category O(gln).
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Moreover, many of our constructions admit a straightforward generalization
from U(sl2) to U(slm). In this case one should consider singular and parabolic
categories corresponding to the subgroups Si1 × · · · × Sim , i1 + · · ·+ im = n, of Sn.
The Temperley-Lieb algebra will be replaced by appropriate quotients of the Hecke
algebra of Sn. A more difficult problem is to categorify the representation theory
of U(g) for an arbitrary simple Lie algebra g. Another interesting generalization
of our results would be a categorification of the affine version of the Schur-Weyl
duality. It is expected that in this case one should consider certain singular and
parabolic categories of highest weight modules for affine Lie algebras ĝln. The
functors of tensoring with a finite-dimensional gln-module should be replaced by
the Kazhdan-Lusztig tensoring with a tilting ĝln-module (see [FM]).

Finally we would like to discuss applications of our categorification results to a
construction of topological invariants, which was the initial motivation for this work
(see [CF]). It is well-known that the graphical calculus for representation theory
of Uq(sl2) and in particular for representations of the Temperley-Lieb algebra in
tensor powers of V1 is intimately related ([Ka]) to the Jones polynomial ([Jo]),
which is a quantum invariant of links and can be extended to give an invariant
of tangles. An arbitrary tangle in the three-dimensional space is a composition of
elementary pieces such as braiding and local maximum and minimum tangles. To
construct the Jones polynomial one attaches to these elementary tangles operators
from V ⊗m1 to V ⊗n1 for suitable m and n and obtains an isotopy invariant.

Extending both categorifications of the Temperley-Lieb algebra at the end of
Sections 3.1.4 and 4.1 we define functors from derived categories of Om to On and
Om to On corresponding to elementary tangles. Given a plane partition of a tangle,
we can associate to it a functor, which is a composition of these basic functors.
We conjecture that different plane projections produce isomorphic functors and we
would get functor invariants of links and tangles. For links these invariants will take
the form of Z-graded homology groups. Given a diagram of a cobordism between
two tangles, we can associate to it a natural transformation of functors. We expect
that these natural transformations are isotopy invariants of tangle cobordisms,
and, in the special case of a cobordism between empty tangles, invariants of 2-
knots. To prove this conjecture one needs to present an arbitrary cobordism as
a composition of elementary ones and verify all the relations between them. A
complete set of generators and relations has been found in [CS], [CRS] and was
interpreted as a tensor 2-category in [Fi]. The match between tensor 2-categories
arising from topology and representation theory will yield a graphical calculus for
a categorification of the representation theory of Uq(sl2) based on two-dimensional
surfaces and as a consequence new topological invariants.
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2. Lie algebra sl2 and categories of highest weight modules

2.1. U̇(sl2) and its representations

2.1.1. Algebra U̇(sl2). The universal enveloping algebra of the Lie algebra sl2 is
given by generators E,F,H and defining relations

EF − FE = H, HE −EH = 2E, HF − FH = −2F.

We will denote this algebra by U. Throughout the paper we consider it as an
algebra over the ring of integers Z. We will also need two other versions of this
algebra, UZ and U̇(sl2).

Let UZ be the integral lattice in U⊗Q spanned by

E(a)
(
H

b

)
F (c)

for a, b, c ≥ 0. Here

E(a) =
Ea

a!
, F (c) =

F c

c!
,

(
H

b

)
=
H(H − 1) . . . (H − b+ 1)

b!
(3)

E(a), F (a) are known as divided powers of E and F . The lattice UZ is closed under
multiplication, and therefore inherits the algebra structure from that of U ⊗ Q.
Thus, UZ is an algebra over Z with multiplicative generators

1, E(a), F (a),

(
H

a

)
, a > 0.

Some of the relations between the generators are written below

E(a)E(b) =
(
a+ b
a

)
E(a+b) (4)

F (a)F (b) =
(
a+ b
a

)
F (a+b) (5)

E(a)F (b) =
min(a,b)∑
j=0

F (b−j)
(
H − a− b+ 2j

j

)
E(a−j). (6)
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It is easy to see that the comultiplication in U ⊗ Q preserves the lattice UZ,
i.e. ∆UZ ⊂ UZ ⊗UZ, and the algebra UZ is actually a Hopf algebra. Note that
on E(a), F (a) the comultiplication is given by

∆E(a) =
a∑
b=0

E(b) ⊗E(a−b) (7)

∆F (a) =
a∑
b=0

F (b) ⊗ F (a−b). (8)

Algebra U̇(sl2) is obtained by adjoining a system of projectors, one for each
element of the weight lattice, to the algebra UZ. Start out with a UZ-bimodule,
freely generated by the set 1n, n ∈ Z. Quotient it out by relations(

H

a

)
1i =

(
i

a

)
1i (9)

1i

(
H

a

)
=
(
i

a

)
1i (10)

E(a)1i = 1i+2aE
(a) (11)

F (a)1i = 1i−2aF
(a). (12)

The quotient UZ-bimodule has a unique algebra structure, compatible with the
UZ-bimodule structure and such that

1n1m = δn,m1n. (13)

Denote the resulting Z-algebra by U̇(sl2). As a Z-vector space, it is spanned by
elements

E(a)1nF (b) for a, b ≥ 0, n ∈ Z.

As a left UZ-module, U̇(sl2) decomposes into a direct sum

U̇(sl2) = ⊕
i∈Z

U̇(sl2)i

where
U̇(sl2)i = {x ∈ U̇(sl2)|x1i = x}.

U̇(sl2)i is spanned by E(a)1i−2bF
(b), a, b ≥ 0.

We will be using Lusztig’s basis Ḃ of U̇(sl2), given by

E(a)1−iF (b) for a, b, i ∈ N, i ≥ a+ b (14)

F (b)1iE(a) for a, b, i ∈ N, i > a+ b. (15)
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Remark. E(a)1−a−bF (b) = F (b)1a+bE
(a).

Define Ḃi = Ḃ ∩ U̇(sl2)i, i ∈ Z.

The important feature of Lusztig’s basis is the positivity of the multiplication:
for any x, y ∈ Ḃ

xy =
∑
z∈Ḃ

mz
x,yz

with all structure constants mz
x,y being nonnegative integers. Although this posi-

tivity property is very easy to verify, its generalization to quantum groups Uq(g), g

symmetrizable, conjectured by Lusztig, is, apparently, still unproved. The algebra
U̇(sl2) is a special case (q = 1, g = sl2) of the Lusztig’s algebra U̇q(g) (see [Lu]),
obtained from the quantum group Uq(g) by adding a system of projectors, one for
each element of the weight lattice. Lusztig defined a basis in U̇q(g) and conjectured
that the multiplication and comultiplication constants in this basis lie in N[q, q−1].
A proof of this conjecture, most likely, will require interpreting Lusztig’s basis in
terms of perverse sheaves on suitable varieties.

Although in this paper we do not venture beyond sl2, our results suggest a close
link between the Lusztig’s basis of U̇q(slN ) and indecomposable projective functors
for sln, N and n being independent parameters.

2.1.2. Representations of U̇(sl2). Let V1 be the two-dimensional representation
over Z of U spanned by v1 and v0 with the action of generators of U given by

Hv1 = v1 Ev1 = 0 Fv1 = v0 (16)

Hv0 = −v0 Ev0 = v1 Fv0 = 0. (17)

In the obvious way, V1 is also a representation of both UZ and U̇(sl2). Using
comultiplication, the tensor powers of V1 become representations of U,UZ and
U̇(sl2).

Denote by V0 the one-dimensional representation of U given by the augmenta-
tion homomorphism U→ Z of the universal enveloping algebra. Again, V0 is a UZ
and U̇(sl2) module in a natural way.

Let δ be the module homomorphism V0 → V1 ⊗ V1 given by

δ(1) = v1 ⊗ v0 − v0 ⊗ v1. (18)

For a sequence I = a1 . . . an of ones and zeros, let I+ be the number of ones in
the sequence. We will denote the vector va1 ⊗ . . .⊗ van ∈ V ⊗n1 by v(I).

We define a Q-linear map (the symmetrization map) pn : V ⊗n1 ⊗ZQ→ V ⊗n1 ⊗ZQ
by

pn(v(I)) =
(
n

I+

)−1 ∑
J,J+=I+

v(J) (19)
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where the sum on the right hand side is over all sequences J of length n with J+ =
I+. Then pn is a U⊗Z Q-module homomorphism; in fact, it is the projection onto
the unique (n+ 1)-dimensional irreducible U⊗ZQ subrepresentation of V ⊗n1 ⊗ZQ.

2.2. Temperley-Lieb algebra

Definition 1. The Temperley-Lieb algebra TLn,q is an algebra over the ring R =
Z[q, q−1], where q is a formal variable, with generators U1, . . . , Un−1 and defining
relations

UiUi±1Ui = Ui (20)

UiUj = UjUi |i− j| > 1 (21)

U2
i = −(q + q−1)Ui. (22)

The Temperley-Lieb algebra admits a geometric interpretation via systems of
arcs on the plane. Namely, as a free R-module, it has a basis enumerated by
isotopy classes of systems of simple, pairwise disjoint arcs that connect n points on
the bottom of a horizontal plane strip with n points on the top. We only consider
systems without closed arcs. Two diagrams are multiplied by concatenating them.
If simple closed loops appear as a result of concatenation, we remove them, each
time multiplying the diagram by −q − q−1.

Example. Let diagrams A and B be as depicted below.

A B

Then their composition BA can be depicted by

= - ( q + q     )- 1BA  = 
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The generator Ui of TLn,q is given by the diagram

1 i n

The defining relations have geometric interpretations. For instance, the first
relation says that the diagrams below are isotopic

Definition 2. The Temperley-Lieb algebra TLn,1, respectively TLn,−1, is an al-
gebra over the ring of integers, obtained from TLn,q by setting q to 1, respectively
to −1, everywhere in the definition of the latter.

Thus, in TLn,1 the value of a closed loop is −2, in TLn,−1 the value of a closed
loop is 2, while in TLn,q a closed loop evaluates to −q − q−1.

