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Abstract Let G be a real reductivegroup. As follows from Plancherelformula
for G, provedby .flarish-Chand.ra, only temperedrepresentationsof G contribute
to the decompositionof the regular representationin L

2(G). Wegive a simple
directproof of this result,basedon Gelfand-Kostyuchenkomethod.Wealso prove
similar resultsfor representations,which appear in the decompositionof L2(X),
whereX is a homogeneousG-spaceof polynomialgrowth. (Seeprecisedefinition
in 3.5). Importantexamplesof suchspaceXaresemisimplesymmetricspacesand
quotientofGby arithmeticsubgroups.

0. INTRODUCTION

0.1. Let G bea realreductivegroup. Considerthedecompositionof the regular

representationof G x G in the spaceH = L2(G, ~ into a direct integral of

irreduciblerepresentations
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H [H dp~(w), where

~ is the set of equivalenceclassesof irreducible unitary representationsw,

H = w 0 w’~’ andp~is the Plancherelmeasure.This decompositionwasexpli-
citly describedby Harish-Chandra.In particular, he found out that only some

of the irreducible representationsw E ~, which he calls tempered,contribute

to this decomposition.In other words, the Plancherelmeasure~ is supported
on a subset~temp C G of temperedrepresentations.

This is not surprising,since, by definition, temperedrepresentationsare those,
whose matrix coefficientslie “close” to L

2(G). So it is natural to try to find
a direct proof of this fact, without detailed study of the Plancherelmeasure.

In this paper we give a simple proof of this result and explain the geometry
behindit.

In a laterpaperwe plan to show, that in somecasesusing this result one can
relativelyeasily find explicit formulasfor Plancherelmeasurejz~.

0.2. We will considera more general situation. Let G be a locally compact
group,r C G a closedsubgroup,X = G/l’. We assumefor simplicity that X
has a G-invariant measure and considerthe natural representationof G iii

the spaceH = L2 (X, ~ By the generaltheoremof Gelfand-Raikov,we can
decomposeH into a direct integral

H=fHdPz

.Iz

of irreducible representations.We want to understand,which irreduciblerepre-
sentationsH~cancontributeto sucha decomposition.

We will prove some results under very mild assumptionsabout G; but we
are interestedmostly in the case,where G is a real, p-adicor adelic Lie group.

Thefollowing two examplesgive the most interestingapplications.

Example1. Let C be a real reductivegroup, a: C -+ G an involutive automor-

phism,F an open subgroupin its fixed point subgroupG°.The spaceX = G/ F
is called a semisimplesymmetric space.The decompositionof L2 (X, i~~)was
described in detail by Oshima and his coauthors(see [C)sMa]and subsequent
papers). In the diagonalcase C = F x F, this reducesto Harish-Chandra’sre-
sults.
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Example 2. Let C be a real reductivegroup, F C G anarithmeticsubgroup.

Thiscasewasanalysedin detailby Laglands(see[Lan]).

Let S(X) be the spaceof smooth,compactlysupportedfunctions on X
(the Schwartz space of X). First of all, we prove that the decomposition
H = f H dp~ defines on S(X) the systemof projections cr~ S(X) -÷ H

5,
which are nonzerofor almost all z E Z. Hence,a unitary representation(p, F)

can contributeto the decomposition(*) only if thereexistsa nonzeroC-mor-
phism ~ ~S(X) -+ V.

It is convenient to move to a dual picture. Namely, each G-morphism

S(X) -~ V definesan adjoint G-morphism [3~, : V
00 -# C00 (X), where

V00 is the Gardingspace of V. In termsof morphism Cr
2 : S(X) -÷ H5 and

H5~ -÷ c 00 (X) the decomposition(*) can be written in an explicit form

(**) ~= f ~dpi,

where ~ES(X), q~=(t/~)EC°
0(X).

For any representation (p. V) we call a morphism 13: V00 -+ C 00 (X) a V-

form on X. Simple Froneniusreciprocity showsthat V-formson X = G/F cor-

respondto F-invariantfunctionalson V ~ Thus weget the following
Algebraic necessarycondition. An irreducible representation (p, V) can

contribute to the decomposition(*) only if thereexists a nonzero V-form on
X, i.e., if Hom~(V , if) ~ 0. Moreover,eachcontributionof V to (*) gives

a V-form 13 : V 00 ~ C 00 (X) and (*) canbe written in termsof suchforms as
(**)

It is intuitively clear,that not all V-forms 13: V 00 ~ C 00 (X) cancontribute
to (**), but only “tempered” ones,for which the image J3(V 00 ) lies “close”
to L2(X) . In other words, we can eliminate some forms from consideration,
using restrictions on the growth of functionsin their image.In order to do this
we needsome scale function r X -~ IR+ whichwould control the growth.
For real, p-adic and adelic Lie groups, there is usually a naturalscalefunction

r: C —~ R~ (for example,if C C CL (n, IR), we candefine it by r(g) = log
max( g g~ II)~seedetails in 4.2). It gives us the scalefunction on X by

r(x) = inf r(g) x = gx
0 for somefixed point x0 E X.

We say that the homogeneousspaceX haspolynomialgrowth if it satisfies
the following geometriccondition:

Fix a compactneighborhood B of the identity in C. Then thereexist

constants d> 0, C> 0 such that for every R > 0 the ball
B(R) = {x E X j r(x) ~ R} can be coveredwith ~ C(l + R)°’ B-ballsof
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theform Bx, x EX.
The greatestlower bound of numbers d in this definition we will call the

rank of X (notation rk(X)).
We will seethat in examples1, 2 above,the space X haspolynomial growth

and its rank is the rank which is usually associatedwith the correspondingsi-
tuation.

Ourmain result is the following
Analytic necessarycondition. Suppose X has polynomial growth. Then a

form j3 : V 00 -~ C 00 (X) can contributeto the decomposition(**) aboveonly

if for each d > rk(X).

(3(fl(l + r(x))”
2 lies in L2 (X) for each ~ E V00.

Following Harish-Chandra,we call a form /3: V 00 C 00 (X) X-temperedif

the condition (***) holdsfor some d > 0. Thenwe canreformulateourresult
as follows:

In a decomposition (**) ~ = f ~ d,u~, the Plancherelmeasure is sup-
ported on the subset Ztemp of points z E Z which correspondto X-tempered

forms
Note, that it is quite possible,that a given representationV hasmany forms,

some of them X-tempered, some of them not. This meansthat the notion of
an X-tempered representationis not well defined.Of course,in a multiplicity

free case(like theonestudiedby Harish-Chandra)onecantalk aboutX-tempered
representationsinsteadof X-temperedforms.

0.3. Let us considertwo typical examples.
Example1. C = SL(2, IR), F = SO(2), X = C/F, the hyperbolicplane.In this

case, r(x) is the hyperbolicdistanceto the unique F-invariantpoint x
0. We

will seethat X haspolynomialgrowth and rk(X) = 1.
The algebraicnecessaryconditiontells us that an irreducible unitaryrepresen-

tation (p, V) cancontribute to the decompositionof L
2 (X) only ii it hasa

F-invariant vector ~,, i.e. if it is spherical.Eachspherical V hasone V-form
/3: V~-÷ C (X) and it is completelycharacterizedby thefunction ~‘ =

It is known that unitary sphericalrepresentations V are parametrizedby one
parametersE [0, 1] U i 1R~.The correspondingsphericalfunction ~i

5(x) grows

like exp[(Re(s) — l/2)r(x)]. Sincethe areaof theball B(R) of radius R grows
like exp(R), weseethat for Re(s)> 0 the integral

~(x)I
2(l+r(x))_d d~r~

ix
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divergesfor any d, i.e. the correspondingforms are not tempered.Thus, the

analytic necessarycondition shows that only representationswith s E I IR (i.e.
representationsof the principle series)contributeto the spectraldecomposition

of L
2(X).

Example2. G = SL(2, IR), F = SL(2, Z), X = C/I’. The spaceX haspoly-

nomialgrowth, rk(X) = 1. In this casewe havebotha discreteanda continuous

spectrum.About the discretespectrumour resultstell nothing.But in the con-
tinuous spectrumthey immediatelyilliminate all EisensteinseriesE(s) for which

parameters doesnot lie on theunitaryaxis.

0.4. Ourproofsare basedon the Gelfand-Kostyuchenkomethod.The ideaof
the method is very simple. Supposewe havea direct integral (*) H = f H

2 dp~
representinga given Hilbert space H. This meansthat eachvector ~iE H is
representedby a function z ~ ,~ E H. However,this functionis definedup to
a changeon a subsetof measure0, i.e. at eachparticularpoint z EZ it is notde-

fined. In applications,the HubertspaceH usuallyhassomeadditionalstructure.
Namelyone can choosesome naturaldensesubspaceSC H of “test functions”,
endowedwith its own topology. Gelfand and Kostyuchenkoprovedthat under
very mild assumptionson S one can choosea family of continuousmorph.isms

a5 : S —* H5, suchthat for each 0 E S thesectionz ~ a5(~)represents~ EH,
Thisgivesa moreexplicit presentationof decomposition(*).

Thesimplestexampleof this is the Fouriertransform

fE L
2(JR) -+fE L2(IR), givenby Jt.~)= ff(x)e’~ dx.

This formula is well-defined for each ~ if f belongs to a subspace
S = C~”(IR) C L2 (IR). But for a generic f E L2 (IR) it doesnotmakesenseand
j~) is notdefinedfor eachparticular ~.

Decomposition(*) can be expressedeven more explicitly, if we consider
Gelfand triple S C H C S~,where S~isthe Hermitiandual of 5, interpreted
as a spaceof distributions.If we denoteby J3~: H

5 —* S~the morphism,adjoint
to cr5, then for 4 E S thedecomposition(*) takesthe form

(**) 0=f ~ d~ where ~ =/3a(0)ES~.

If S, H, H5 have compatiblestructuresof modulesoversome algebra A

(or a groupG), then all a5 are morphismof A-modules.

Surprisingly,this beautifully simple idea for a long time did not find broad
applicationsit shouldhavefound. (Regardingthis fact, it is instructiveto compare
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theremarksin [ReSi],v. III, p. 354and [Si], p. 503).

We first apply this idea to the case H = L
2(X, ~ S = S(X), describedin

0.2. This immediately gives us the algebraic necessaryconditionon representa-
tions V which canappearin a decompositionof H. Note, that in slightly dif-

ferenttermsit wasearlierdonein [Ma].
Now supposewe have found anothersubspace S between S(X) and H,

such that the pair S C H satisfiesGelfand-Kostyuchenkoconditions. Then

for almosteach z E Z the morphism a
5 : S(X) —~H5 extendsto a continuous

morphismS -* H5.
In other words, let us call a C-morphism a~: S(X) -÷ V S-temperedif it

extendsto S D 5(X). Then the statementabovemeansthat only S-tempered
morphismscanappearin the decomposition(**).

The natural choice for S is the Harish-ChandraSchwartz space %‘ (X) of

X, which is definedas follows. For each d >0, considerthespaceL
2(X, d) =

= L2(X, (1 + rf’j.z
1), where r : X -~+ IR+ is the scalefunction,discussedin

0.2; denote its Gardingspaceby L
2(X, d)00 and set ~(X) = L~(X, d) 00

It is easy to check that~’(X)-temperedmorphism a~,correspondto X-tem-
pered V-forms ~~I’ (seethe endof 0.2). Hence, theonly thingone shouldcheck

is that the pair %‘(X) C H satisfiesthe Gelfand-Kostyuchenkocondition. The
condition essentiallyis that the inclusion~(X)-÷ H is a Hilbert-Schmidtmor-

phism or; more precisely, that it can be mappedthrough a Hilbert Schmidt
morphism L -+ H for some Hubert space L. This is the main technicalresult

of the paper.
In the first draft of the paper I proved this result directly for eachof the

examples,mentioned in 0.2. Then I realized, that thereis a generalproof,
which uses only some very general geometricproperty of the homogeneous

space X = Gil’ — namely, that it has polynomialgrowth. This in turn led me
to a realization, that homogeneousspacesof locally compactgroupsin general
havevery interestinglarge scalegeometry. I includesomepreliminarydiscussion

of this geometryin section4, but it is clear to me that this is only the beginning
of the subject.