Recall that we denoted by V1 the fundamental representation of UZ. Let u be
an intertwiner V ⊗2

1 → V ⊗2
1 given by

u(v1 ⊗ v0) = −u(v0 ⊗ v1) = v0 ⊗ v1 − v1 ⊗ v0

u(v1 ⊗ v1) = u(v0 ⊗ v0) = 0.

Then V ⊗n1 is a representation of TLn,1 with Ui acting by Id⊗(i−1)⊗u⊗ Id⊗(n−i−1).
This action commutes with the Lie algebra sl2 action on the same space.

The Temperley-Lieb algebra allows a generalization into the so-called Temper-
ley-Lieb category, as we now explain (for more details, see [KaL], [Tu]).

Definition 3. The Temperley-Lieb category TL has objects enumerated by non-
negative integers: Ob(TL) = {0, 1, 2, . . .}. The set of morphisms from n to m is a
free R-module with a basis over R given by the isotopy classes of systems of n+m

2
simple, pairwise disjoint arcs inside a horizontal strip on the plane that connect in
pairs n points on the bottom and m points on the top in some order.

Morphisms are composed by concatenating their diagrams. If closed loops ap-
pear after concatenation, we remove them, multiplying the diagram by −q − q−1

to the power equal to the number of closed loops.
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An example of a morphism from 5 to 3 is depicted below.

If n+m is odd, there are no morphisms from n to m. Denote by ∩i,n for n ≥ 2, 1 ≤
i ≤ n− 1 the morphism of TL from n to n− 2 given by the following diagram

1 i-1 i2 n

The diagram consists of n − 1 arcs. One of the arcs connects the i-th bottom
point (counting from the left) with the (i + 1)-th bottom point. The remaining
arcs connect the k-th bottom point for 1 ≤ k < i with the k-th top point and the
k-th bottom point for i+ 2 ≤ k ≤ n with the (k − 2)-th top point.

Denote by ∪i,n, n ≥ 0, 1 ≤ i ≤ n+1 the morphism in TL from n to n+ 2 given
by the diagram

1 2 i-1 ni

Denote by Idn the identity morphism from n to n. This morphism can be
depicted by a diagram that is made of n vertical lines:

1 2 n

The morphisms ∩i,n and ∪i,n will serve as generators of the set of morphisms
in the Temperley-Lieb category. The following is a set of defining relations for TL
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∩i+1,n+2 ◦ ∪i,n = Idn (23)

∩i,n+2 ◦ ∪i+1,n = Idn (24)

∩j,n ◦ ∩i,n+2 = ∩i,n ◦ ∩j+2,n+2 i ≤ j (25)

∪j,n−2 ◦ ∩i,n = ∩i,n+2 ◦ ∪j+2,n i ≤ j (26)

∪i,n−2 ◦ ∩j,n = ∩j+2,n+2 ◦ ∪i,n i ≤ j (27)

∪i,n+2 ◦ ∪j,n = ∪j+2,n+2 ◦ ∪i,n i ≤ j (28)

∩i,n+2 ◦ ∪i,n = −(q + q−1) Idn . (29)

The first 6 types of relations come from isotopies of certain pairs of diagrams.
For example, relations (23) and (25) correspond to the isotopies

ii-11 n 1 2 nn

and

i j+2 i j+2

respectively. Algebra TLn,q is the algebra of endomorphisms of the object n of the
Temperley-Lieb category.

2.3. The category of highest weight modules over a reductive Lie algebra

2.3.1. Definitions. In this section all Lie algebras and their representations
are defined over the field C of complex numbers. Let g be a finite-dimensional
reductive Lie algebra and U(g) its universal enveloping algebra. Fix a triangular
decomposition g = n+ ⊕ h ⊕ n−. Let R+ be the set of positive roots and ρ the
half-sum of positive roots. For λ ∈ h∗ denote by Mλ the Verma module with
highest weight λ− ρ and by Lλ the irreducible quotient of Mλ. The module Lλ is
finite-dimensional if and only if λ− ρ is an integral dominant weight.

Denote by O(g) the category of finitely generated U(g)-modules that are h-
diagonalizable and locally U(n+)-nilpotent. The category O(g) is called the
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category of highest weight g-modules. Let Pλ denote the projective cover of Lλ
(see [BGG] for the existence of projective covers).

If A is an additive category, denote by K(A) the Grothendieck group of A.
Denote by [M ] the image of an object M ∈ Ob(A) in the Grothendieck group of
A. Denote by Db(A) the bounded derived category of an abelian category A.

2.3.2. Projective functors. This section is a brief introduction to projective
functors. We refer the reader to Bernstein-Gelfand paper [BG] for a detailed treat-
ment and further references.

Denote by Θ the set of maximal ideals of the center Z of U(g). We can naturally
identify Θ with the quotient of the weight space h∗ by the action by reflections of
the Weyl group W of gln. We will denote by η the quotient map h∗ → Θ. For θ ∈ Θ
denote by Jθ the corresponding maximal ideal of Z. Thus, the Verma module Mλ

with the highest weight λ− ρ is annihilated by the maximal central ideal Jη(λ).
For θ ∈ Θ denote by Oθ(g) a full subcategory of O(g) consisting of modules

that are annihilated by some power of the central ideal Jθ :

M ∈ Oθ(g) ⇐⇒ M ∈ O(g) and JNθ M = 0 for sufficiently large N. (30)

A module M ∈ O(g) belongs to Oθ(g) if and only if all of the simple subquotients
of M are isomorphic to simple modules Lλ, λ ∈ η−1(θ). We will call modules in
Oθ(g) highest weight modules with the generalized central character θ. The category
O(g) splits as a direct sum of categories Oθ(g) over all θ ∈ Θ.

Denote by projθ the functor from O(g) to Oθ(g) that, to a module M , associates
the largest submodule of M with the generalized central character θ. Let FV be
the functor of tensoring with a finite-dimensional g-module V .

Definition 4. F : O(g) → O(g) is a projective functor if it is isomorphic to a
direct summand of the functor FV for some finite dimensional module V .

The functor projθ is an example of a projective functor, since it is a direct
summand of the functor of tensoring with the one-dimensional representation. We
have an isomorphism of functors

FV = ⊕
θ1,θ2∈Θ

(projθ1 ◦FV ◦ projθ2). (31)

Any projective functor takes projective objects in O(g) to projective objects.
The composition of projective functors is again a projective functor. Each projec-
tive functor splits as a direct sum of indecomposable projective functors.

Projective functors are exact. Therefore, they induce endomorphisms of the
Grothendieck group of the category O(g). The following result is proved in [BG]:

Proposition 1. Let λ be a dominant integral weight, θ = η(λ) and F,G projective
functors from Oθ(g) to O(g). Then

1. Functors F and G are isomorphic if and only if the endomorphisms of
K(O(g)) induced by F and G are equal.
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2. Functors F and G are isomorphic if and only if modules FMλ and GMλ

are isomorphic.

We will be computing the action of projective functors on Grothendieck groups
of certain subcategories of the category of highest weight modules. The simplest
basis in the Grothendieck group of O(g) is given by images of Verma modules. The
following proposition shows that this basis is also handy for writing the action of
projective functors on the Grothendieck group of O(g).

Proposition 2. Let V be a finite-dimensional g-module, µ1, . . . , µm a multiset of
weights of V , Mχ the Verma module with the highest weight χ− ρ, then

1. The module V ⊗Mχ admits a filtration with successive quotients isomorphic
to Verma modules Mχ+µ1 , . . . ,Mχ+µm (in some order).

2. We have an equality in the Grothendieck group K(O(g)):

[V ⊗Mχ] =
m∑
i=1

[Mχ+µi ].

2.3.3. Parabolic categories. Let p be a parabolic subalgebra of g that contains
n+⊕h. Denote by O(g, p) the full subcategory of O(g) that consists of U(p) locally
finite modules. Notice that projective functors preserve subcategories O(g, p).

A generalized Verma module relative to a parabolic subalgebra p of g (see [Lp],
[RC]) will be called a p-Verma module. The Grothendieck group of O(g, p) is
generated by images [M ] of generalized Verma modules.

For a central character θ and a parabolic subalgebra p of g, denote by Oθ(g, p)
the full subcategory of O(g) consisting of U(p)-locally finite modules annihilated
by some power of the central ideal Jθ. The category Oθ(g, p) is the intersection of
subcategories Oθ(g) and O(g, p) of O(g).

The following lemma is an obvious generalization of a special case of Lemma 3.5
in [ES].

Lemma 1. Let T, S be covariant, exact functors from Oθ(g, p) to some abelian
category A and let f be a natural transformation from T to S. If fM : T (M) →
S(M) is an isomorphism for each generalized Verma module M ∈ Oθ(g, p), then f
is an isomorphism of functors.

Let g1, g2 be reductive Lie algebras, with fixed Cartan subalgebras hj ⊂ gj , j =
1, 2. Suppose we have two parabolic subalgebras p1, p2 such that hj ⊂ pj ⊂ gj . Fix
central characters θj of gj .

Lemma 2. Suppose that we have two exact functors

f12 : Oθ2(g2, p2)→ Oθ1(g1, p1)

f21 : Oθ1(g1, p1)→ Oθ2(g2, p2)
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such that f21 is isomorphic to both left and right adjoint functors of f12, f21 takes
p1-Verma modules to p2-Verma modules, f12 takes p2-Verma modules to p1-Verma
modules, f12f21(M) is isomorphic to M for any p1-Verma module M and f21f12(M)
is isomorphic to M for any p2-Verma module M. Then f12 and f21 are equivalences
of categories and the natural transformations

a : f12f21 → Id, b : Id→ f12f21

coming from the adjointness are isomorphisms of functors.

Proof. By Lemma 1 it suffices to prove that, for any p1-Verma module M , the
module morphisms

aM : f12f21(M)→M, bM : M → f12f21(M)

are isomorphisms. Note that f21(M) is a p2-Verma module and f12f21(M) is iso-
morphic to M . The hom space Homg1(M,M) is one-dimensional and all morphisms
are just scalings of the identity morphism. We have a natural isomorphism

Homg1(f12f21(M),M) = Homg2(f21M,f21M).

Under this isomorphism, the map aM : M → M corresponds to the identity map
f21M → f21M . This identity map generates the space Homg2(f21M,f21M), there-
fore aM generates the hom space Homg1(M,M), and thus, aM is an isomorphism of
M , being a non-zero multiple of the identity map. Therefore, a is an isomorphism
of functors. Similarly, b is a functor isomorphism. �

This lemma is used in Section 3.2 in the proof of Theorem 5.

2.3.4. Zuckerman functors. Here we recall the basic properties of Zuckerman
derived functors, following [ES] and [EW]. Knapp and Vogan’s book [KV] contains
a complete treatment of Zuckerman functors, but here we will only need some basic
facts.

Throughout the paper we restrict Zuckerman functors to the category of highest
weight modules.

Let g, p be as in Section 2.3.3. The parabolic Lie algebra p decomposes as a
direct sum m ⊕ u where m is the maximal reductive subalgebra of p and u is the
nilpotent radical of p. The reductive subalgebra m contains the Cartan subalgebra
h of g. Let d = dim(m)−dim(h). We denote by ∗ the contravariant duality functor
in O.

Let Γp be the functor fromO(g) toO(g, p) that to a moduleM ∈ O(g) associates
its maximal locally U(p)-finite submodule. Γp is called the Zuckerman functor.
Functor Γp is left exact and the category O(g) has enough injectives, so we can
define the derived functor

RΓp : Db(O(g)) −→ Db(O(g, p))

and its cohomology functors

RiΓp : O(g) −→ O(g, p).
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Proposition 3.

1. For i > d, RiΓp = 0.
2. Projective functors commute with Zuckerman functors. More precisely, if
F is a projective functor, then there are natural isomorphisms of functors

F ◦ Γp
∼= Γp ◦ F

F ◦ RΓp
∼= RΓp ◦ F.

3. The functors M 7−→ RiΓp(M) and M 7−→ Rd−iΓp(M∗)∗, M ∈ O(g) are
naturally equivalent.

4. RdΓp is isomorphic to the functor that to a module M ∈ O(g) associates
the maximal locally p-finite quotient of M .

Proof. See [EW]. Zuckerman functors commute with functors of tensor product by
a finite-dimensional module. A projective functor is a direct summand of a tensor
product functor. Part 2 of the proposition follows. �

2.4. Singular blocks of the highest weight category for gln

2.4.1. Notations. We fix once and for all a triangular decomposition n+⊕h⊕n−
of the Lie algebra gln. The Weyl group of gln is isomorphic to the symmetric
group Sn. Choose an orthonormal basis e1, . . . , en in the Euclidean space Rn and
identify the complexification C⊗RRn with the dual h∗ of Cartan subalgebra so that
R+ = {ei−ej, i < j} is the set of positive roots and αi = ei−ei+1, 1 ≤ i ≤ n−1 are
simple roots. The generator si of the Weyl group W = Sn acts on h∗ by permuting
ei and ei+1. Denote by ρ the half-sum of positive roots

ρ =
n− 1

2
e1 +

n− 3
2

e2 + · · ·+ 1− n
2

en.

Sometimes we will use the notation ρn instead of ρ.
For a sequence a1, . . . , an of zeros and ones, denote by M(a1 . . . an) the Verma

module with the highest weight a1e1 + · · · + anen − ρ. Similarly, L(a1 . . . an) will
denote the simple quotient of M(a1 . . . an) and P (a1 . . . an) the minimal projective
cover of L(a1 . . . an).

The sequence of n zeros, respectively ones, will be denoted by 0n, respec-
tively 1n. If I1, I2 are two sequences of 0’s and 1’s, we denote their concatenation
by I1I2.

Recall that λi = e1 + · · · + ei is a fundamental weight of gln. Denote by
θi = η(λi) the corresponding central character of gln. We denote the category
Oθi(gln) by Oi,n−i. A module M ∈ O(gln) lies in Oi,n−i if and only if all of its
simple subquotients are isomorphic to L(a1 . . . an) for sequences a1 . . . an of zeros
and ones with exactly i ones.
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Denote by On the direct sum of categories Oi,n−i as i ranges over all integers
from 0 to n:

On =
n
⊕
i=0
Oi,n−i. (32)

When i < 0 or i > n, denote by Oi,n−i the subcategory of O(gln) consisting of the
zero module. We have an isomorphism of Grothendieck groups

K(On) =
n
⊕
i=0
K(Oi,n−i). (33)

Let Υn be the isomorphism of abelian groups Υn : K(On)→ V ⊗n1 given by

Υn[M(a1 . . . an)] = va1 ⊗ . . .⊗ van . (34)

2.4.2. Simple and projective module bases in the Grothendieck group
K(On). Abelian group isomorphism Υn identifies the Grothendieck group of On
and the U̇(sl2)-module V ⊗n1 . In this section we describe the images under Υn of
simple modules and indecomposable projectives in On. The only result of this
section that we use later is the formula (35) for the image of the indecomposable
projective P (0j1k0l1m). This formula is used in the proof of Theorem 4.

Let us define 3 bases in V ⊗n1 . We are working over Z and thus V ⊗n1 is a free
abelian group of rank 2n. We will parametrize basis elements by sequences of ones
and zeros of length n.

First, the basis {v(a1 . . . an), ai ∈ {0, 1}} will be given by

v(a1 . . . an) = va1 ⊗ . . .⊗ van

so that, for a sequence I of length n of zeros and ones, we have Υn[M(I)] = v(I).
We will call this basis the product basis of V ⊗n1 .

Next we introduce the basis {l(a1 . . . an), ai ∈ {0, 1}} by induction of n as
follows:

(i) l(1) = v1, l(0) = v0,
(ii) l(0a2 . . . an) = v0 ⊗ l(a2 . . . an),
(iii) l(a1 . . . an−11) = l(a1, . . . , an−1)⊗ v1,
(iv)

l(a1 . . . ai−110ai+2 . . . an) =

(Id⊗(i−1)⊗δ ⊗ Id⊗(n−i−1))l(a1 . . . ai−1ai+2 . . . an),

where δ is the intertwiner V0 → V1⊗V1 defined by the formula (18) and Id
denotes the identity homomorphism of V1. These rules are consistent and
uniquely define l(a1 . . . an) for all a1 . . . an.
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Let us now define the basis {p(a1 . . . an), ai ∈ {0, 1}}. Let I be a sequence of
zeros and ones. Then define the basis inductively by the rules

(i) p(1I) = v1 ⊗ p(I),
(ii) p(I0) = p(I)⊗ v0,
(iii) If a sequence I1 is either empty or ends with at least j zeros, and a sequence

I2 is either empty or starts with at least k ones, then

p(I10j1kI2) =
(
j + k

j

)
(Id⊗|I1|⊗pj+k ⊗ Id⊗|I2|)p(I11k0jI2)

where |I| stands for the length of I.

Proposition 4. These rules are consistent, and for each sequence I define an
element of V ⊗|I|1 .

Proposition follows from the results of [K], Section 3, setting q to 1. Note that
it is not even obvious that p(I) lies in V ⊗n1 because the projector pi is defined (see
Section 2.1.2) as an operator in V ⊗i1 ⊗Z Q, rather than in V ⊗i1 .

Proposition 5. The isomorphism Υn : K(On)→ V ⊗n1 takes the images of simple,
resp. indecomposable projective modules to elements of the basis {l(I)}I, resp.
{p(I)}I of V ⊗n1 :

Υn[L(I)] = l(I)

Υn[P (I)] = p(I).

Proof. The rules (i)–(iii) for p(I) can be used to write down the relations between
the coefficients of the transformation matrix from the basis {v(I)}I to the basis
{p(I)}I of V ⊗n1 . These relations are equivalent to the q = 1 specialization of
Lascoux-Schützenberger’s recursive formulas (see [LS] and [Z]) for the Kazhdan-
Lusztig polynomials in the Grassmannian case, as follows from the computation at
the end of [FKK] (again, setting q to 1).

Kazhdan-Lusztig polynomials in the Grassmannian case for q = 1 are coeffi-
cients of the transformation matrix from the Verma module to the simple module
basis of Grothendieck groups of certain parabolic subcategories of a regular block of
O(gln). These parabolic subcategories are Koszul dual (see [BGS], Theorem 3.11.1
for the general statement) to the singular blocks Oi,n−i, 0 ≤ i ≤ n of O(gln).
Koszul duality functor descends to the isomorphism of Grothendieck groups that
exchanges simple and projective modules in corresponding categories. Therefore,
Lascoux-Schützenberger’s formulas also describe coefficients of decomposition of
projective modules in the Verma module basis of K(On). It now follows that
Υn[P (I)] = p(I).

Introduce a bilinear form on K(On) by < [M(I)], [M(J)] >= δJI . The BGG
reciprocity implies 〈[P (I)], [L(J)]〉 = δJI , i.e., the basis {[L(I)]} of K(On) is dual
to the basis {[P (I)]} of K(On). Abelian group isomorphism Υn transform this
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bilinear form to a bilinear form on V ⊗n1 such that 〈v(I), v(J)〉 = δJI . From the
main computation of Chapter 3 of [K], specializing q to 1, it follows that bases
{l(I)} and {p(I)} are orthogonal relative to this form. We have Υn[M(I)] = v(I)
by definition of Υn and we have already established that Υn[P (I)] = p(I). We
conclude that Υn[L(I)] = l(I). �

To prove Theorem 4 we will need an explicit formula for p(0j1k0l1m) :

p(0j1k0l1m) =

=
(
j + k

k

)(
j + l +m

m

)
(pj+k ⊗ Id⊗(l+m))(Id⊗k ⊗pj+l+m)

(v⊗(k+m)
1 ⊗ v⊗(j+l)

0 ) if k ≤ l

=
(
l +m

m

)(
j + k +m

j

)
(Id⊗(j+k)⊗pl+m)(pj+k+m ⊗ Id⊗l)

(v⊗(k+m)
1 ⊗ v⊗(j+l)

0 ) if k ≥ l.

(35)

This formula follows from recurrent relations (i)–(iii) for p(I) that we gave
earlier in this section.

3. Singular categories

3.1. Projective functors and sl2

3.1.1. Projective functors E and F . Let Ln be the n-dimensional represen-
tation of gln with vweights e1, e2, . . . , en. The dual representation L∗n has weights
−e1,−e2, . . . ,−en.