0.5. Thepaperis organizedas follows:
In section 1 we recall the Gelfand-Kostyuchenkotheory and adaptit to re-

presentationtheory.
In section 2 we prove an algebraic necessarycondition and show how it can

be reformulatedin termsof V-forms.
In section 3 we introducethe notion of weightson X (see3.1)and thenotion

of summableweights (3.2). In 3.2 we formulate the central theorem,which
shows that each summableweight gives an analytic necessarycondition. We
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prove it in 3.4 usingthe notion of a standardmeasureon X, introducedin 3.3.

In 3.5 we reformulatethis condition for spacesof polynomial growth. In 3.6
and 3.7 we extend theseresults to the case of inducedrepresentationsand to
thecasewhenX hasno invariantmeasure.

In section4 we considerexamplesof homogeneousspacesof reductivegroups
and analysetheir growth. In 4.1 and 4.2 we considerpossiblelargescalestructu-
res on C andX. In 4.3 and4.4 we list examplesof interestinghomogeneousspace
(in 4.3 we deal with groups over local fields, and in 4.4with groupsoveradeles).
In 4.5 we discussrelationsbetweenalgebraic,naturaland standardlarge scales,

and in 4.6and4.7 we supplyproofsfor examplesin 4.3 and4.4.
I would like to thank D. Kazhdanand N. Wallach for stimulatingdiscussions

and P. Sarnakfor showingmereferences[ReSi], [Si].
I thank my daughterMiriam for helpingmewith Englishgrammar.

0.6. Notations

Throughoutthepaperwe usethe following notations:
Let f, h be positive functions on a set X. We say that f dominates h (no-

tation f~h or h o~f)if h ~ Cf for some C> 0. We say that f and h are
comparable(notationf -~ h) if f-~h and h 4f, i.e. if C~f~h ‘~ Cf for

some C> 0. Similarly, if f and h are(positive)measures.
G will denotea locally compactgroup (with restriction describedin 2.1).
K C C is a regular subgroup(2.1), g the real Lie algebraassociatedwith

C (2.1).
BCG isaball(2.l).

F C C is a closedsubgroup,notnecessarilydiscrete,X = C/F (~2).

isa Haarmeasureon X, mx — a standardmeasureon X (3.3).
M~(C) is the algebraof compactly-supportedmeasureson C (2.2).
5(X) is the Schwartzspaceof X (2.2).
H is a Hilbert-space;usually H = L2(X, ~

For a C-module (p, V), V00 is its Gardingspace(2.2);spacesV”~, VK,00

are also describedin 2.2.

For a unitary C-module (p, F), a~,: S(X)-+ V is a C-morphism and

V00-* C(X)00 the correspondingV-form (2.4).
N CX is a net,usuallya sparsenet (3.2).

w isa weight on X, L~= L2(X, wpx), ‘~‘w= L~(3.1).
r is a radial function on C or on X (4.2) ra, r, r

5~~algebraic,naturaland

standardlargescales(4.2, 4.5).
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1. GELFAND-KOSTYUCHENKO METHOD

1.1. By “topological vector space” we always mean a complex topological
vector space, and a morphism of such spacesis a continuouslinear map. All

spacesS which we condisersatisfy the following Hahn-Banachcondition:
(HB) Morphisms S-# (1 separatethe pointsof S.

In particular,all thesespacesare Hausdorff.

The dual space S~we will endowwith the topology of uniform converge
on boundedsubsetsof S (see [ReSi],v. I, ch. V, §7).

The Hermitiandual of S (i.e. the complexconjugateof S*) we will denoted

by S~.
Most of the topological vector spaces S which we considerare separable,

i.e. havecountabledensesubsets.
By “topological algebra”we meana topological vector space A, endowed

with the structureof an algebra,such that the multiplication (a, b) -+ ab is

separatelycontinuousin a and b. An A-module S is definedas a topological
vector spacewith the structureof an A-module, such that the multiplication
(a, ~)-+ a~is separatelycontinuousin a and ~.

Similarly, for a topoiogicalgroup C, a representationof G (or a C-module)
is a topological vector space V with an action of C such that the multiplica-

tion (g, ~)-+g~ is separatelycontinuousin g and ~.

1.2. Let Z be a Borel space, j.r~ a measureon Z and z -÷ H
5 a family

of Hilbert spaces,parametrizedby the points of Z. Supposewe are given a

family F of section i~ : z ~ E H5 which we call measurable.We assume
- that they havethe following properties:

a) A section z i-~ ~ E H lies in F iff for eachsection s~EF the function

z ‘—i’ (~, i~) is measurable.
b) There existsa countablecollection of section {i~ } in F such that for

every zE Z vectors (~)~spana densesubsetof H5.

In sucha situation,wedefinea Hilbert space

H=f H5d~~

(the direct integralof the family H5) asfollows:

Thevector l~ in H is a measurablesection zH~~, for which

h11
2 J~1~52 dp~<~.
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Two such sectionsdefine the samevector in H if they differ on a subsetof

measure0.
This definitionis discussedin detail in [Dix], ch. II.
Supposean algebra A actson H and on all spaces H5. We say that these

actionsare compatibleif for every i~E H and every a E A the sectiona(~5)

representthe vector a(~)E H; similarly for an action of a group. We will use

thefollowing standardfacts:

LEMMA. Let r~,~2’ . . . be a sequenceof vectorsin H represented

by section

a) Supposethe sequence~ convergesto a vector ~ E H, representedby a
section rj~. Thenone can choosea subsequence~ of i~,such that for almost

all z E Z ij~ convergesto
b) Supposethat { t~} span a densesubsetof H. Thenfor almostall z EZ, i~

spana densesubsetof H5.

Proof See [Dix], Ii, § 1, Prop. 5 and8. U

1.3. Let H = f H5 ~ and S be a separabletopologicalvectorspace.We

say that a morphism a : S —~H is pointwise defined if thereexistsa family
of morphisms a~: S —* H5 for all z ~ Z suchthat for every ~ES the section
z ‘-+ a5(~)representsthevector a(s)E H.

LEMMA. a) The family of morphisms {a5} is essentiallyunique, i.e., two such

families {a’}. {a } differ on a subsetofmeasure0.
b) Suppose 5, H and H5 are modulesover a separablealgebra A, a is a

morphismof A-modules and the decompositionH = f H5 d,.L~ is compatible
with the action of A. Thenall morphisms a5 can be chosento bemorphisms

ofA-modules.Thesamealso holdsfor an action of a separablegroup G.
c) If a(S) is densein H, then for almost all z E Z a5(S) is densein H5

Proof a)Fix a densesubset{~ . . . } is S. Foreach i set
= {z E Z a5(~1)~ a~1)}. By definition, ~t(Z1)= 0. Not set = U Z1.

Then p(Z0) = 0 and for every z E Z \ Z0 we have a5(~)= a~(~)for all i.
Sinceboth a5 and a~are continuous,this implies that for eachz ~ Z0 a2 =

b) Fix densesubset {~l’~•~’~k’ . . .} in S and {a1 a } in A.
In the sameway asin a) we can find a subset Z0 C Z of measure0 suchthat

for z ~ Z0 a5(a1~1)= a.a(~.) for all i, /. Sinceboth sidesare continuous
in ~, we have a (a1~)= a.a5(~)for all i andall ~E S. Sincebothsidesare
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continuousin a, we have a5(at) = a~a (~)for all ~E 5,a EA. Now define

the family of morphismsof A-modules, a : S -+ H5, by a~= a5 for z ~ Z0
and a~=0 for zEZ0.

c) Fix a densesubset {~ ~k’ .} in S andapply lemmal.2b to {a(~~)}.

1.4. Let a : S -÷ 5’ be a morphismof topologicalvector spaces.We say that
a is fine if S is separableand if for eachmorphism -y : 5’ -÷ H = f H5 dji2 the

composition y o a : 5-4 H is pointwisedefined.
If a is a compositionof two morphisms a1 , a2, oneof which is fine, and

if the spaceS is separable,thenclearly a is fine.
Usually we will dealwith the following situation:

H=f Hdpz

is a Hilbert spaceand a : S —~H is a fine ambeddingwith a denseimage.If one

interpretes S as some ~paceof testfunctions, then it is natural to view its Her-

mitian dual 5+ as the correspondingspace of distributions and considerthe
Gelfandtriple SC H C ~ Since a S—~H is pointwisedefined,we canchoose

a family of projections a5 : S -+ H5.
If we denoteby /3~ the family of adjoint morphisms /3~: H5 ~ 5~ then

for 0 E S we have 0 = f Ø~d,u~,where = /35a5(Ø) and the equality is
understoodto hold in S~.

Supposea group C acts in a compatibleway on 5, H, H5 and the repre-
sentationsof C in H, H5 are unitary. Thenwe canchooseall a5 to be mor-
phisms of C-modules. If we define the action of C on as (g~)_ then

all morphismsP~andthe inclusion H C S~alsowill beC-equivariant.

1.5. THEOREM (Celfand-Kostyuchenko,see [GeKo], [GeVi], ch. 4 or [Ma]).
Let L bea separableHubert spaceand a: L -+ H a Hilbert-Schmidtmor-

phism.Thena is fine.

Let usrecall thedefinition of a Hubert-Schmidtmorphism.

DEFINITION. Let a : L -+ H be a morphismof Hubertspaces.We say that a
is Hilbert-Schmidtif for every orthonormalbasis{~}of L the sum

M = II a(~~)112 <00
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LEMMA, a) The sum M doesnot dependon the choice ofthe basis. Wewill

denoteit by M(a).
b) If a is Hilbert-Schmidtthen theadjoint morphism a~: H -÷L is Hubert-

Schmidtand M(a) = M(a~).

Proof. Choosean orthonormalbasis{ r~} of H. Then

M(a) ~ cr(~~)II2 = ~ n~)12 =

=1 ~ 2 ,,rEII~+~ 112 =M(a~)

which provesbotha) andb).
Wewill usethefollowing

LEMMA. Let { ~, } bean orthonormalbasisof L and { i~} a sequenceof vectors
in H. Supposethat thesum

M= ~ Il~ilI2<00.

Thenthereexistsa uniqueHilbert-Schmidtoperator a: L -÷Hsuchthat a(E1) =

= n~for all i.

Proof Uniquenessis obvious.To proveexistencewe define a by
~= ~ Since ~ I cJ 2=11 ~II 2 wehave

(E c~fl111)2 = (~ c1 I II 11)2 ~ ~ c1 2 . 2 <M 2 which shows
that thesumis convergentand that a is bounded.By definition M(a) = M. U

Proof of the Theorem. It is enough to check that for any decomposition
H = f H dp~ the morphism a: L -+ H is pointwisedefined.Choosean ortho-

normal basis {~}of L, set = a(~1)E H andchoosesomesectionsz ‘—p

representingi~. By definition

M(a) = II 112 = f II 112 ~z.

Sinceeverythingis positive,we canwrite
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M(a)= L M5 dp~ where M ~ II 2

In particular, this implies that the set Z0 = {z E Z I M5 = oo} hasmeasure0.