Recall that Oi,n−i, i = 0, 1, . . . n is the singular block of O(gln) consisting of
modules with generalized central character θi = η(λi). For i < 0 and i > n we
defined Oi,n−i to be the trivial subcategory of O(gln).

Denote by Ei the projective functor

(projθi+1
) ◦ FLn : Oi,n−i → Oi+1,n−i−1

given by tensoring with the n-dimensional representation Ln and then taking the
largest submodule of this tensor product that lies in Oi+1,n−i−1.

Similarly, denote by Fi the projective functor from Oi,n−i to Oi−1,n−i+1 given
by tensoring with L∗n and then taking the largest submodule that belongs to
Oi−1,n−i+1

Theorem 1. For i = 0, 1, . . . n there are isomorphisms of projective functors

(Ei−1 ◦ Fi)⊕ Id⊕(n−i) ∼= (Fi+1 ◦ Ei)⊕ Id⊕i (36)
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where Id denotes the identity functor Id : Oi,n−i → Oi,n−i.
Proof. By Proposition 1 it suffices to check the equality of endomorphisms of the
Grothendieck group of Oi,n−i induced by these projective functors.

Denote by [Ei] and [Fi] the homomorphisms of the Grothendieck groups induced
by functors Ei and Fi :

[Ei] :K(Oi,n−i)→ K(Oi+1,n−i−1)

[Fi] :K(Oi,n−i)→ K(Oi−1,n−i+1).

The Grothendieck group K(Oi,n−i) is free abelian of rank
(
n
i

)
and is spanned

by images [M(a1 . . . an)] of Verma modules M(a1 . . . an) for all possible sequences
a1 . . . an of zeros and ones with i ones.

By Proposition 2

[M(a1 . . . an)⊗ Ln] =
n∑
j=1

[M(a1 . . . a
′
j . . . an)] (37)

where a′j = aj + 1.
The functor Ei is a composition of tensoring with Ln and a projection onto

Oi+1,n−i−1, hence we get

Proposition 6. Let a1 . . . an be a sequence of zeros and ones that contains i ones.
Then

[EiM(a1 . . . an)] =
n∑

j=1,aj=0

[M(a1 . . . aj−11aj+1 . . . an)]. (38)

In the same fashion, we obtain

Proposition 7. Let a1 . . . an be a sequence of zeros and ones that contains i ones.
Then

[FiM(a1 . . . an)] =
n∑

j=1,aj=1

[M(a1 . . . aj−10aj+1 . . . an]. (39)

Therefore, after identifying the Grothendieck group K(On) with V ⊗n1 via the
isomorphism Υn (formula (34), we see that maps [Ei], [Fi] from K(Oi,n−i) to
K(Oi+1,n−i−1) and K(Oi−1,n−i+1) coincide with maps induced by the Lie alge-
bra sl2 generators E and F on the weight 2i−n subspace of the module V ⊗n1 . This
immediately gives

Proposition 8. We have the following equality of endomorphisms of the abelian
group K(Oi,n−i) :

[Ei−1][Fi] + (n− i) Id = [Fi+1][Ei] + i · Id .

Theorem 1 follows. �
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This proof also implies

Corollary 1. Considered as an sl2-module with E, resp. F acting as
∑
i[Ei], resp.∑

i[Fi], the Grothendieck group K(On) is isomorphic to the n-th tensor power of
the fundamental two-dimensional representation of sl2.

3.1.2. Realization of U̇(sl2) by projective functors. Next we provide a real-
ization of the divided powers of E and F by projective functors.

Let E(k)
i be the functor from Oi,n−i to Oi+k,n−i−k given by tensoring with

the k-th exterior power of Ln and then projecting onto the submodule with the
generalized central character θi+k :

E(k)
i (M) = projθi+k(ΛkLn ⊗M). (40)

Similarly,
F (k)
i : Oi,n−i → Oi−k,n−i+k (41)

is given by
F (k)
i (M) = projθi+k(ΛkL∗n ⊗M). (42)

Denote by [E(k)
i ], [F (k)

i ] the induced homomorphisms of the Grothendieck group
K(On) = ⊕j∈ZK(Oj,n−j). Note that [E(k)

i ], [F (k)
i ] map K(Oj,n−j) to 0 unless i = j.

The following theorem is proved in the same way as Theorem 1.

Theorem 2. Under the abelian group isomorphism

Υn : K(On)→ V ⊗n1

the endomorphism [E(k)
i ], resp. [F (k)

i ] of K(On) coincides with the endomorphism
of V ⊗n1 given by the action of E(k)12i−n ∈ U̇(sl2), resp. F (k)12i−n. In other words,
the following diagrams are commutative

K(On) Υn- V ⊗n1

?
[E(k)
i ]

?
E(k)12i−n

K(On) Υn- V ⊗n1 .

K(On) Υn - V ⊗n1

?

[F(k)
i ]

?

F (k)12i−n

K(On) Υn - V ⊗n1
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Let S be the set {E(a)1j , F (a)1j |a, j ∈ Z}. It is a subset of U̇(sl2). To each
element of S we can now associate a projective functor from the category On to
itself as follows. The functor associated to an element x ∈ S will be denoted fn(x).

fn(E(a)1j) =

{
E(a)
j+n

2
if j + n = 0(mod 2)

0 otherwise

fn(F (a)1j) =

{
F (a)
j+n

2
if j + n = 0(mod 2)

0 otherwise.

Let c be an arbitrary product x1 . . . xm of elements of S. To c we associate a
functor, denoted fn(c), from On to On by

fn(c) = fn(x1) ◦ · · · ◦ fn(xm).

Proposition 1 implies

Theorem 3. Let c1, . . . , cs, d1, . . . , dt be arbitrary products of elements of S. The
endomorphisms of V ⊗n1 induced by the elements c1+· · ·+cs and d1+· · ·+dt of U̇(sl2)
coincide if and only if the functors ⊕si=1fn(ci) and ⊕tj=1fn(di) are isomorphic.

Corollary 2. There exist isomorphisms of projective functors

E(b)
i+a ◦ E

(a)
i
∼= (E(a+b)

i )⊕(a+b
a )

F (b)
i−a ◦ F

(a)
i
∼= (F (a+b)

i )⊕(a+b
a )

min(a,b)
⊕
k=0

(E(a−k)
i−b+k ◦ F

(b−k)
i )⊕(n−i−a+b

k ) ∼=

∼=
min(a,b)
⊕
l=0

(F (b−l)
i+a−l ◦ E

(a−l)
i )⊕(il).

Remark. We expect that functor isomorphisms in the above theorem can be made
canonical so that they satisfy certain relations, including associativity relations.

3.1.3. Canonical basis of U̇(sl2) and indecomposable projective func-
tors. Recall that the canonical basis Ḃ of U̇(sl2) is given by

E(a)1−iF (b) for a, b, i ∈ N, i ≥ a+ b

F (b)1iE(a) for a, b, i ∈ N, i > a+ b.

Conveniently, each element of Ḃ is a product of E(a)1i, F (a)1i for various a and i,
specifically,

E(a)1−iF (b) = E(a)1−iF (b)1−i+2b for a, b, i ∈ N, i ≥ a+ b

F (b)1iE(a) = F (b)1iE(a)1i−2a for a, b, i ∈ N, i > a+ b.
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In the previous section to each such product and each n = 1, 2, . . . we associated
a projective functor. Therefore, we can associate a projective functor to each
element of the canonical basis Ḃ of U̇(sl2). To x ∈ Ḃ we associate a projective
functor fn(x) from On to On by the following rule.

fn(E(a)1−iF (b)) = E(a)
−i+n

2
F (b)
−i+n

2 +b

for a, b, i ∈ N, i ≥ a+ b, i+ n = 0(mod 2),

fn(F (b)1iE(a)) = F (b)
i+n

2
E(a)
i+n

2 −a

for a, b, i ∈ N, i > a+ b, i+ n = 0(mod 2),

fn(E(a)1−iF (b)) = fn(F (b)1iE(a)) = 0

for i+ n = 1(mod 2).

In this way to each canonical basis element b ∈ Ḃ there is associated an exact
functor

fn(b) : On → On
The multiplication in U̇(sl2) correspond to composition of projective functors:

for x, y ∈ Ḃ the product xy is a linear combination of elements of Ḃ with integral
nonnegative coefficients xy =

∑
z∈U̇(sl2)m

z
x,yz. In turn, the functor fn(x) ◦ fn(y)

decomposes as a direct sum of functors fn(z) with multiplicities mz
x,y:

fn(x)fn(y) = ⊕
z∈Ḃ

fn(z)⊕m
z
x,y

Theorem 4. Fix n ∈ N. Let x ∈ Ḃ. Then the projective functor fn(x) is either 0
or isomorphic to an indecomposable projective functor. Moreover, for each inde-
composable projective functor A : On → On there exists exactly one x ∈ Ḃ such
that fn(x) is isomorphic to A.

Proof. Let x ∈ Ḃ2j−n. Recall that in our notations the dominant Verma mod-
ule in Oj,n−j is M(1j0n−j). From the properties of projective functors we know
that fn(x)M(1j0n−j) is a projective module in On, fn(x) is the trivial functor
if and only if fn(x)M(1j0n−j) is the trivial module, and fn(x) is an indecom-
posable projective functor if and only if fn(x)M(1j0n−j) is an indecomposable
projective module. Isomorphism classes of projective modules in the category of
highest weight modules are determined by their images in the Grothendieck group.
Thus, all computations to check whether fn(x)M(1j0n−j) is indecomposable, triv-
ial, etc. can be done in the Grothendieck group of the category On. We claim that
[fn(x)M(1j0n−j)] = 0 or [fn(x)M(1j0n−j)] = [P (0k1l0m1s)] for some k, l,m, s
where, we recall, P (0k1l0m1s) denotes the indecomposable projective cover of the
simple module with highest weight el+1 + · · ·+ek+l+ek+l+m+1 + · · ·+ek+l+m+s−ρ
(see Section 2.4.1).
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Due to the isomorphism Υn between the Grothendieck group of On and the
abelian group V ⊗n1 and Proposition 5 we can work with the latest group instead.
The notations of Section 2.4.2 are used below.

Proposition 9.

E(a)1iv(1b0c) =

=


(
c

a

)
(Id⊗b⊗pc)v(1b+a0c−a) if i = b− c and c ≥ a

0 otherwise

F (a)1iv(1b0c) =

=


(
b

a

)
(pb ⊗ Id⊗c)v(1b−a0c+a) if i = b− c and b ≥ a

0 otherwise.

Proof. Clearly, 1iv(1b0c) = v(1b0c) if i = b − c and 1iv(1b0c) = 0 otherwise. E(a)

acts on v(1b0c) in the following way

E(a)v(1b0c) =
∑
I

v(1bI)

where the sum is over all sequences I that contain a ones and c−a zeros. Proposition
follows. �

Let a, b, i be non-negative integers with i ≥ a + b. Then E(a)1−iF (b) is an
element of the canonical basis Ḃ. We compute its action on the element v(1c0d) of
V
⊗(c+d)

1 . We restrict to the case i = 2b+ d − c and c ≥ b as otherwise the result
is 0. The condition i ≥ a+ b can now be written as c− b ≤ d− a.

E(a)1−iF (b)v(1c0d) =

E(a)
(
c

b

)
(pc ⊗ Id⊗d)v(1c−b0d+b) =(

c

b

)
(pc ⊗ Id⊗d)E(a)v(1c−b0d+b) =(

c

b

)
(pc ⊗ Id⊗d)

(
d+ b

a

)
(Id⊗(c−b)⊗pd+b)v(1c−b+a0d+b−a) =(

c

b

)(
d+ b

a

)
(pc ⊗ Id⊗d)(Id⊗(c−b)⊗pd+b)v(1c−b+a0d+b−a) =

p(0b1c−b0d−a1a).

The last equality follows from formula (35) (substituting j = b, k = c−b, l = d−a,
m = a) and the condition c− b ≤ d− a.
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In the same fashion, for a, b, c, d, i ∈ Z+ such that i = c − d + 2a, i ≥ a + b
(which implies c− b ≥ d− a) we get

F (b)1iE(a)v(1c0d) = p(0b1c−b0d−a1a). (43)

Thus, for any x ∈ Ḃ and c, d ∈ Z+ the element xv(1c0d) ∈ V ⊗n1 is either 0
or equal to the image under Υn of the Grothendieck class of the indecomposable
projective module P (0k1l0m1s) for some quadruple (k, l,m, s).

Therefore, for any x ∈ Ḃ2j−n and a dominant Verma module M(1j0n−j) the
projective module fn(x)M(1j0n−j) is either the trivial or an indecomposable pro-
jective module, i.e. the projective functor fn(x) is either trivial or indecomposable
projective. All other statements of Theorem 4 follow easily from the above analysis
and the classification of projective functors (see [BG]). �

3.1.4. Comultiplication. In previous sections we studied projective functors in
categories On. We established that on the Grothendieck group level these functors
descend to the action of generators of U̇(sl2) on the n-th tensor power of the
fundamental representation V1 and that the composition of functors descends to
the multiplication in U̇(sl2). Yet, we do not have a functor realization of the whole
algebra U̇(sl2), only of its finite-dimensional quotients, also called Schur quotients,
that are the homomorphic images or U̇(sl2) in the endomorphisms of V ⊗n1 . It is
unconvenient to think about comultiplication in U̇(sl2) if only some of its finite
quotients are available. We notice, although, that comultiplication allows one to
introduce a module structure in a tensor product and, with a categorification of
V ⊗n1 at hand, we can try to construct functors between On × Om and On+m
corresponding to module isomorphism

V ⊗n1 ⊗ V ⊗m1
∼= V

⊗(n+m)
1 . (44)

Before we considered projective projective functors E(a)
i ,F (a)

i : On −→ On for a
fixed n and in the notations for these functors we suppressed the dependence on
n. In this section the rank of gl will vary (we’ll have functors between categories
O(gln)×O(glm) andO(gln+m) and we redenote the functors E(a)

i ,F (a)
i : On −→ On

by E(a)
i,n ,F

(a)
i,n .

For the rest of the section we fix positive integers n and m. Let p be the maximal
parabolic subalgebra of gln+m that contains gln⊕glm and n+, i.e. p is the standard
subalgebra of block uppertriangular matrices. Denote by u the nilpotent radical
of p. Denote by M(p) the category of finitely-generated U(p)-modules that are
h-diagonalizable and U(n+)-locally nilpotent.

Let Ind be the induction functor Ind :M(p) → O(gln+m). To a U(p)-module
N ∈ M(p) it associates the U(gln+m)-module U(gln+m) ⊗U(p) N . Recall that we
denoted by FV the functor of tensoring with a finite dimensional g-module V .
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Lemma 3. Let V be a finite dimensional gln+m-module. Denote by F ′V the functor
fromM(p) toM(p) given by tensoring with V , considered as a U(p)-module. Then
there is a canonical isomorphism of functors

FV ◦ Ind ∼= Ind ◦F ′V . (45)

Proof. For N ∈M(p) we have natural isomorphisms

HomU(gln+m)(Ind ◦F ′V (N), FV ◦ Ind(N))

= HomU(p)(F ′V (N), FV ◦ Ind(N)) =

= HomU(p)(V ⊗N,V ⊗ (U(gln+m)⊗U(p) N)),

the first isomorphism coming from the adjointness of induction and restriction
functors. The third hom-space has a distinguished element coming from the U(p)-
module map V ⊗N −→ V ⊗ (U(gln+m)⊗U(p) N) given by v ⊗ n 7−→ v ⊗ (1⊗ n).
It is easy to see that the corresponding map of U(gln+m) modules

Ind ◦F ′V (N) −→ FV ◦ Ind(N)

is an isomorphism. �
Let Y be the one-dimensional representation of gln ⊕ glm which has weight

m
2 (e1 + · · · + en) as a representation of gln and weight −n2 (e1 + · · · + em) as a
representation of glm.

Let C0 be the functor On×Om −→M(p) defined as follows. Tensor a product
M ×N ∈ On ×Om with Y , and then make Y ⊗M ⊗N into a p-module with the
trivial action of the nilpotent radical u of p.

Define C : On ×Om −→ On+m to be the composition of C0 and Ind :

C = Ind ◦ C0.

Bifunctor C is exact and when applied to a product of Verma modules
M(a1 . . . an) × M(b1 . . . bm) produces the Verma module M(a1 . . . anb1 . . . bm).
Therefore, we have a commutative diagram of isomorphisms of abelian groups:

K(On)×K(Om) Υn×Υm - V ⊗n1 × V ⊗m1

?

[ C]

K(On+m) - Υn+m V
⊗(n+m)

1 .

Let us present more evidence that C is the bifunctor that categorifies the iden-
tity (44) by showing how to use C to categorify the comultiplication formula
∆E = E ⊗ 1 + 1⊗E.
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Recall from Section 3.1.1 that Ln denotes the n-dimensional fundamental rep-
resentation of gln. We can make Ln into a U(p)-module by making u⊕glm ⊂ p act
by 0. Similarly, Lm and Ln+m are U(p)-modules in the natural way and we have
a short exact sequence of U(p)-modules

0→ Ln → Ln+m → Lm → 0, (46)

which gives rise to a short exact sequence of functors from M(p) to M(p):

0→ F ′Ln → F ′Ln+m
→ F ′Lm → 0,

where F ′Ln is the functor of tensoring with Ln, considered as a U(p)-module, and
so on.

Functors Ind and C0 are exact; and composing with them we obtain an exact
sequence

0→ Ind ◦F ′Ln ◦ C0 → Ind ◦F ′Ln+m
◦ C0 → Ind ◦F ′Lm ◦ C0 → 0

of functors. We have isomorphisms of functors from On ×Om to M(p) :

F ′Ln ◦ C0 ∼= C0 ◦ (FLn × Id)

F ′Lm ◦ C0 ∼= C0 ◦ (Id×Fm)

and the isomorphism (see Lemma 3)

Ind ◦F ′Ln+m
∼= FLn+m ◦ Ind .

We thus get an exact sequence of functors

0→ Ind ◦ C0 ◦ (FLn × Id)→ FLn+m ◦ Ind ◦ C0 → Ind ◦ C0 ◦ (Id×FLm)→ 0, (47)

and recalling that C = Ind ◦ C0 we obtain an exact sequence

0→ C ◦ (FLn × Id)→ FLn+m ◦ C → C ◦ (Id×FLm)→ 0 (48)

Ei,n is a direct summand of the functor FLn and from this we derive

Proposition 10. Exact sequence (48) contains the following exact sequence of
functors as a direct summand

0→ C ◦ (Ei,n × Id)→ Ei+j,n+m ◦ C → C ◦ (Id×Ej,m)→ 0. (49)

This exact sequence can be considered as a categorification of the comultiplica-
tion formula

∆(E) = E ⊗ 1 + 1⊗E. (50)

In the same fashion, using the exact sequence dual to (46) we obtain an exact
sequence of functors

0→ C ◦ (Id×Fj,m)→ Fi+j,n+m ◦ C → C ◦ (Fi,n × Id)→ 0. (51)

We proceed to “categorify” the comultiplication rules for the divided powers
E(a)
i,n ,F

(a)
i,n .

The gln+m-module ΛaLn+m, considered as a p-module, admits a filtration
ΛaLn+m = Ga+1 ⊃ Ga ⊃ · · · ⊃ G0 = 0 such that the module Gk+1/Gk, k =
0, . . . , a is isomorphic to Λa−kLn ⊗ ΛkLm. Therefore, we obtain
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Proposition 11. The exact functor E(a)
i+j,n+m ◦ C has a filtration by exact functors

E(a)
i+j,n+m ◦ C = Ga+1 ⊃ Ga ⊃ · · · ⊃ G0 = 0

together with short exact sequences of functors

0→ Gk → Gk+1 → C ◦ (E(a−k)
i,n × E(k)

j,m)→ 0.

The exact functor F (a)
i+j,n+m ◦ C has a filtration by exact functors

F (a)
i+j,n+m ◦ C = Ga+1 ⊃ Ga ⊃ · · · ⊃ G0 = 0

such that the sequences below are exact

0→ Gk → Gk+1 → C ◦ (F (k)
i,n ×F

(a−k)
j,m )→ 0.