Now, let us define the family of morphisms a5 : L -~- H5 by a = 0 if z E
a5(~~)= for all i if z ~ Z0, i.e. if M <00, Let us show that for each

vector ~ E L the section z ~ a5(~)representsthe vector a(~)E H. The space
L,’ of all ~ which have this property containsthe basis { ~,} andhenceis dense

in L. Thus it is enoughto check that L’ is closed. Let ~ 02~. . . bea se-
quenceof vectorsin L’ and çb. -~0EL. Then a(01)-+ a(q~i)andhence,passing
to a subsequence,we can assumethat a5(0~)-÷a(0)5 for almosteach z (see

Lemma 1.2). On the otherhand,for each z a5(01)~-÷a5(~).Thisshowsthat the
sectionz~+a5(Ø)representsthe vectora(0), i.e. 0 EL’. Q.E.D.

1.6. The following lemmasare useful in proving that a morphismis Hilbert-
Schmidtof fine.

LEMMA I Let L bea separableHubert space, H = L
2(X, ~ Supposethat

for eachx E X weare givena linearfunctional a~on L suchthat
(i) For-every ~EL thefunction x -÷a~(~)is measurable.

(ii) Each ax is boundedand M = II a,~II 2 satisfies

M= Md,.L~<oo.

Then the morphism a: L -+ H given by a(~)(x) = a, (E) is Hilbert-Schmidt

and M(a) = M.

Proof Clearly II a II ~ M 1/2~ Choosean orthonormalbasis { ~} in L. Then

M(a) = II a(~~)112 = f II a~(~~)12 dp~=

f~i~j)h12df~MxxM •

LEMMA 2. Let a: ~-÷ 5’ bea morphismoftopologicalvectorspaces.
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SupposethatS is a direct limit ofan increasingsequenceofsubspaces

s1 C ~2 C . . - C 5, i.e. S =u Si and the topologyof S is the weakestone

in which all embeddings S. -+ S are continuous.Supposethat for eachindex
i the morphism a.= a I ~ Si —~S’isfine. Then a is fine.

Proof We can assume S’ = H = f H5 ~ Considerfamilies of morphism
a~5.By Lemma 1 .3.a) a.5 = a7÷1 ~ for all z outsideofa subset of measure

0. Set Z0 = U and define the family of morphisms a5 by a~= ~ a51

for z~ Z0, a = 0 for z E Z0. U

2. THE ALGEBRAIC NECESSARYCONDITION

Consider the following situation: G is a locally ccmpactgroup,F C C a clo-
sedsub-group,X = Gil’. Forsimplicity we assumethat X hasa G-invariantHaar

measure We fix j.t~ and considertheregularrepresentation7r of G in
the space H = L

2 (X, j.~). Our goal is to find somerestrictionson irreducible

representationsof C whichcanappearin the spectraldecompositionof (ir, H).

2.1. LocaL structureof G

We are interestedin applicationsto real, p-adic and adelic groups. So we
makethe following assumpitonson C.
AssumptionI. C hasa countablebase.
AssumptionII. Thereexistsa closedsubgroupK C C, suchthat

(i) K is a profinite group(i.e. K is compactand totally disconnected).
(ii) Its normalizer CK = Norm (K, C) is open in C and the quotientGK /K

is a Lie group.
A subgroup K C C satisfyingconditions(i), (ii) we call regular.

Example. If C is a real Lie groupswe take K = {e}. Forp-adic C we takeK

to be an open compactsubgroup.For adelic G we take K to bean opencom-

pactsubgroupof its nonarchimedeanpart.
Remark.Condition II is equivalentto the conditionthat C hasa finite topolo-
gical dimension(see[Ka]).

Let us describethe local structureof G. Fix a regular subgroup K C C,
denoteby G’ the connectedcomponentof GK/K, and by ~ the universal

coveringof C’.

PROPOSITION. There existsa uniquemorphism i: G -+ G compatiblewith the
projection p: G —~C’ = CK/K. Group i(G) commuteswith K and the mor-
phism i : G x K -+ C is a local homeomorphism.



676 JOSEPH N. BERNSTEIN

Proof: Replacing C with an opensubgroupwe canassumethat K is normal

in C and that thegroup C/K is connected.
Let K0 C K be an open normal subgroup.Consider the adjoint action of

C on K. Since K0 is compactand openin K, its stabilizer CK is openin

C. This implies that its image in C’ = C/K is openand,since C’ is connected,
it coincideswith C’. Since GK D K, this meansthat CK = C. Thus C/K0 ~
C/K is a finite covering,andhencemorphismp: G —~C’ = C/K can be uniquely

lifted to C/K0. Since K is a limit K = ~p K/K0, where K0 runs through
open normal subgroups,we seethat C = lim C/K0. Hencethereexistsa unique

morphism1: C —~C compatiblewith p: —~C’ = C/K.
Since C is connected,the adjoint actionof i(g) on K is trivial for all g E G,

i.e. i(G) commuteswith K. Locally the covering p: —~C’ isa homeomor-
phism, and we denoteby p~ the inverselocal homeomorhipsm.Then locally

we can define the inverseof the morphism i’: ~ x K -~C by g -+ ~, gg~1),

where~=p~(gmodK). •

Remark. It is easyto seethat the group G and the morphism i: G —~C do not

dependon thechoiceof K.
The Lie algebra g = Lie (G) we will call the Lie algebra of C. We denote

by U(g) its universalenvelopingalgebra.The pair (g, K) completelydetermines

the local structureof C.
We call a subset B C C a ball if it is a compactsymmetricneighborhoodof

identity (symmetric meansthat g E B g~1 E B). If B is a ball, then for
all n �- 1 the subset B’

3 = B - B- . . - -B (n factors)is also a ball. Any compact

subset ~2C C lies in a ball (e.g. &~C B U B ~2B U B&21 B).
Using assumptionI on C, we can choosea regularsubgroup K, a system

of normal regularsubgroups K
1 D K2 in K such that flK~ ={e}, anda

sequenceof K-biinvariantballs B0 C B1 C.... suchthat C = U B..

2.2. GardingspacesandSchwartzspaces

Let (p, F) be a topological C-module.For a regularsubgroup K C C and
k~0 we set

VK ,k = { ~ E V ~ is K-invariant andthe function

g -~ p(g)~ lies in Ck(G/K, V)}.
Further we set VK = fl VK ,k (inverse limit topology) and V~= U VK

k K

(direct limit topology). The space V° is called the Carding space of V. It is
a C-moduleand a U~g)-module.
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Let X = Gil’ be a homogeneousspaceof C, CYX) the spaceof continuous

functionson X and 7T the naturalactionof G on C(X), ir&)(f)(x) =f(g~x).
Wedenoteby C(X)00 the correspondingGardingspace.Foreachcompact &2 C X

set C
5~’={fE C(X)

001 suppfC ~Z}.The space 5(X) = U C wecalltheSchwartz

spaceof X (anotherdefinition 5(X)= (C~(X))00).

Similarly, we consider the C-module (ir, M(X)) of locally boundedRadon
measureson X, with the action (ir~g),m, f) = (m, ir(g 1)f> It is well known,
that, for any Haarmeasure onehas M(X)00= C(X)00•~i

1.

The spaceM~(C) of compactlysupportedmeasureson C is analgebrawith

respectto convolution. If (p. V) is a completeG-module,wedefinethe action
of thisalgebraon V by

p(a)(~)=( ~ aEM~(C),~E V.

Clearly p(M~(C)
00)V C V00 is densein V.

The antiinvolution g ~ g 1 on C definesan antiinvolution of the algebra

M~(C),a9..a*.If (p
1, V1),(p2, V2) havea C-invariantpairing

(,>: V1 xV2-+if, then (p1(a)v1,v2)=(u1,p2(a*)u2).

The antilinearantiinvolution a H- a+ = a’
3’ hasan analogouspropertywith

respectto Hermitianpairings.

2.3.Algebraicnecessarycondition

PROPOSITION. Let X = G/F, H = L2(X, ~ Then the natural embedding
a: S(X)—~~His fine (see 1.4).

Thispropositionmeansthat for anydecomposition

H= fHdPz

there exists a family of morphisms of C-modules a : 5(X) —~H
5, which re-

presents a~ We interpret it by saying that a representation (p, F) can con-
tribute to a spectraldecompositionof H only if there existsa nonzeroC-mor-
phism a~: 5(X) —~V. This is an algebraicnecessaryconditionof0.2.

Proof of Proposition. By Lemma 2 in 1.6 it is enough to check that for a

fixed regular subgroup K C G and a compactsubset ~2 C X the inclusion

C~”°-3’L
2(X,,U~)isfine.
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Choose k ~ dim ~g, considerin U(g) the subspaceU(g)
1’, spannedby I,

g g2 gk and fix a basis d
1 dr in U(g/’. For everyfunction

fE C
00 (X) definethe function Q(f) on X by

Q(f) ~

anddefinethe Q-normof f as

II fII~=f Q(f)d~~.

Let L2(X; Q) be the completion of S(X) with respectto this norm and
L2 (X, Q)~ the closureof the subspace c~‘~ in L2 (X, Q). Wewantto prove

that the natural inclusion a: L2(X, Q) —~L2 (X, ~ is fine, and by the

Gelfand-Kostyuchenkotheorem(see 1 .5) it is enoughto check that it is Hilbert-

Schmidt.
We will prove this using Lemma I from 1.6: for each x E X considerthe

functional a~on L2(X, Q)K given by a~(f)= f(x) and denoteby a~its
restriction to L2(X, Q)~ - We have to show that the function M~= ax 12 is

integrableon X. Clearly Mx = 0 for x E ~2and Mx ‘~M~‘lI°~~112. So
the proposition follows from the following result which we will prove in 3.4.

(*) The functional a~on L2(X, Qf isboundedand the function M~= II a~112
islocally boundedon X. U

2.4. Forms

Let usdenoteby S(X)~the Hermitian dual of S(X) and considerthe Gel-

fand triple 5(X) C H C S(X~.We will interpret S(X)~asthe spaceof distri-
butionson X. For eachC-morphism a~: S(X)—~ V, define the adjointmor-

phism a~,: V-÷S(X)~by (c4 (v), 0)= (u, a~(0)).Wewill show that a~(V~)
consistsof smoothdistributions, i.e. thereexistsa morphism f3~,: V~-+

such that a~,(v) = I3~(v)- ~ (note that t3~, dependson the choice of the
Haarmeasure ~ Any C-morphism j3: V -~C(X) we call a V-formon X.

PROPOSITION.Fix a Haar measure on X. Thenit definesan isomorphism
av *3’~vbetweenHomG(5(X), F) and HomG (V°°,C(X)°’) via

(v, a~(çb))= ~ p~,0)

Proof (i) Clearly we canreplace C by an open subgroup,so we can assume
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that C hasarbitrarily small regularnormal subgroupsK (see2.1). It is enough

to check the isomorphism Hom G(S(~~,VK) = HomG(VK~00,C(Xy” 00)

for eachof thesesubgroupsK. Hence,replacing C by K \ G and X by K \ X,
we canassumethat C is a Lie group.

(ii) Let a: S(X) -~ V be a C-morphism.We want to show that the adjoint

morphism a~maps V00 into thesubspaceC(X)p~,andhenceinto C(X)00~.

Fix apoint x E X and its relativelycompactneighbourhoodf2. By definition
of topologyon 5(X), we canextend a to a morphism a: C(X) ~ —~ V for

some k > 0.
Wewill use the following standard

STATEMENT. For every k > 0 we can find some n > 0 operatorsd
1 E U(g)’

3
and measures a. on G, supportedin a small neighbourhoodof identity, such

that
(i) a

1 are ofclass C” on C.
(ii) ~ a~* d1 = — the ~ measureat identity. (Here we identify d, with

a distribution d1~S~on G).

Now for eachvector v E V’1 and function 0 E C(X)~we have
(a~v, 0) = (a~(~p~a1)d1u),0) = (~p(a1) d1u,aØ)= E (d1v, a(lr(at) 0)),
where at aremeasureson C of class Ci’. Clearly, theright-handsideis defined
when 0 is a is-function ~ at somepoint y near x.

Thus near the point x we get a function y I-~f(y) = ~ (d1v, a(1r(u1~)~5.,))~
It is easy to check, that f is continuous, f(y) I ~C. II v II ~ (the norm of

u in V’1), andthatnearx, a+ (v) = f,1~.
(iii) Supposewe are given a C-morphism ~: V

00-÷C(X)00. We want to show

that it correspondsto a morphism a : S(X)—~V. It is enoughto checkthat for
all 0 E S(X) thefunctional u t-~(I3(v)p~,0) is boundedin 1111 ~

Fix a compact fZ C X. By definition of topologyon V00 we seethat for

some k~ 0 we havea bound

II)IlL2~l,~X)~IIvIlvk.

Asin(ii),wecanwrite lle=~aj*di. Thenfor vEV00,0EC(X)~°we
have(13(v)p~0) = (!3(u)I1~~ ir(a~)ir(d

1) 0) = E (13(p(at v) i~,7r(d1) 0).
UsinginequalitiesII j3(p(at )v) II ~ 2 ~ II p(at )v II vi’ -~ II v and

II d1 0 II L 2 ‘~ II 0 II ,~, where II II J~2 and II II ,~are normsin L
2 (~2,~u~) and in

C(Xr, we seethat (~(v)~~,0)1 ‘~ C~IIu Ik~-11011 ,~. Thisshowsthat the adjoint

morphism a is definedon C(X)~andhasabound II a(0) II ~ ~ Cl 0 II ~.

Thisprovestheproposition. •
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2.5. Frobeniusreciprocity

The spaceof V-forms on X = C/F canbe naturallyidentified with the space

of F-invariantfunctionalson V00 - Namely, to eachC-morphism /3 V00 -* C(X)00
correspondsthe functional ‘~‘ V —~ (I given by y(v) = /3(v) (x

0), where

x0 E X is the classof F. Conversely,given -y E Hom~(V
00, if) we define

/3 by the formula /3(v)(g) = ~y(g 1 v). This identifies V-forms with Homr(~‘ if)
(seedetails in [01]).

3. THE ANALYTIC NECESSARYCONDITION

3.1.Weightsand temperedforms

Let (p, V) bean irreducibleunitary C-moduleand /3: V°°-_f C(X)00 a V-form
on X. In this sectionwe prove some analytic necessaryconditionson forms
/3 which cancontributeto thespectraldecompositionof thespaceH= L2(X, ~

Supposewe are given a C-module S in-between S(X) and H, i.e. we have
G-morphisms i’ : 5(X) —~S and a’ : S—~H, suchthatboth i’, a’ are embeddings,

theimage of i’ is densein 5, and the composition a = a’ o i’ : S(X)—~H is
the standardembedding.We say that a V-form /3~, is S-temperedif the cor-

respondingmorphisma~: 5(X) —~V can beextendedto amorphisma~,: S-~V.
If the morphism a’ : S —~H is fine, then the Gelfand-Kostyuchenkomethod

implies that only S-temperedV-forms cancontributeto the spectraldecomposi-
tion of H. This condition wecall an analyticnecessarycondition.

We will choose S to be the Gardingspaceof space L2 (X, w~i
1)for some

function w on X. Sincewe want C to acton the space,we will imposesome
- restrictionson w.

DEFINITION: A weight on X is a strictly positive function w on X which

satisfiesthefollowing condition:
Foreveryball B C C thereexistsa constant C = C(B, w) suchthat
w~gx)~ Cw(x) for all g EB, x EX.

For every continuousweight w on X we define C-module (it, L) by

L =L
2(X,w,1~) and ir(g)(x) =f(g’x),fEL~.

The Garding space L, we denote by S~.
If w and w’ are comparablecontinuousweights, then the spaces L~ and

L~, coincidesas spacesof functions on X and as topological C-modules.In

particular S = S
Fix a continuousweight w and let us describe S-tempered V-forms. Let

/3: V00 -÷C(X)~be a V-form, a : S(X)—~V the correspondingC-morphism.
For each v E V~ the function f = /3(v) is definedby the conditionthat for

each
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OES(X) (*) (v, a(0))= f ~

ix

If /3 is 5~-tempered,then the morphism a canbeextendedto cV : S~,—~ V,
which would imply that the right hand side of (*) extendsto 0 E ~ This

implies that f E L2(X, w1 ~) = L~, ~. Thus,for all Sw-temperedV-forms
/3 we have /3( V00 ) C L~- 1. Conversely, it is easyto seethat this condition
is equivalentto the fact that theform /3 is ~ -tempered.

It is convenientto define C-modules L and S for all weights.This can
w w

be doneusingthe following

LEMMA. For everyweight w there existsa comparablecontinuousweightw’.

Using this lemma, we will define L~= ~ By the remarkabove,this de-

finition does notdependon the choice of a continuousweight w’ comparable
to w.

Proof of the lemma. Fix a function fE CC(C) such that f(e)= 1 and
f(s) E [0, 1] for all g E C, and define a function w’ on X by w’(x) =

sup{f(g) w(gx) g E C}. Clearly, w(x) ~ w’(x) ( C(B, w)w(x), where B is a

ball, containingsupp(f). This showsthat w’ is comparableto w and,in par-

ticular, that w’ is a weight.
Let us show that w’ is multiplicatively uniformly continuous:for every

D <I thereexistsaneighborhoodof identity UC C suchthatw’(ux)~D2w’(x)
for all U E U, x E A’. Indeed since f is continuousand hascompactsupport,

for every e > 0 we canfind a neighborhood U such that f(gu 1) — f(g) <~
for all g E C, u E U.

By definition of w’(x), we can find a g E C such that f(s) w~gx)is close

to w’(x), e.g. f(g) w(.gx) > D w‘(x). Moreover,since g E supp(f) CB,
w(gx) <Cw(x) with C = C(B, w), i.e. we can always assume f(g) ~s C ~. For

all u E U, f(gu 1) ~ f(s) — e, i.e. for the appropriatechoiceof c, we have

f(gu~)> D f~g). This implies that w’(ux) ~ f(su 1) w(gx) ~ Df(g) w(sx)

~D2w’(x). Q.E.D. U

3.2. Summable weights

A subsetN C X is calleda net if thereexistsa ball B C C suchthatB - N = X.
We say that a weight w on X is summableif for some countablenet N CX

it satisfies



682 JOSEPH N. BERNSTEIN

~ w~(n)<oo,
nEN

The following theorem, which we prove in 3.4, is the central result of the

paper.

THEOREM. Let w be a summableweighton X. Thentheinclusion 5 -+ H =

L2(X, ~A’~ is fine.

Thus, as explained in 3.1. every summable weight w gives the following

analyticnecessarycondition.

Cond(w): Only S~-tempered V-form on X can contribute to the spectral

decompositionof L2(X, tz~).
Let us discussin moredetails the notionof summableweight.

Let N C A’ bea net. We say that N is sparseif for eachball ~2C C the
numberof points in N fl ~Zx is boundedby a constant k(N, &2) independent
of x.

Criterion, a) Sparsenetsexist;

b) Let Z”T be a sparsenet. Thena weight w on A’ is summableiff it is N-sum-
mable,i.e. iff

~ w(n)~<~,
n EN

Proof a) Fix a ball B and fix a maximal (with respectto inclusion) subset

N C X such that the sets{Bn I n E N}are all disjoint. We claim that N is a

sparsenet. First of all, B2 N = X, since otherwise one can find a point
x ~ B2 - N and then the ball Bx is disjoint from all the bails { Bn ~ E N},
which contradictsthe maximality of N.

Any compact ~2 C C can be coveredwith a finite numberof shifted balls

Bg
1, i= 1,... ,k. Thenforall xEX wehave

#(Nfl&lx)~ ~ #(NflBg~-v)~<~l=k,

sincefor all

yEX #(NflBy)=# nENI{Bn 3 y}~1.
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Thus N is a sparsenet.

b) We have to check that a weight w which is N’-summablefor somenet
N’ is automatically N summable.Choosea ball B C C, suchthat BN’ = A’

and set C = C(B, w), k = k(N, B). Then we have

E w(nY’ [ ( ~ w(n~1) ~ k. C.
nEN nEN’ nENfBn’

since# (N fl Bn’) ~ k and w(n’) ‘~ Cw(n) for n EBn’.

3.3. Standardmeasureon X

LEMMA-DEFINITION. a) There existsa strictly positive measure m~ on A’

satisfying
(i) mx is a weight measure,Le. for eachball B C G thereexistsa C> 0

suchthat it(s) - mx ~ Cmx for all g E B.
(ii) For everyball B C G thereexistsa C> 0 suchthat C— 1 ~ mx(Bx) ~ C

for all x EX
b) Anymeasuremj~satisfying(i) and(ii) is comparableto mx.

c) Fix a ball B C C and a left invariant Haar measure on G. Then

thereexist constants C1, C2 > 0, such that for all positivefunctions Q on A’
andforall xEX onehas

C1 fQ(s 1x) d~G(s)~ Q(y)dm~(y) ~ c2 fQ(s-lx)dP(s)

The measure mx (or rather the comparabilityclass of this measure),we

will call a standardmeasureon A’. Note that it is quite different from the Haar

measure
11x (aswewill seein 3.6, it existsevenif doesnot).

Wewill usethe inequality c) in the proofof theorem3.2.
Proof (i) First let us proveuniqueness.If m~ is anothermeasure,satisfying

(*) and (**) then the ratio w = m~/m
1 is a functionand,moreover,a weight.

Fix a ball B C C. Then, for all x EX, m~(Bx)<C and m1(Bx)~C’,
which implies that, for some y E Bx, w(y) ~ CC’. Since w is a weight, it is
boundedon Bx by some constant independent of x, i.e. m~-~ mx. Similarly
mx ~ ~

(ii) Fix a ball B C C anddefine a function on A’ by ~B (x) = ~x(Bx)’.
We claim that VB is a weight and mx = ~‘B ~x is a standardmeasureon A’.

If B’ is anotherball, we can cover it with a finite numberof shifted balls
g1B, i = 1 k. Then ~B (x~1 =

11~(B’x) ~ ~ 11x (sB~c)~ k. ‘~x’~~
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~k. PB(x , i.e. 1~’B

whichshowsthat and ~B’ are comparable.
Let ~‘ZC C be a compact.Choosea ball B’ containing BF~.Thenfor any

gE,Q we have

v~~)_~~(Bgx)~~x~’x)1 B’~~ —

i.e. vB(x)~ kvB(gx). Thisshowsthat ~B is a weight.

This fact and the definition of ~B imply that thereexists a C> 0 suchthat
C1 ~ mx(Bx) ~ C for all x E A’, where mx = ~B ~ For any other ball

B’ the measure mj. = ~B’ - ~x is comparableto m
1, andsatisfiesCj 1

m~(B’x)~ C1. This implies that C~’ ~ mx(B’x) ~ C2 for some C2 >0,
whichmeansthat mx is a standardmeasure.

(iii) For i = 1, 2, 3 consideron C measuresa. = x(B’) ~G’ where x(B
3)

is the characteristicfunction of theball B’. Set

= it(a
1)Q, d = f Q(y)dm~(y).