This can be considered as a categorification of the comultiplication formulas (7)
and (8).

Remark. In [Gr] Grojnowsky uses perverse sheaves to categorify the comultipli-
cation rules for Uq(slk). His approach appears to be Koszul dual to ours.

3.2. Zuckerman functors and Temperley-Lieb algebra

3.2.1. Computations with Zuckerman functors. Let gi, 1 ≤ i ≤ n − 1
be a subalgebra of gln consisting of matrices that can have non-zero entries only
on intersections of i-th or (i + 1)-th rows with i-th or (i + 1)-th columns. gi is
isomorphic to gl2. Denote byOik,n−k the subcategory ofOk,n−k consisting of locally
U(gi)-finite modules. Denote by Γi : Ok,n−k −→ Oik,n−k the Zuckerman functor of
taking the maximal locally U(gi)-finite submodule, and by RΓi the derived functor
of Γi. The derived functor goes from the bounded derived category Db(Ok,n−k) to
Db(Oik,n−k). Denote by Γji the cohomology functor RjΓi : Ok,n−k → Ojk,n−k. This
functor is zero if j > 2 by Proposition 3.

Recall that for a sequence a1 . . . an of zeros and ones with exactly k ones, the
Verma module M(a1 . . . an) belongs to Ok,n−k.

Proposition 12. If ai = 1, ai+1 = 0,

Γ2
iM(a1 . . . an) = M(a1 . . . an)/M(a1 . . . ai−101ai+2 . . . an).

If ai = 0, ai+1 = 1,

Γ1
iM(a1 . . . an) = M(a1 . . . ai−110ai+2 . . . an)/M(a1 . . . an).
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For all other values of (i, j, a1, . . . , an) with i ∈ 1, . . . , n− 1, j ∈ Z, a1, . . . , an ∈
{0, 1} we have

ΓjiM(a1 . . . an) = 0.

Proof. Functors Γ0
i and Γ2

i have a simple description as functors of taking the
maximal U(gi)-locally finite submodule/quotient. So the proposition is easy to
check for j 6= 1. For j = 1 it is a special case of Proposition 5.5 of [ES]. �

The simple module L(a1 . . . an) with a1, . . . , an ∈ {0, 1} and a1 + · · · + an = k
belongs to Oik,n−k if and only if ai = 1, ai+1 = 0. Therefore, a simple object of
Ok,n−k cannot belong simultaneously to Oik,n−k and Oi+1

k,n−k.

Corollary 3. If a module M ∈ Ok,n−k lies in both Oik,n−k and Oi+1
k,n−k, it is trivial.

Proposition 13. For any M ∈ Oik,n−k,

Γji±1M = 0 if j 6= 1.

Proof. We know that Γji±1M can be nontrivial only for 0 ≤ j ≤ 2. But Γ0
i±1M is

the maximal locally gi±1-finite submodule of M , i.e. the zero module (by the last
corollary). Similarly, Γ2

i±1M = 0. �
Corollary 14.

1. Functors RΓi±1[1] and Γ1
i±1, restricted to the subcategory Oik,n−k, are nat-

urally equivalent (more precisely, the composition of Γ1
i±1, restricted to

Oik,n−k, with the embedding functor Oi±1
k,n−k −→ Db(Oi±1

k,n−k) is equiva-
lent to the restriction of the functor RΓi±1[1] to the subcategory Oik,n−k
of Db(Oik,n−k).)

2. The functor Γ1
i±1 : Oik,n−k → Oi±1

k,n−k is exact.

Generalized Verma modules for gi are isomorphic to the quotients

M(a1 . . . ai−110ai+2 . . . an)/M(a1 . . . ai−110ai+2 . . . an).

Denote this quotient module by Mi(a1 . . . an−2). To simplify notations, if a1 . . .
ai−1ai+2 . . . an is fixed, we will denote M(a1 . . . ai−110ai+2 . . . an) by M10 and
M(a1 . . . ai−101ai+2 . . . an) by M01. Then Mi(a1 . . . an−2) = M10/M01.

Proposition 14.

Γ1
i±1Mi(a1 . . . an−2) = Mi±1(a1 . . . an−2).

Proof. We have an exact sequence

0→M01 →M10 →Mi → 0
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which induces a long exact sequence of Zuckerman cohomology functors

· · · → Γji−1M01 → Γji−1M10 → Γji−1Mi → Γj+1
i−1M01 → . . .

Consider the following segment of this sequence

Γ1
i−1M01 → Γ1

i−1M10 → Γ1
i−1Mi → Γ2

i−1M01 → Γ2
i−1M10. (52)

From Proposition 12, we find that

Γ1
i−1M01 = Γ2

i−1M10 = 0

and (52) becomes a short exact sequence

0→ Γ1
i−1M10 → Γ1

i−1Mi → Γ2
i−1M01 → 0.

We proceed by considering two different cases:

(i) If ai−1 = 0, then by Proposition 12 we have Γ1
i−1M10 = Mi−1(a1 . . . an−2)

and Γ2
i−1M01 = 0.

(ii) If ai−1 = 1, then Γ2
i−1M01 = Mi−1(a1 . . . an−2) and Γ1

i−1M10 = 0.

In both cases we get Γ1
i−1Mi = Mi−1(a1 . . . an−2). The proof for Γi+1 is the

same. �

3.2.2. Equivalences of categories. Let εi be the inclusion functor Oik,n−k →
Ok,n−k. Consider a pair of functors

Γ1
i−1εi : Oik,n−k → Oi−1

k,n−k

Γ1
i εi−1 : Oi−1

k,n−k → Oik,n−k.

These two functors are exact, take generalized Verma modules to generalized
Verma modules and the compositions Γ1

i−1εiΓ
1
i εi−1 and Γ1

i εi−1Γ1
i−1εi are identities

on generalized Verma modules.

Theorem 5. Functors Γ1
i−1εi and Γ1

i εi−1 are equivalences of categories Oik,n−k
and Oi−1

k,n−k. The composition Γ1
i εi−1Γ1

i−1εi is isomorphic to the identity functor
from the category Oik,n−k to itself.

Proof. By Lemma 2 it remains to show that functors Γ1
i−1εi and Γ1

i εi−1 are two-
sided adjoint. We recall that Γi : Ok,n−k → Oik,n−k is right adjoint to the inclusion
functor εi. Besides, in the derived category, the derived functor RΓi is isomorphic
to the left adjoint of the shifted inclusion functor εi[2].
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Let M,N ∈ Oik,n−k. We have natural vector space isomorphisms

Hom((Γ1
i−1εi)M,N) ∼= Hom((RΓi−1[1] ◦ εi)M,N)

∼= Hom(εiM, εi−1N [1])
∼= Hom(M, (RΓi)εi−1N [1])
∼= Hom(M, (RΓi)[1]εi−1N)
∼= Hom(M,Γ1

i εi−1N)

which imply that Γ1
i−1εi is left adjoint to Γ1

i εi−1. A similar computation tells us
that Γ1

i−1εi is also right adjoint to Γ1
i εi−1.

Remark. For an abelian category A the embedding functor A −→ Db(A) is fully
faithful and for M,N ∈ A we have canonical isomorphisms of hom-spaces

HomA(M,N) = HomDb(A)(M,N).

That permits us in the chain of identities above to go freely between hom spaces
in Oik,n−k and Db(Oik,n−k). �

Corollary 5. The categories Oik,n−k and Ojk,n−k are equivalent for all i, j, 1 ≤
i, j ≤ n− 1.

Proposition 15. Let M ∈ Oik,n−k. Then

ΓjiεiM =
{
M if j = 0 or j = 2
0 otherwise.

Proof. Γ0
i εiM is the maximal gi-locally finite submodule of M and Γ2

i εiM is the
maximal gi-locally finite quotient of M . Thus, Γ0

i εiM = Γ2
i εiM = M . It remains

to check that Γ1
i εiM = 0 for any M ∈ Oik,n−k.

The derived functor RΓi is exact and induces a map of Grothendieck groups

[RΓi] : K(Ok,n−k)→ K(Oik,n−k).

Using Proposition 12 we can easily compute [RΓi]. The bases of K(Ok,n−k) and
K(Oik,n−k) consisting of images of Verma modules, respectively generalized Verma
modules, are convenient for writing down [RΓi] explicitly:

[RΓi(M(a1 . . . ai−100ai . . . an−2))] =0

[RΓi(M(a1 . . . ai−111ai . . . an−2))] =0

[RΓi(M(a1 . . . ai−110ai . . . an−2))] =[Mi(a1 . . . an−2)]

[RΓi(M(a1 . . . ai−101ai . . . an−2))] =− [Mi(a1 . . . an−2)]
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where, we recall

Mi(a1 . . . an−2) = M(a1 . . . ai−110ai . . . an−2)/M(a1 . . . ai−101ai . . . an−2).

Therefore,

[RΓi ◦ εi(Mi(a1 . . . an−2))] = [Mi(a1 . . . an−2)]⊕ [Mi(a1 . . . an−2)]

and
[(RΓi ◦ εi)M ] = [M ]⊕ [M ]

for any M ∈ Oik,n−k. On the other hand,

[(RΓi ◦ εi)M ] = [Γ0
i εiM ]− [Γ1

i εiM ] + [Γ2
i εiM ] = [M ]− [Γ1

i εiM ] + [M ].

Thus, [Γ1
i εiM ] = 0 for any M ∈ Oik,n−k and, hence, Γ1

i εiM = 0 for any M ∈
Oik,n−k. �

Proposition 16. Restricting to the subcategory Db(Oik,n−k), we have an equiva-
lence of functors

RΓi ◦ εi ∼= Id⊕ Id[−2]. (53)

Proof. Consider the natural transformation

e : Id→RΓi ◦ εi.

coming from the adjointness of RΓi and εi. Let Ci be the functor which is the
cone of e. Then by [MP], Lemma 3.2, we have an isomorphism of functors

RΓi ◦ εi = Id⊕Ci.

From Proposition 15

CjiM =
{
M if j = 2
0 if j 6= 2.