)Bx

We haveto provethe inequalities C1 Q1 (x) ~ d ~ C2Q3 (x).
We can(andwill) assumethat ~ is supportedon Bx. Then

f Qdmx

ix

andsince mx isa weight measure,all integrals

[
Ix

are comparableto d.
For all b E B we have * a1 ~ a2, hence ir(b)Q1 ~ Q2. Thus for all

y E Bx we have Q2(y) ~ Q1(x), which implies that

f Q2(y)dm~~Q1(x)m1(Bx)>~C
1Q

1(x).

Since this integraliscomparableto d, weget the first inequality, C1 Q1 (x) s~d.
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Similarly, Q1 is supportedin B
2x, and for all y E B2x, Q

1 (y) ~ Q3 (x).
Thus f Q1 dm1 ‘~ Q3(x) - mx(B

2 - x) ‘~ C Q
3(x), and since the integral is

comparableto d we get the secondinequality, d ~ C2Q3 (x). U

CRITERION.A weight w is summableif andonly if

I w’dm~<~.
ix

Proof Choosea sparsenet N and a ball B C G suchthat B. N = X. Then

it is clearthat

L w~

is comparableto

~f w~dm~,
nEN Bn

whichin turn is comparableto

~ w(nY~.
nEN

This proves the criterion.

3.4. Proofof Theorem3.2

Fix a summableweight w. We want to show that the embeddingS~-~ H

is fine. By lemma 2 in 1.6 is enoughto check that for any regular subgroup
K C C and for a sufficiently large k the embeddinga: L~”‘ -+ H is fine.

This follows from theorem 1.5 and the following

PROPOSITION.Let w be a summableweighton A’, K C C a regularsubgroup,

k a natural number, k > dim g, where g is the Lie algebra associatedto C
(see 2.1). Then the natural embedding a: L,~’,’“ —+ L

2 (A’, tzx) is a Hubert-
Schmidtmorphism.
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First of all let us describethe scalarproduct on LK,lc Fix a basisd1,. . ., d

of U(g)
1’ (the elementsof the universal envelopingalgebra of g of degree

‘~ k) and for eachfunction f on A’ considera newfunction Q(f) on A’ given

by

E d

1f1

2.

Then ~ ~ is the completionof 5(X)” with respectto the norm

IIfIl~,~ = f Q(f).wd~x,

KEY LEMMA. Fix a standardmeasuremx on A’, a regular subgroup K C C,
a ball B C C and a k > dim g. Then there exists a C> 0, suchthat for any

function fE C(X)K.lc onehas

If(x)I2~<C.fQ(f)dmx.

This lemma implies the proposition. Indeed,let us considerfor every x E A’

a functional a~: S(X)K -+ if, a (f) = f(x) andset M = II ax II ~ ,~ i.e.M~

sup f(x) I 2/Il f ~,~ I f E5(X)” }. By thekey lemma,we have

If(x)12 ~C.f Q(f)dmx ~C
1~(x)w(x~’.

fBx Q(f)wd~x~Civ(x)w(xy
1 ~Il~

where m~= ~ Thus M~~C
1~(x) - w(x)~’, andhence

fM~dp~~C1 .fw~i vdp = C1 w~
1dm~<~,

By lemma 1 in 1.6 this implies that a: L~” —a-H is a Hubert-Schmidtmorphism.
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Proofof thekey lemma

Step 1. Let D be the unit ball in R” with coordinatesx1, . . . , x,~and

let k ~ n. Forevery function fE C
00(D) set

n ak 2

Q(f)=Ifl2~ E
i=1 ~i

anddefine

II fII~ fD Q(f)dx.

Thenthereexistsa constantC> 0 suchthat for all fE C00(D) I R0) I2 ~C fl
This is a standardfact, known as an a priory estimate(seee.g. [ReSi], v. I).
Step 2. For every function f E C(C)00 defineQ(f) = I d. f I 2 Thenthere

existsa constantC> 0 suchthat for all fE C(G/C,00 onehas

lf(e)12 ~<C.f Q(f)d~G.

Indeed,passingto K \ C we ian assumethat G is a Lie group. Thenchoosing

somecoordinatesx
1 x,~nearthe point e E G, andexpressingall operators

(a/axl/’ in termsof d1, . . . - d~,wereducethe inequality to theapriory estima-

te of stepI.
Step3. Fix x E A’ and considerthe projection C -÷X, g ~-~- gx. For each

function f on A’ denoteby f_f its lift to C, given by f_f(s) =f(gx). Clearly
Q(f*) = (Q(f))*

Let fE C(X)~,00 - Then

Iftx)I
2 =lf~(e)l2~<C’L Q(f*)d~ =C- fB

by step2. By lemma3.3c), the right handside is boundedby

C’~[ Q(f)dm~,

lB

whereC’ is independentof x. Thisprovesthelemmaand the theorem. U
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REMARKS 1. It is instructive to prove the estimatein the key lemmadirectly

in casesSL(2, lR)/SL(2, Z) and SL(2, IR)/SO(2).

2. With mild modifications,the proof aboveyieldsthe following

THEOREM. Let w be a summableweight on A’, k~ dimg. Let w’ beanother
weight, m ~ 0. Thenthe naturalembedding

L~k~-m-÷L~~’~is Hilbert-Schmidtandhencefine. U

3.5.Scales.Spacesof polynomialgrowth

Let w and w; be weights on A’, suchthat w -~ w’. If w is summable,

then w’ is also summableand C This rreansthat the analyticneces-
sary condition Cond(w) is stronger than the condition Cond(w’). Thus it is
natural to try to find a summableweight w which is minimal or almostminimal.

Since it dependson too many parameters,it is not clear how to look for a
minimal w. But in applicationsthe homogeneousspace A’ is usually given
with a largescalestructure.We will discussthis notion in more detail in section

4. For now, we will use only one piece of this structure— the radial function
r: A’ -+ lR~,which roughly measuresthe distanceto a basicpoint x0 E A’. This

functionhasthe following properties

(*) r is positive,locally boundedandproper,i.e. for any R E lR~the“ball”
B(R) = {x EA’ I r(x) ~<R} is relatively compactin A’.

(* *) For every ball B C C thereexistsa constantC> 0 suchthat

I r(gx) — r(x) I <C for all g EB, x E A’.
Theradial functionis definedup to the followingequivalence:
(***) r -~ r’ if (1 -I- r) and (1 -I- r’) arecomparable.

This meansthat the value of r is relevantonly for large distancesand only
up to a fixed factor.

Let us fix a radial function r on A’, anduse it to constructa “small” summa-
ble weight. Namely, we will consideronly weights,which are functions of r,
i.e. weightsof the form w(x) = u(r(x)) for somefunctionu on

Fix a sparsenet N andconsidera countingfunction

lr(t)=lrN ~(t)=#(B(t)flN) =#{nlr(n)<t}.

We call it a growth function of X. For large t it is comparableto the func-
tion lTr(t) = mx(B(t)). In particular,it doesnot dependon the choice of N.
The change of r by an equivalent function leadsessentiallyto a linearrescaling
of an argumentin it.

Let w be a weight of the form w = u(r). We claim that if for large



ON THE SUPPORT OF PLANCHEREL MEASURE 689

t u(t) ~‘ ir(t)’ + ~ or even u(t) ~- ir(t)(log 7r(t))1 + ~ for some e > 0, thenthe
weight w is summable.Indeed,let us order the points of N in sucha way
that the sequencer, =r (n

1) is increasing.Thenfor large i, ir(r1) ~ i andir(r1) i

if all r1 aredistinct.Hence

~ w(n1Y’ = C + ~ w(n1)-1 ~ C + (i(log i)’ + � ) 1< oo.

1=1 i>k i>k

The samecalculation shows that if u(t) ~ lr(t), then usuallythe weight w
is not summable.

DEFINiTION. Let X be a homogeneousspacewith a radial function r. We
say that X has polynomialgrowth if for some d ~ 0, ltr(t) “.~ (1 + t’). The
greatestlower bound of such numbers d we call the rankof A’ and denote

itby rk(X).
Let A’ be a homogeneousspace of polynomial growth. Then for every

d > rk(X) theweight w(x) = (I + r(x))d is summableandhenceonly ~

temperedformscancontributeto the decompositionof L
2 (X, j.z,~).

Usually it is more convenientto considera weakercondition. Namely,follow-

ing Harish-Chandra,we define a Harish-ChandraSchwartzspace ~9 = ‘~‘~A)by

~= nsl+ d=UflL2(X,(l+rY~zXf~m,
d ~ r) Km,d

where m, d> 0, K C C is a regularsubgroup.
We call a V-form j3: V00 -+ C(X)00 A’-temperedif it is ~‘ -tempered.In other

words, /3 is X-temperedif for some d >0 (l+rF”13(v) EL2(A’, six) for

all v E V00 (See 3.1). As we haveshown, only such forms contributeto the
spectraldecompositionof L2(X, ~

Note that the Harish-Chandra Schwartz space ~‘ is nuclear, since for
d> rk(X), k ~‘ dim g the embeddingL~~)~+Q -+ L’<~I~r)Qis Hilbert-Schmidt

for all m, Q and K (Seeremarkat the endof 3.4).

3.6.Generalization.Thecaseof an inducedrepresentation

Let (a, E) be a finite-dimensional F-module.We want to study the induced
C-module Ind~(E). Let us denoteby Cx the sheafof germsof continuous
functions on A’, and let ~‘ = Ind(E) bethe sheafof Cs-modules,whosesections
are given by functions f on C with valuesin E, satisfying f(g’y) = a(7) 1f(s),
YE F.

Clearly ~ is a C-equivariantlocally free and finitely generatedsheafof Cx~
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modules.Conversely,eachsuch sheafarisesfrom a finite-dimensionalF-module.
We denote by C(A’, fl the spaceof continuoussectionsof ~, by CC(X, ~)

the subspaceof sectionswith compactsupport, and by S(X, ~) its Garding

space.
Now suppose (a, E) is a unitary F-module.We will introducea C-invariant

scalarproduct on S(X, ~) by

(&0) [ <0x,0x~x
ix

and denoteby H = L2 (X, ~) the completion of S(X, ~) with respectto this

scalarproduct.
All the results and proofs of §2, 3 remainvalid for the unitary C-module

(it, H) with the following modifications.

Contributions of (p, V) to the spectraldecompositionof H are given by
morphisms a~: S(X, ~)-+ V, or equivalently,by V-forms /3~,:V00-~C(X, ~)00,

or, equivalently,by F-morphismsV00-+ E.
For eachweight w~we denoteby L~(~)the completion of S(A’, ~) with

respect to the scalarproduct (0, ~ = ~f <0x’ ~ w dpx, andset ~ (~)=
L~(~)00.Aform /3~:V00-+C(A’, ~)00 is S~(~)-temperediff/3~(V00)CL~i(~).

If w is a summableweigth, then only 5W -temperedformscan contributeto
the spectraldecompositionof H.

REMARK 1. Sometimesit happens,that for a nontrivial F-module (a, E) the

boundin key lemma3.4 canbestrengthened,namely

If(~)I2~<C’u~(x)-fQ(f)dmx~

where uE(x) ~ 1 is some weight, dependingon E (seeexamples4.3.4 and

4.3.5 below).
We say that a weight w is E-summableif the weight u~ w is summable

(but w itself is not necessarilysummable).Then, repeatingthe proof in 3.4,
one checksthat theorem3.2 and psoposition3.4 remainvalid for sucha weight,

andhenceonegetsa strongeranalyticnecessarycondition, Cond(w).

REMARK 2. It would be interestingto analysethe caseof an infinite-dimensional
F-module E, but I do not known how to do it. The naturalapproachwould
be to assumethat E is given togetherwith a Gelfandpair, i.e. with a fine mor-

phism of F-modules aE : E’ -+ E. After this onehasto consider S(X, ~‘) and
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completeit with respectto somescalarproductin orderto define L~(c’). How-

ever, since the action of F on E’ is not unitary, it is not clearhow to define

on S(X, c’).
It can be done in some simple cases,but thegeneralpatternis unclear.On the

other hand, I do not know examplesOf interesting applicationsin this case,

somay be this is just thewrongquestion.

3.7. Generiilization.ThecasewhenX hasno invariantmeasure

Let be the sheafon continuousmeasureson A’ (rn E if locally
it has a form m = f(it(a)ll~),f E C(X), a E M~(C)00,x E x). Thisis a G-equiva-

riant invertible sheafof Cs-modules,which is isomorphic to Ind(L~,if), where
~ is the characterof F equalto /~ ~ L~,— moduli of G and F.

We denoteby li the sheafof half-measureson X, i.e. an invertiblesheaf

of C~~moduleswith a positivity structureand an isomorphism li eli =

This sheafcan be constructedas Ind(~112,if). Let (a, E) be a finite-dimen-
sionalunitary F-module, ~ = Ind(E) the correspondingsheafand ~ = ~ e
The scalarproduct on £ definesa naturalpairing (,): ~ x c-+L~x.Usingthis

pairingwe definethe scalarproducton S(A’, ~) by

(0, I~) = (0(x), ~i(x)).

ix

The completion of S(X, ~) is a C-module (it, H), unitary inducedfrom (a,E).
All the results of Sections2 and 3 remainvalid with the following modifica-

tions:
Contributionsof V to H correspondto G-morphismsa~: S(X, ~)-+ V or,

equivalently, to V-forms : V00 -+ C(A’, ~500 or, equivalently,to F-morphisms
(p. V00)-+ (~1/2 a, E).

Forevery weight w we defineL~(~)and 5~(~)usingscalarproduct

= I (Ø(x),~(x)>w(x).
ix

A form is Sw-temperedif ~ (V00) C L - 1 (c).
The definition of a standardmeasureremains the same as in 3.3, but the

proof of its existencehas to be modified, sincein the proof in 3.3 we used the

Haar measure jz. In fact, the only thingweusedabout ~ was that it is a weight
measure.Hencein orderto modify the proofin 3.3 we needthe following
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LEMMA. Thereexistsa weight measurep on A’. U

Proof Fix a sparsenet NCA’ andaball BCC suchthatB N=X. Choose

smooth positive measures a1, a2 E M~(C)
00 such that a

1 ~ 0 and for all
gEB ir(g)a1 ~a2. Set

nEN

the sum of li-measures at n E N and p = ir(aflp (see2.2). We claim that
p is a weight measure.

Fix a ball f2 CC. Wewant to show that ir(g)p s~C- p for all gE&2, i.e.

for every positive function Q on A’ (ir(g)p, Q) ‘~ C- (p, Q). Without lossof
generality, we can assume that Q is supported in a ball Bx for somepoint
x EA’.

The function Q1 = ir(a1 )Q is continuous,positive,andhascompactsupport.
Let us denoteby A its maximum. We want to show that (p, Q) > A, and

(ir(g)p, Q)~<C-A.
By definition, (p, Q) = (p,, Q2), where Q2 = it(a2 )Q.
By the choice of a1, a2, Q2 ~ ir(g)Q1 for all g EB. In particular, if

then Q2 IPX, >A, andhence (p, Q)>A.
We canchoosea positivemeasurea3 EM (C)

00 suchthat, for all
g 1 E &2, a~lig~ a

3 * a1. Then (it(g )p, Q) = (p1 , it(a2 * ~)Q><(p, Q’),

where Q’ = -ir(a~) ir(a~)Q = ir( ~ )Q,.
Clearly, Q’ is bounded by C’A and is supported in B’x where

-B’=supp(a3)-supp(a1)-B.Hence(it(g
1)p,Q)<(p

1,Q’)<k-C’A,
where k is a boundon #(B’ x flN) (see3.2).

Therest of 3.3 goesasbefore.
In the proof of Theorem 3.2, as given in 3.4, the proof of the key lemma

remainsthe same, but now we needa modified version of the lemma.Namely

let us consider the standard measure mx as a section of the sheaf L\~.. Then
the followingversion of thekey lemmaremain true.

(*) Let B C C be a ball, K C C a regular subgroup,and k> dim g. Then
thereexistsa C> 0 suchthat for all 0 E C(X, ~

I0(x)l2 <Cm(x)f Q(0).

Proof Choose a smooth positive measure a E M~(G)~, and replace m~
by a new measure -zr(a)m~.This again is a standardmeasure,but it is already
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smoothin thesensethat it is fixed by someregularsubgroupK andfor all d E U(s)

I 7r(d)mxI~<C(d).mx.
Using the section of the sheaf 11 we will identify ‘5 with Cx arid

~ with ~ (0E~-÷f0= m~
112OEfl Since mx issmooth,wehave

Q(0) <<mi. Q(f~,)Hence,using the inequality of thekey 1emma~

Ij~x)I2~ Q(f)drn~.
)Bx

we candeducethe inequality (*)
The remainderof the proof of proposition 3.4 remainsessentiallythe same.

Namely,usingthe isomorphismof ~ with ~ wewill identify H with L2(~,drnx).

For every point x E A’ let us denoteby a~the morphism ax : S(A’, ~f -+ E,
given by ax(cb) = f~,(x). Using inequality (‘3’) wesee thatM~= II a~II~~
C- w(x)-1. This implies, that the Hilbert-Scbmidtnorm M of the embedding
a: L~(A’, ~)“ —* H is boundedby C- dim E. fw’ (x) dmx <00, which
provesproposition3.4 and theorem3.2.

4. EXAMPLES

4.1. Largescalespaces

Let M be a metric spacewith a distancefunction d(x, y). This function,
in fact, definestwo structureson M. Oneis a small scalestructure,which takes
only small distancesinto account— for instance,it will not changeif wereplace
d by d, = mm (d, 1). Only this structureis responsiblefor the topology

of M. Another is a largescalestructure,which takesinto accountonly large
distances— for instance,it will not changeif we replaced by
d

2 = max (d(x, y), 1) for x ~ y. This structurewasusedby manymathemati-

cians(seee.g.’ IGrol], [Mos]), mostly to analyzethe global effectsof hyperbolici-
ty. Let us describe some basic featuresof this structure,which we use as an

intuitive backgroundfor the discussionbelow.
We define a semimetric spaceas a set M with a distancefunction d(x, y)

suchthat

(i) d(x,y)=d(y,x)~0, d(x,x)=0 for x, yEM

(ii) d(x, z) ~ d(x, y) + d(y, z), x, y, z EM.

We say that two distancefunctions d1, d2 on thesameset M are equivalent

(notation d1 d2) if thereexistsa constant C> 0 suchthat C 1 (d, +1 ) ~
(d2 + l)-(C(d1 + 1).
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A set M with a class of equivalentdistancefunctions we call a large scale

space.

Let M, N be two large scalespaces.A large spacemap f: M -+ N is a map,

suchthat for someconstantC >0

d(f~e),f(y)) ~ C(d(x, y) + 1), x, y EM.

Two large scalemaps f1, f2 : M -+ N are calledequivalent (notationf1 -~ f2)
if the distances d(f, (x), f2 (x)) are bounded by some constant C> 0 for all

x E M.
Clearly these notions are well defined, the compositionof large scalemaps

is a largescalemap and f1 ~—f2,h1 ‘-~ h2 implies f1 oh1 —Sf2 0h2.

A large scalemap f: M -÷ N is called a large scale equivalenceif thereexists
a largescalemap h : N-+M suchthat fo h IdN, h0 f-.- IdM.
Example:The embedding 7L” -.+ R’~ is a largescaleequivalence.

Let M be a largescalespacewith a distancefunction d. Let R E R’
1. For

each point x EM consider the ball B(x, R) of radius R around x, i.e.

B(x, R) ={y EMI d(x, y) ~ R}. ForanysubsetNCM wedefineitsR-neigh-

borhoodB(N,R) by

B(N,R)= U B(n,R).
nEN

We say that two subsetsN, N’ CM are equivalent if for some R > 0 B(N, R) D N’
and B(N’, R) J N. Clearly, in this caselarge scalespaces (N, d) and (N’, d)

are canonicallyequivalent.
We say that a subsetN CM is a-net if it is equivalentto M, i.e. M = B(N, R)

for some R > 0.
A net N C M is called sparseif for any R > 0 the numberof points in

N fl B (v, R) for x E M is uniformly boundedby a constant k = k(N, R).

For a fixed point x E M and a sparsenet N C M we considera counting
function TNxd(t)= #~nENId(x, n)~t}.

The following statement is straightforward:
(*) Let (M, d), (M’, d’) be equivalent large scalespaces,x E M x’ E M’,

N C M, N’ C M’ sparsenets.Thenfor someconstant C> 0

1 +itN.f~j~(t) ~ C(l +itNXd(Ct))

This shows that the function it, which we call a growth function of the
space M, is well defined up to comparabilityand linear rescalingof the argu-
ment.
Esamples1: IR’~ has polynomialgrowth.Namely, ir~~(t)— t~, i.e. rk(IR°)= n
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2. The hyperbolic spaceH” has exponential growth. Namely, for large t

exp(C1t) c~ 1r117, (t) .c~exp(C2t)

Remark 1. It would be useful to have some geometricpicturefor a largescale
space defined up to a large scale equivalence.One of the approachescanbe to
use Gromov’s limit procedure,describedin [Gro2 I Namely,let (M, d) be a
large scale space.Fix a point x0 E M, and considerthe family { M~,x0 } of
semimetric spaces,where X E R+ * and M~ is the set M with the distance

function Xd. Supposethat for X -* 0 thefamily {M~x0} hasa limit (Y, d~)
in a senseof [Gro2].

Then this limit is a metric space (Y, x0) definedup to a Lipschitz isomor-
phism,and it containssomeinformationaboutthe original spaceM.

Remark 2. In fact, the objectswe havediscussedshouldbe called connected
large scale spaces.The general notion of a large scalespaceshouldbe based
on a distancefunction d which takeson valuesin IR+ U oo.

4.2. Largescalestructureson G and X

DEFINITION: Let C be a locally compactgroup. A radial function on G is a

locally boundedfunction r: C R~suchthat

(*) r(g) = r(g 1) ~ r(,,g1 . g2) ‘~r(,g1)+ r(g2), g, g1, g2 E G.

Two radial functions r and r’ arecalledequivalentif (r’ + 1) is comparable
to (r+ 1), i.e. for some C>0 C~(r+ l)~r’ + I <C(r+ 1).

Given a radial function r on G, we will define a distancefunctionon every

homogeneousC-space A’ by d(x, y) = inf{r(s) I gx = y)} for x ~ y. The
equivalenceclassof functions r definesa largescalestructureon X.

Remark:If A’ is a nonhomogeneous C-space, this definition is still applicable
if we allow d(x, y) to take on infinite values. Theresultinglarge scalespace
will be disconnected.

Usually we will fix a point x0 E X andconsidera function rx (x) = d(x, x,~
which we also call a radial function on X. We say that the function rx on A’
isproperifforanyR E lR’~ the ball B(R)={x I r(x)~R} is relativelycompact.

Note, that we can alwaysreplace r by an equivalentcontinuousradial func-
tion (seethe trick in 3.1). Thenevery ball B(R) will be closed.