Therefore, Ci = Id[−2] and we have the isomorphism (53). �

3.2.3. A realization of the Temperley-Lieb algebra by functors. Define
functors Vi, 1 ≤ i ≤ n− 1 from Db(Ok,n−k) to Db(Ok,n−k) by

Vi = εi ◦ RΓi[1]. (54)
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Theorem 6. There are natural equivalences of functors

(Vi)2 ∼= Vi[−1]⊕ Vi[1] (55)

ViVj ∼= VjVi for |i− j| > 1 (56)

ViVi±1Vi ∼= Vi. (57)

Proof. Isomorphism (55) follows from Proposition 16. Isomorphism (56) is implied
by a commutativity isomorphism ΓiΓj ∼= ΓjΓi for |i−j| > 1. The last isomorphism
is a corollary of Theorem 5. �

Summing over all k from 0 to n we obtain functors

Vi : Db(On) −→ Db(On)

together with isomorphisms (55)–(57). On the Grothendieck group level these
functors descend to the action of the Temperley-Lieb algebra TLn,1 on V ⊗n1 . We
thus have a categorification of the action of the Temperley-Lieb algebra on the
tensor product V ⊗n1 . This action is faithful, so we can loosely say that we have a
categorification of the Temperley-Lieb algebra TLn,1 itself. In fact if we consider
the shift by 1 in the derived category as the analogue of the multiplication by q,
then we have categorified the Temperley-Lieb algebra TLn,q.

Recall from Section 2.2 that the element Ui of the Temperley-Lieb algebra is the
product of morphisms ∪i,n−2 and ∩i,n of the Temperley-Lieb category. Morphisms
∩i,n and ∪i,n−2 go between objects n and n− 2 of the Temperley-Lieb category.
On the other hand, the functor Vi, which categorifies Ui, is the composition of
functors εi and RΓi[1]. We now explain how to modify the latter functors into
functors between derived categories Db(On) and Db(On−2) that cat be viewed as
categorifications of morphisms ∩i,n and ∪i,n−2.

Let ςn be the functor from Ok−1,n−k−1 to O1
k,n−k given as follows. First we

tensor an M ∈ Ok−1,n−k−1 with the fundamental representation L2 of gl2 to get
a gl2 ⊕ gln−2-module L2 ⊗M . Let Y be the one-dimensional gl2 ⊕ gln−2-module
with weight n−3

2 (e1 + e2) relative to gl2 and −(e1 + · · · + en−2) relative to gln−2.
Let p be the maximal parabolic subalgebra of gln that contains gl2 ⊕ gln−2 and
the subalgebra of upper triangular matrices. Then Y ⊗ (L2 ⊗M) is naturally a
p-module with the nilradical of p acting trivially. Now we parabolically induce from
p to gln and define

ςn(M) = U(gln)⊗U(p) (Y ⊗ L2 ⊗M).

Let νn be the functor from O1
k,n−k to On−1,n−k−1 defined as follows. For an

M ∈ O1
k,n−k, take the sum of the weight subspaces of M of weights e1 + x3e3 +

· · ·+ xnen − ρn, where x3, . . . , xn ∈ Z and ρn is the half-sum of the positive roots
of gln. This direct sum is a gln−2-module in a natural way. Define νn(M) as the
tensor product of this module with the one-dimensional gln−2-module of weight
e1 + · · ·+ en−2.



232 J. Bernstein, I. Frenkel and M. Khovanov Sel. math., New ser.

Proposition 17. Functors ςn and νn are mutually inverse equivalences of cate-
gories Ok−1,n−k−1 and O1

k,n−k.

We omit the proof as it is quite standard.

Corollary 6. The categories Oik,n−k, 1 ≤ i ≤ n−1 and Ok−1,n−k−1 are equivalent.

Denote by Ξn,i the equivalence of categories

Ξn,i : Oik,n−k −→ Ok−1,n−k−1

given by the composition

Ξn,i = νn ◦ Γ1
1 ◦ ε2 ◦ Γ1

2 ◦ . . . εi−1 ◦ Γ1
i−1 ◦ εi,

i.e., Ξn,i is the composition of equivalences of categories

Oik,n−k
∼=- Oi−1

k,n−k
∼=- . . .

∼=- O1
k,n−k

∼=- Ok−1,n−k−1.

Denote by Πn,i the equivalence of categories

Πn,i : Ok,n−k −→ Oik+1,n+1−k

given by
Πn,i = Γ1

i ◦ εi−1 ◦ Γ1
i−1 ◦ · · · ◦ ε2 ◦ Γ1

2 ◦ ε1 ◦ ςn.

Denote the derived functors of these functors by RΞn,i and RΠn,i. Define
functors

∩i,n :Db(Ok,n−k) −→ Db(Ok−1,n−k−1)

∪i,n :Db(Ok,n−k) −→ Db(Ok+1,n+1−k)

by

∩i,n = RΞn,i ◦ RΓi[1] (58)

∪i,n = εi ◦ RΠn,i. (59)

Recall from Section 2.2 defining relations (23)–(29) for the Temperley-Lieb category
TL.

Conjecture 1. There are natural equivalences (23)–(28) with functors ∩i,n and
∪i,n defined by (58) and (59).

The first two of these equivalences follow from the results of this section. The
relation (29) will become ∩i,n+2 ◦ ∪i,n ∼= Id[1]⊕ Id[−1].
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We next state a conjecture on a functor realization of the category of tangles
in R3. Consider the following 3 elementary tangles

1 i-1 i2 n

1 2 i i+1 n

1 2 i-1 ni

( c )

( b )

( a )

Every tangle in 3-space can be presented as a concatenation of these elementary
tangles. We associate to these 3 types of tangles the following functors:

To the tangle (a) associate functor ∩i,n given by the formula (58).
To the tangle (b) associate functor ∪i,n given by the formula (59).
To the tangle (c) associate functor Ri,n from Db(On) to Db(On) which is the

cone of the adjointness morphism of functors

εi ◦ RΓi −→ Id .

Given a presentation α of a tangle t as a composition of elementary tangles of types
(a)–(c), to α we associate the functor f(α) which is the corresponding composition
of functors ∩i,n,∪i,n, Ri,n.

Conjecture 2. Given two such presentations α, β of a tangle t, functors f(α) and
f(β) are isomorphic, up to shifts in the derived category.

This conjecture, if true, will give us functor invariants of tangles. Certain nat-
ural transformations between these functors, corresponding to adjointness mor-
phisms between the (shifted) identity functor and compositions of εi and RΓi, are
expected to produce invariants of 2-tangles and 2-knots (to be discussed elsewhere).
When we have a link rather than a tangle, the associated functor goes between cat-
egories of complexes of vector spaces up to homotopies, and the resulting invariants
of links will be Z-graded homology groups.
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4. Parabolic categories

4.1. Temperley-Lieb algebra and projective functors

4.1.1. On and off the wall translation functors in parabolic categories.
Let µ be an integral dominant regular weight and µi, i = 1, . . . , n − 1 an integral
dominant subregular weight on the i-th wall. Let Oµ and Oµi be the subcategories
of O(gln) of modules with generalized central characters η(µ) and η(µi). Then
Oµ is a regular block of O(gln) and Oµi is a subregular block of O(gln). Verma
modules Mµ and Mµi with highest weights µ− ρ and µi − ρ are dominant Verma
modules in the corresponding categories.

Let T i, Ti be translation functors on and off the i-th wall

T i :Oµ −→ Oµi
Ti :Oµi −→ Oµ.

These functors are defined up to an isomorphism by the condition that they are
projective functors between Oµ and Oµi and

1. Functor T i takes the Verma module Mµ to the Verma module Mµi .
2. Functor Ti takes the Verma module Mµi to the projective module Psiµ

where si is the transposition (i, i+ 1). On the Grothendieck group level,

[TiMµi ] = [Mµ] + [Msiµ].

Let pk be the maximal parabolic subalgebra of gln such that pk ⊃ n+ ⊕ h and
the reductive subalgebra of pk is glk ⊕ gln−k. Let Ok,n−k, resp Ok,n−ki be the full
subcategory of Oµ, resp. Oµi consisting of modules that are locally U(pk)-finite.

From now on we fix k between 0 and n. Let τ i+1
i be the composition of Ti and

T i+1:
τ i+1
i = T i+1 ◦ Ti.

This is a functor from Oµi to Oµi+1 . Similarly, let τ i−1
i be the functor from Oµi to

Oµi−1 given by
τ i−1
i = T i−1 ◦ Ti.

Projective functors preserve subcategories of U(pk)-locally finite modules and thus
functors τ i±1

i restrict to functors from Ok,n−ki to Ok,n−ki±1 . Our categorification
of the Temperley-Lieb algebra by projective functors is based on the following
beautiful result of Enright and Shelton:

Theorem. Functors τ i±1
i establish equivalences of categories Ok,n−ki and Ok,n−ki±1 .

Proof. See [ES], Lemma 10.1 for a proof of a slightly more general statement. An
alternative proof that we give below uses
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Lemma 4. The functor τ ii+1τ
i+1
i restricted to Ok,n−ki is isomorphic to the identity

functor.

Proof. We first study this functor as a projective functor from the subregular block
Oµi to itself. We will show that this functor is a direct sum of the identity functor
and another projective functor that vanishes when restricted to Ok,n−ki .

An isomorphism class of a projective functor is determined by its action on the
dominant Verma module. So let us compute the action of τ ii+1τ

i+1
i on Mµi on the

Grothendieck group level.

[τ ii+1τ
i+1
i Mµi ] = [T iTi+1T

i+1TiMµi ]

= [T iTi+1T
i+1(Mµ ⊕Msiµ)]

= [T iTi+1(Mµi+1 ⊕Msiµi+1)]

= [T i(Mµ ⊕Msi+1µ ⊕Msiµ ⊕Msisi+1µ]

= [Mµi ⊕Msi+1µi ⊕Msiµi ⊕Msisi+1µi ]

= [Mµi ] + [Msi+1µi ] + [Msiµi ] + [Msisi+1µi ]

= [Mµi ] + [Msi+1µi ] + [Mµi ] + [Msisi+1µi ].