A weight w on A’ is called r-admissibleif thereexistsa C> 0 such that

w(gx)~e’~~~w(x) on GxA’.
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In other words, w is r-admissibleif the map w : A’ -~ lR+* is a large scale
map,wherethe distanceon JR4* is definedvia the isomorphismlog: JR4* ..+

Comparableweightscorrespondto equivalentlargescalemaps.
Given a proper radial function r

1 on X, we define the growth function

it~(t) as in 4.1. In otherwords,wefix a sparsenet N C A’ andset
itN(t) = # {n EN I r~(n)~ t} = #(N fl B(t)). As we saw in 3.5, it also canbe

definedas it1(t) = m~(B(t)),where mx is thestandardmeasureon A’.
There are severalways to introducea radial function on C. Let us discuss

someof them.

1. Naturallargescale

Supposethat C is compactlygenerated.Fix a ball B C C, generating C,

and considertheradial function r~(g) = min{ k g E B”}.
It is easy to see that r~ is a properradial function. Up to equivalence,this

function doesnot dependon the choice of B, and it definesa largescaleon

C whichwecall natural.
Note that r~ dominatesall the other radial functionson C. Indeed,if r

is anotherradial function, then on B it is boundedby someconstantC. Hence
rIBk ~ kC, i.e. r~C- r~.

2. Algebraic largescalestructures

Let F be a local field, II — the standardnorm on F. For every n we in-
troduce the norm II II on the vector space F” by II v = (vi,..., v,,) II =

max v1 ~ andconsiderthe operatornorm on thegroup GL(n, F), II g II =

sup {I~gvIl/Il v I~v E F” \ 0}. It is easyto seethat if g = (sn), then II gll =

max g~1I in the non-Archimedean case and II g II max I g11 I in any case.
‘.1 ‘1

We define a proper radial function r on CL(n, F) by r(s) = max(log II g II~
log II g 1 lI) Let G be an algebraicgroupover F, C = G(F) the locally com-

pact group of its F-points. Choosea faithful representationp : G -÷ GL(n)

for some n, anddefine a radialfunction r~on C by rn(s) = r(p(g)).

LEMMA. (See4.5)a) r~ is a proper radial functionon C. Its equivalenceclass
doesnot dependon the choice of p. We call it an algebraic large sclaeon C

(notation ra).

b) Let C be a reductive F-group. Then C is compactlygenerated,and
thealgebraic largescale ra is equivalent to thenatural largescale r~.

The caseofadelicgroupswewill discussin 4.4.
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4.3.Examples.Reductivegroupsover local fields

Let F be a local field, G a reductivealgebraicF-group, r = ra the algebraic
largescaleon G (it is also equivalentto thenaturallargescalern).

We considerseveralexamplesof subgroup I’ C C, and describethe growth

of homogeneousspacesA’ = C/F. The proofs are given in 4.6.
Example 1: Let C0 be a reductiveF-group~G = C0 x C0, F = /~G0 (the

diagonal subgroup), A’ = C/F G0. Then A’ haspolynomial growth, rk(A’)
equalsthe split rankof C0.
Example2: F = K — the maximal compactsubgroupof C (or F is an open
subgroup of K). Then A’ haspolynomialgrowth, rk(X) equalsthe split rank

of C.
Example3: F = {e} and C is not compact.Then A’ = G hasexponentialgrowth.
Example4: C is a reductivegroup over R, F C C an arithmetic subgroup.
Then A’ = C/F has polynomialgrowth. If F arisesfrom analgebraicgroup
G over~Qof split rank d, then rk(X) = d.

Example4’: In example4, consideran inducedG-module H = Ind~(E), where
E is a unitary F-module. ‘Then some weights w which are not summablecan

beE-summable(seeRemark1 in 3.6).
For example,considerthe case C = SL(2,K), F = SL(2,7L). Then the weight

w = (I + rY’ is summableiff d> 1. SupposeE is a F-module,which does
not havevectorsinvariantwith respectto thesubgroup

in
~ CF

Thenit is easyto check that in this caseall the weightsareE-summable.In other

words, in this casethe passagefrom the trivial F-moduleto F-moduleE effecti-
vely reducesthe rankof theproblemfrom 1 to 0.
Example5: F = U — a maximal unipotentsubgroupof C. Then A’ has poly-

nomialgrowth, rk(X) equalsthe split rankof G.
This spaceappearsin the study of principle seriesrepresentationsand in the

study of Whittaker models. Note, that in the last case when we study
H = Indg (~), where 1i : U -+ if * is a nondegeneratecharacter,thereexist

weights w which are ~‘-summablebut not summable(see Remark 1 in 3.6).
For example, consider the case C = SL(2, IR). Using Iwasawadecomposi-

tion C = KAU, where K = SO(2), A = {a(y) = diag(y, y
1)i y> o}, we

seethat as a largescalespaceA’ = C/U is equivelentto A and

r~(x)’-~~logy~for x=ka(y).

Let w(y) be any weight on A (andhenceon X). It is easyto checkthat
w is summableif
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f
io

and w is 0-summableif

w ‘(y) dy <00.

Example6.’ Let a : C -+ C be an involutive automorphism, F an opensub-
group of finite index in the group C° of its fixed points, A’ = C/F a semi-
simple symmetric space.Then, if F = IR, A’ has polynomialgrowth, rk(X)

equalsthe split semisimplerank of the symmetric pair (C, F). Probably the
sameis true for any ldcal field F provided char(F)~ 2 (see4.6).

4.4. Examples,Reductivegroupsover adeles

Let F be a global field, { p}-placesof F,

= H” F
p p

the adeles of F.
For each n we introducea radial function r on CL(n, IA) by r = ~ ri,,,

where for g=(g~)r~(g)=r(g~).
Let ~ be an algebraic F-group, C = ~( IA) — the locally compactgroup

of its adelic points. Let us choose a faithful representationp : G —~CL(n) over
F, and define a radial function r~on C by r~(g)= r(p(g)).

LEMMA: (see 4.5). r~ is a proper radial function on C, whose equivalence
class does not depend on p. We call it analgebraicscaleon C (notation ra). U

In the examplesbelow, we condisera reductive group C with large scale
r.
Example1: Let G be a reductive F-group, C =G(D\), F =G(F). Then

X = C/F haspolynomialgrowth, rk(X) equals the split rank of C.

Example2: Let P C G be a parabolicsubgroup, U its unipotent radical. Set
G = G(A), F = P(F) - U(LA). Then A’ = C/F haspolynomialgrowth, rk(A’)

equalsthesplit rankof G
Example 3: G = G0(IA) x G0(L7A), F =.C0(IA) the diagonalsubgroup.Then

X = G/F has exponentialgrowth.
Example 4: C = G(IA), F = U( IA), where U is a maximal unipotentsubgroup
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of G. Then A’ = G/F has exponential growth.

4.5. Algebraic, natural and standard large scales

In this section we discussthe relation betweenalgebraic and natural large
scalesfor groups over local fields and adeles.We also introducethe standard
radial function, which is usually equivalent to the algebraicand naturalones,
but hastheadvantageof a morerigid definition.

First of all, let us prove lemmas 4.2 and 4.4. Let Q be an algebraicgroup

over a local field F, p : G —* GL(n) a faithful (algebraic)representation,rp
thecorrespondingradial function on G, r~(~g)= r(p(g)).

Since r is a proper radial function on CL(n, F), r~ is properon C. In
order to prove that fui.ctions r for different p are equivalent,it is enough
to check that for any representation a : C —~CL(m) one has r0 4 (1 + rn).

Let usdenoteby L the classof all the representationsa which satisfy this
condition. It is easyto seethat if a E L then a* E L, and that any represen-
tation a’ isomorphicto a subquotientof a belongsto L. Also, if a, r EL,
then an rEL and a ®r EL.

Any representation a is a submoduleof a direct sum of severalcopiesof

the regular representation (R, FEC]) in the spaceof regularfunctionson C.
Considera submodule (r, M) C (R, F[G]), spannedby the matrix coefficients
of p and p’

3’. Since r is a quotientof a direct sum of n copiesof p n
it belongsto the class L. Since G C GL(n), M generatesFIG] asan algebra.

The propertiesof the class L imply that any C-submodulea C F[’G] belongs
to L, andhenceany C-modulebelongsto L.

Now consider the adelic case (lemma 4.4). The function r = ~ r,, on
CL(n, IA) is proper, sincefor any C> 0 thereexist only a finite numberof

places p, such that r~ cantake on valuesbetween 0 and C. Hence if G
is an F-group and p : G -.÷ CL(n) a faithful algebraicrepresentation,then the
function r~(.g)= r(p(g)) on C = G(/A) is proper.

The proof that up to equivalencerp doesnot dependon p is the sameas
in the local case,but one hasto be a little bit morecarefulwith tensorproducts.
Namely, let a, r be two representationsof Q. Thenit is clear that r,,

r
0~+ ~ + C~ where C,, is a constant,which doesnot dependon g E C

and C,, = 0 if p is a non-Archimedeanplace.Sincethereis only a finite number

of Archimedeanplaces, r® ~ r + r + C, and the rest of the proof is the same
as above.

Now let us prove lemma 4.2b. Let G be a reductive group over a local field

F. Choosea maximal split F-torus A C G and find a lattice (i.e. a finitely gene-
rateddiscretefree abeliansubgroup) L C A such that AlL is compact.By
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Cartandecomposition,thereexistsa ball B C C suchthat C = B- L B. In
particular, C is compactlygeneratedand it is enoughto check the equivalence
r1 — r~on the lattice L.

Suppose ra is defined using a representationp : C -# GL(n, F). Since A
is split, we can diagonalizeit in somebasis, i.e. we canassumethat p(A) con-
sists of diagonal matrices.Then it is clear that on L r~4 (1 + ra). Since
dominatesany radial function,we seethat ra r~,Q.E.D.

It would be nice to havean analogouslemma for adelicgroups.At first glance

this seems impossible, since adelic groups are not compactly generated.But

it turns out that in the most interestingexamples,4.4.1 and 4.4.2, it is possible
to do.

DEFINITION: Let G be a locally compactgroup, A’ = C/F its homogeneous

space.We say that X’ is compactlygeneratedif
(*) Thereexists a ball B C C, suchthat the subgroup CB = UkBk, generated

by B, acts transitively on X. We denoteby dB the correspondingdistance
function on X, dB(x,y) = min{ki y EB”x}.

(**) For large enough balls B the correspondingdistancefunctions dB

are equivalent.
Given a compactly generated X, we define the natural large scale on X

by usingthe distancefunction dB for sufficiently large B. In turn, we define

a radial function r~ on C by rn(s) = sup{dB(sx,x) x E A’}. Notethat the
radial function r~(x)= dB(xO, x) is proper, while the function r~ on C is

not necessarilyproper.

LEMMA. In examples4.4. 1 and 4.4.2 the space X is compactlygeneratedand
the natural large scaleon A’ is equivalentto the algebraiclarge scale. Moreover,
the natural radialfunctionis equivalentto thealgebraiconeon thegroup G/ZJF),

where Z is the centerof G. U

Let C be a locally compactgroup, F C C, X = C/F. Let us assumethat A’

has a C-invariant measure As shown in 3.3, one can also constructthe

standardmeasuremx on A’, which is canonicallydefinedup to comparability.
The ratio v = m~~ is a weight, which we call the standardweighton A’.

Let us define the standardradial function ~ on A’ by r~~(x)= logv(x)
This function isdefinedcanonicallyupto the addition of a boundedfunction,

which is much more rigid than our constructionsof functions ra and r0 - In
some interestingcases, notably in examples4.3.1, 4.3.2, 4.3.4, and 4.4.1, for
semisimplegroups C, this function is equivalentto r0 and ra. This shows

that in thesecasesthereis a naturalchoice of a radialfunction on X, which
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is defined up to the addition of a boundedfunction. The correspondingradial
function on C canbe chosenas r(g) = sup log v(gx)— log v(x) I

4.6. Proofsfor 4.3

In this sectionweanalyzeexamplesof homogeneousspaces A’ listed in 4.3.
In eachcasewe will try to constructa model of X asa largescalespace.Given

sucha model, it is easyto describethe growth functionof A’.
We are mostly interestedin the casewhere A’ has polynomialgrowth. In

thesecaseswewill model A’ on the following “elementary”space.
Let a be a finite dimensionalEuclideanspace, W C Aut(a) a finite reflection

group a+ C a Weyl chamberfor W. We consider a as a largescalespacewith

thestandarddistanceanu a~asits subspace.Notethat a~—gjW.