The projective module Psisi+1µi decomposes in the Grothendieck group as the
following sum

[Psisi+1µi ] = [Mµi ] + [Msi+1µi ] + [Msisi+1µi ].

Therefore,
[τ ii+1τ

i+1
i Mµi ] = [Mµi ] + [Psisi+1µi ].

From the classification of projective functors (see [BG]), we derive that τ ii+1τ
i+1
i is

isomorphic to the direct sum of the identity functor and an indecomposable pro-
jective functor that takes Mµi to the indecomposable projective module Psisi+1µi .
Denote this functor by ℘. Then

τ ii+1τ
i+1
i
∼= Id⊕℘.

Let ξi be an integral dominant weight on the intersection of the i-th and (i+1)-
th walls. We require that ξi be a generic weight with these conditions, i.e. ξi does
not lie on any other walls. Let Oξi be the subcategory of O(gln) consisting of
modules with generalized central character η(ξi).

Let T ξiµi and T µiξi be translation functors from Oµi to Oξi and back. Then T ξiµi
takes the Verma module Mµi to the Verma module Mξi while T µiξi takes Mξi to
Psisi+1µi . Therefore, functor ℘ is isomorphic to the composition T µiξi T

ξi
µi and

τ ii+1τ
i+1
i
∼= Id⊕T µiξi T

ξi
µi .
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The category Oξi contains no U(pk)-locally finite modules other than the zero
module. Hence, the functor T ξiµi , restricted to the subcategory Ok,n−ki is the zero
functor. Therefore, τ ii+1τ

i+1
i , restricted to Ok,n−ki , is isomorphic to the identity

functor. This proves the lemma. �
In exactly the same fashion we establish that τ i+1

i τ ii+1 is isomorphic to the iden-
tity functor from Ok,n−ki+1 to itself. Therefore functors τ i+1

i and τ ii+1 are mutually
inverse and provide an equivalence of categories Ok,n−ki and Ok,n−ki+1 . �

4.1.2. Projective functor realization of the Temperley-Lieb algebra.
Define the functor Ui, i = 1, . . . n− 1 from Ok,n−k to Ok,n−k as the composition of
functors Ti and T i:

Ui = Ti ◦ T i

Proposition 18. There are equivalences of functors

Ui ◦ Uj ∼= Uj ◦ Ui for |i− j| > 1
Ui ◦ Ui ∼= Ui ⊕ Ui

Ui ◦ Ui±1 ◦ Ui ∼= Ui.

Proof. The first two equivalences hold even if we consider Ui as the functor in the
bigger category Oµ. For example,

Ui ◦ Ui = Ti ◦ T i ◦ Ti ◦ T i = (Ti ◦ T i)⊕ (Ti ◦ T i) = Ui ⊕ Ui

where the second equality follows from the result that the composition T i ◦ Ti of
projective functors off and on the wall is the direct sum of two copies of the identity
functor.

For the third equivalence the restriction to Ok,n−k is absolutely necessary. Then

UiUi+1Ui = TiT
iTi+1T

i+1TiT
i

= Tiτ
i
i+1τ

i+1
i T i

= TiT
i

= Ui.

�
This proposition gives a functor realization of the Temperley-Lieb algebra by

projective functors in parabolic categories Ok,n−k. Suitable products of generators
Ui produce a basis of the Temperley-Lieb algebra TLn,q, which admits a graphical
interpretation: elements of this basis correspond to isotopy classes of systems of n
simple disjoint arcs in the plane connecting n bottom and n top points. Moreover,
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this basis is related (see [FG]) to the Kazhdan-Lusztig basis in the Hecke algebra as
well as to Lusztig’s bases in tensor products of Uq(sl2)-representations (see [FK]).
Proposition 18 implies that to an element of this basis, we can associate a pro-
jective functor from Ok,n−k to Ok,n−k, which is defined as a suitable composition
of functors Ui, 1 ≤ i ≤ n − 1. We conjecture that these compositions of Ui’s are
indecomposable, and, in turn, an indecomposable projective functor from Ok,n−k
to Ok,n−k is isomorphic to one of these compositions (compare with Theorem 4).

In [ES] Enright and Shelton, among other things, constructed an equivalence of
categories Ok,n−k1 and Ok−1,n−k−1 (see [ES], §11). This equivalence allows us to
factorize Ui as a composition of a functor from Ok,n−k to Ok−1,n−k−1 and a functor
from Ok−1,n−k−1 to Ok,n−k. This is very much in line with the factorization of
the element Ui of the Temperley-Lieb algebra as the composition ∪i,n−2 ◦ ∩i,n of
morphisms ∪i,n−2 and ∩i,n of the Temperley-Lieb category.

We now offer the reader a conjecture on realizing the Temperley-Lieb category
via functors between parabolic categories Ok,n−k. Let

ζn : Ok,n−k1
∼=- Ok−1,n−k−1 (60)

be the Enright-Shelton equivalence of categories. Introduce functors

∩i,n :Ok,n−k −→ Ok−1,n−k−1

∪i,n :Ok,n−k −→ Ok+1,n+1−k

given by

∩i,n = ζn ◦ τ1
2 ◦ τ2

3 ◦ · · · ◦ τ i−2
i−1 ◦ τ i−1

i ◦ T i (61)

∪i,n = Ti ◦ τ ii−1 ◦ τ i−1
i−2 · · · ◦ τ3

2 ◦ τ2
1 ◦ ζ−1

n+2. (62)

Conjecture 3. There are natural isomorphisms (23)–(29) ( with q set to −1 in
(29)) of functors where ∩i,n and ∪i,n are defined by (61) and (62).

Equivalences (23) and (24) are immediate from [ES] and the results of this
section. Relation (29) is implied by the fact that the composition of translation
functors from and to a wall is equivalent to two copies of the identity functor. To
prove the remaining four equivalences, a thorough understanding of the functor ζn,
defined in [ES] in quite a tricky way, will be required.

To categorify the Temperley-Lieb algebra TLn,q for arbitrary q, rather than
just q = −1, one needs to work with the mixed version of parabolic categories and
projective functors. The conjecture of Irving [Ir] that projective functors admit a
mixed structure can probably be approached via a recent work [BGi] of Beilinson
and Ginzburg where wall-crossing functors are realized geometrically.
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We next state the parabolic analogue of Conjecture 2. It is convenient to sup-
press parameter k in the definition of ∩i,n and ∪i,n by summing over k and passing
to categories On = ⊕kOk,n−k. We switch to derived categories and extend functors
∩i,n,∪i,n and Ui to derived functors

∩i,n : Db(On) −→ Db(On−2)

∪i,n : Db(On) −→ Db(On+2)

Ui : Db(On) −→ Db(On).

Recall elementary tangles (a)–(c) described at the end of Section 3.2.
To the tangle (a) associate functor ∩i,n given by the formula (61).
To the tangle (b) associate functor ∪i,n given by the formula (62).
To the tangle (c) associate functor Ri,n from Db(On) to Db(On) which is the

cone of the adjointness morphism of functors

Ui −→ Id .

Given a presentation α of a tangle t as a composition of elementary tangles of types
(a)–(c), to α we associate the functor g(α) which is the corresponding composition
of functors ∩i,n,∪i,n, Ri,n.

Conjecture 4. Given two presentations α, β of a tangle t as products of elemen-
tary tangles (a)–(c), functors g(α) and g(β) are isomorphic, up to shifts in the
derived category.

4.2. sl2 and Zuckerman functors

The Grothendieck group of the category On = ⊕nk=0Ok,n−k has rank 2n. In the
previous section we showed that the projective functors, restricted to On, “cate-
gorify” the Temperley-Lieb algebra action on V ⊗n1 . The Lie algebra sl2 action on
V ⊗n1 commutes with the Temperley-Lieb algebra action, while Zuckerman functors
commute with projective functors. It is an obvious guess now that Zuckerman
functors between different blocks of On provide a “categorification” of this sl2 ac-
tion. This fact is well-known and dates back to [BLM] and [GrL], where it is
presented in a different language and in the more general case of slk rather than
sl2. Beilinson, Lusztig and MacPherson in [BLM] count points over finite fields
in certain correspondences between flag varieties. These correspondences define
functors between derived categories of sheaves on these flag varieties, smooth along
Schubert stratifications. Counting points is equivalent to computing the action of
the corresponding functors on Grothendieck groups.

These derived categories are equivalent to derived categories of parabolic sub-
categories of a regular block of the highest weight category for gln. Pullback and
pushforward functors are then isomorphic (up to shifts) to the embedding functor
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from smaller to bigger parabolic subcategories and its adjoint functors which are
Zuckerman functors (see [BGS], Remark (2) on page 504). Combining this observa-
tion with the computation of [GrL] for the special case of the Grassmannian rather
than an arbitrary partial flag variety, one can check that Zuckerman functors be-
tween various pieces of On categorify the action of E(a) and F (a) on V ⊗n1 . This
fact is stated more accurately below.

Fix n ∈ N. Recall that we denoted by pk the parabolic subalgebra of gln
consisting of block upper-triangular matrices with the reductive part glk ⊕ gln−k.
Denote by pk,l the parabolic subalgebra of gln which is the intersection of pk and
pk+l. The maximal reductive subalgebra of pk,l is isomorphic to glk⊕gll⊕gln−k−l.

Denote by Ok,l,n−k−l the complete subcategory of Oµ consisting of U(pk,l)-
locally finite modules. We have embeddings of categories

Ik,l :Ok,n−k −→ Ok,l,n−k−l (63)

Jk,l :Ok+l,n−k−l −→ Ok,l,n−k−l. (64)

Denote by Kk,l and Lk,l derived functors of the right adjoint functors of Ik,l and
Jk,l:

Kk,l :Db(Ok,l,n−k−l) −→ Db(Ok,n−k) (65)

Lk,l :Db(Ok,l,n−k−l −→ Db(Ok+l,n−k−l). (66)

These are derived functors of Zuckerman functors. Compositions Lk,l ◦ Ik,l
and Kk,l ◦ Jk,l are exact functors between derived categories Db (Ok,n−k) and
Db(Ok+l,n−k−l), and in the Grothendieck group of On = ⊕nk=0Ok,n−k descend
to the action of E(l) and F (l) on the module V ⊗n1 .
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