Let G be a locally compactgroup with a radial function r, X = G/F its
homogeneousspacewith the correspondingdistance function dx. We will

call an a~-model of A’ alargescalemap m : X -+ a whichsatisfiesthecondition

(M) below. This condition essentiallyrequiresthat A’ could be coveredby a
finite numberof subsets~ - . - , Sk (which we call SIegeldomains),suchthat

for any i m : Si -÷ g would be a large scaleequivalenceof S. with a~C a~
Remark 1: We will not check it, but in the examplesbelow one can choose
Siegeldomains Si,..., 5k in sucha way that for i ~ / m(S

1 fl S.) liesin a
neighborhoodof a wall of a+. Moreover, it seemsthat X is glued from k
copiesof a~ in such a way that all the glueingsare along the walls. Thisvague
statementprobably can be madepreciseif we replace A’ and a+ by their

Gromov’s limits.
Remark2: The model map X —* ~ is usefulin detailedharmonicanalysison X.
The reasonis that any weight function w on a~gives a weight on A’. Thus
we have more freedom than just consideringweights which are functionsof

rx (see 3.5). In particular,by choosingappropriateweights, we can analyze
functionswhichhavedifferentgrowth alongdifferent facesof g~.

To describea Siegeldomain S in X is the sameas to describea large scale
section K : a

4 ~ X. We wantto havesomeexplicit descriptionof sucha section.

One of the difficulties here is that in the caseof p-adicfields the space A’ is
totally disconnected,so it is difficult to represent K by a map. So we adopt

the following:

DEFINiTION: Let A’ = C/F be a homogeneousspace, p: C -# A’ the natural
projection. Let m : A’ —* a be a large scalemap. A Siegel section of m is any
pair (L, K) consistingof a compact lattice L Ca and a grouphomomorphism
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L -~C, such that on the semigroup L4 = L flat the composition

m p~~: L4 -÷ais equivalentto the standardembeddingL~-~a.

Given a Siegel section x : L —~ G and a ball B C C (preferablylarge) we

define a Siegeldomain S= S(x)CA’ as S=B- p~K(L4). Clearly pK: L~-÷S
and m : S -~a give mutuallyinverselarge scaleequivalencesof L4 a4 and S.

We say that m : A’ —p a is an a4-model of A’ if it satisfiesthe following
condition:

(M) Thereexist Siegel sections K. of M, i = 1, 2 k, k ~ I, anda ball
B C C, suchthat the correspondingSiegeldomainsS~cover A’.

Let m :X--a be an a4 -model Thenthe following factsareobvious.
(i) A’ haspolynomialgrowth, lrx (t)

1d, where d = dim a

(ii) Replacing M by an equivalent map, we can assumethat m(X) C ~.

(iii) The collection of Siegel sections K ~ Kk completely determines

m up to a largescaleequivalence.

Thus in order to constructa model of A’ we haveto find an appropriatetriple
(a. W, a~); detme a large scalemap m : A’ —~a describesectionsK1 L —~C

and prove that they are Siegelsections;and prove that for someball B Siegel

domains S~would caver A’ (usually this is the most difficult part). Let us

describestepby step,how weare goingto do this.
We fix a connectedreductivegroup G overa local field F, set C = ~(F)

andconsidersomehomogeneousspaceA’ = C/F.

Step1. The elementaryspace a is in fact a model of a split torus. Suppose

we are given a split torus A over F. Considerthe lattice L = Hom(CM, ~)
of cocharacters(or one-parametersubgroups) of A and the dual lattice

L* = Hom(A, Cm) = Horn (L, 7L) of charactersof A.
We want to constructa large spaceequivalencebetween L and A. In order

to do this, fix an element c E F* suchthat I c > 1 and definean embedding

L ~ A by i(~)= ~(c); sometimeswe will identify L with its imagein A.
Since A/L is compact, i is a large scaleequivalence.In order to describean

inverse map, let us considerthe linear space ~ = L nIR, which is equivalent
to L as a largescalespace.

It is easyto check that there existsa uniquehomomorphism j: A -÷ a which
satisfiesthe following condition:

(*) For any A E L* (A, j(a)) = log X(a) j/log I c I . It is also clear that

j- 1: L -÷L is the identify homomorphism,so i and / give mutually inverse

largescaleequivalencesbetweenL a and A.
Now supposese aregiven a root system ~ C L* and a positive root system

~ C ~. We denoteby W the Weyl group of ~, acting on a, and by a~
its Weyl chamber,correspondingto ~ i.e. a

4 = {t EaI (-y, t) � 0 for all

yE ~ We alsoset L4 = L flj~, A4 =/ 1(a~).
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Step2. Supposewe are given (,~,~, ~) and a reductivegroup Q. Let us

fix a family of embedding K : A —~G, which areall conjugateundertheadjoint
actionof Q(F) and havethe following property:

K : A -* K(A) gives anisomorphismof E C L* with theroot system
~(K(A), C) C L*(K(A)).

The embedding K from our family we will call sections.Eachsection K

defines(andis determinedby) a homomorphism~: L -3’ G, 2 -+ K(i(2)).

Let (p, V) be an algebraic C-module. For any K the representation
p~K :A -# GL(V) isdiagonalizible,i.e. V=e V, where,uEL* andonJ~jA

acts by multiplication with characterp. We denoteby P(V) C L* the set of

weights of V, i.e. P(V) = I V ~ 0). Sinceall sections K are conjugate

thisset doesnot dependon K.

We say that V is a highestweight moduleif thereexistsa weight A E P(V)

suchthatany otherweight p EF(V) hasaform p = A — ~2n .‘y,
n7 � 0. Sucha weight A, which is obviouslyunique,we call thehighestweight
of V.

Givena a-module (p. V), we definea function my: C -+ JR by

m~(g)= log p(g) II where II II is the norm on GL(V), definedwith respectto

some basis in V. Clearly my is a largescalemap, definedcanonically up to
a large scaleequivalence.If V is a highestweight modulewith thehighestweight
A, then for any section K : A -+ G the function m~(K(

2)) on L4 is equivalent
to the function 2 -* (A, 2) log I c~.Indeed,we canassumethat the representation
p - K : A -~ GL( V) is diagonalizedin the basisof V, usedto constructa norm

on CL(V). Thenfor every 2 EL the matrix pK(Q) hasentries
I p E P(V)}. If 2 EL4, then (ja, 2) ~ (A,2) for all p EP(V), andthere-

fore II pK(2) = J c I (X,Q> andm.~(i<(Q))= (A, 2) log I c

Step3: Now definea function m~(g)= inflmv(.g’y)~.yEF}.It is well defined

‘~ {iI ~(~) , E F) is boundedfrom 0. This is nota restrictivecondition,and
we will consideronly the C-modules V for which it holds. The function m~

is right F-invariant,and hencedefines a map ~ : A’ -+ K. This is a large
scalemap definedcanonicallyup to a largescaleequivalence.

We say that a section K : A ~ G is (F, V)-specialif the functions m~and

mi,. are equivalent on K(L4). This is equivalentto thefollowing condition:

(*) Thereexistsa C> 0 suchthat

Il~(z)ii—~C~~p(gyflIforall gEK(L4),

7EF.

(in the example below, this inequality would hold for all g E K(L), y E P).

Now supposewe havechoosenacollection of C-modules (p1. V,),
i = 1 2, suchthat their highestweights A1, . . . , A~form a basisof

D L*. Then A1, . . . , A1 definea coordinatesystemon a, sowe candefine
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a map m : A’ -3’ a by condition (A, m(x)) = m’, (x)/log c I . This is a large

scalemap, which is definedby collection { V,} up to a largescaleequivalence.

Let ic : A -÷G be a sectionspecialfor (F, V1), i = I 2. Thenfor any
j m’~,O~(2))—‘ m~.(K(Q)) — (A,, 2) log I cj asfunctionson L

4. Thismeans

that on L4 the n~iap 2 ‘-~ mpK(2) is equivalent to the standardembedding
-÷~, i.e. that ~: L —~C is a Siegel sectionof m.

To summarize,in order to constructa model of A’ we haveto choosea torus

A, root systems ~, ~ anda family of sections K : A —* G; choosea collection
of C-modules V

1, . .. , V~,whosehighestweightsform a basisof a* andprove
that thereexist sections K1 Kk, which are specialfor (F, V1), and a

ball B C C suchthat the SiegeldomainsS~= BpK1 (L~) cover A’.
Before we begin with the detailed analysis of examples,let us makesome

elementaryobservations.
Fact 1: Let k be a field, G a connectedreductive k-group, A C G a k-split

torus, ~ = E(4, G). Fix a positiveroot system ~ C ~. Then there existsa
family { V~} of highest weight C-moduleswhosehighestweights A, span L*
as a group. In particular,one canchoosea collectionof C-modules V1,. . - , 1/5,

whosehighestweightsform a basisin a~D L*.
Indeed,choosea CartansubgroupC C. a. containing A. If C is k-split,

then the family V~} of all irreducible C-modulessatisfiesthe aboveconditions
for C arid hencefor A. If C is not split, choosea finite extension k’ of k
over which c splits, find a family { V } of C-modules,which are defined over

k’, whosehighestweightsspan L* and considerthe G-modules V1 obtained

from V by restricting scalars from k’ to k. Thesemodulesare reducible,
but since P(V1) = P(V’,) they are highest weight modulesand their highest

WeightsspanL*.

Fact 2: Let F1 C F be a subgroupof finite index, A’1 = C/F1, p1 : A’1 -÷X
the naturalprojection.Then for any C-module V the functions m~and m~’
on C are equivalent.If we fix a collection of a-modules(p1. V1), i = 1, - . . ‘2

anddefine the maps m : X-÷.g.,m1 :çA’1 -~aas above,then m1 is equivalent
to mp1 : A’1 -*a. The map m1 is an a~-modeliff m is an ~ -model.

Indeed,write F asa finite union F = U F1 ‘~,. Thenclearly
inf{II p(gy) ~ E F } is comparableto inf~ip(g’y) , y E F1). This meansthat
on G m~.— mr’, and on A’1 m1 =mp. If K.:L

4 —*C isafamilyofSiegel

sectionsfor X
1 such that the correspondingSiegel domains S~cover

then the sameis true for A’. Conversely,let K. : L
4 -~C be a family of Siegel

sectionsfor X and B a ball such that the sets S. = B . p - K~(L4) cover A’,

i.e. C = UB - K

1(L

4)F. Considersections K.. = 7JK~7/1 : L~—~C and a ball

B
1 containing By 1 Then K11 are Siegel sections for A’1, and C =

U B1 K,1(L
4 )F

1 i.e. Siegel domains~ cover X1.
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Now wearereadyto analysethe examplesfrom 4.3:

Example4.3.1. G = G0 x G0, F = i~C0.Choosea maximal split torus A C
and a positiveroot system ~ C ~ = ~(A, ~ We fix onesection ~: A -p9,

K(a) = (a, e). To each G0-module(p0. l”~) we assigna G-module p(V) by
V = End(V0),p(g1, g2)v = p0(g1)vp0(g~).If V0 has highestweight A0,

then V hasthesamehighestweight A0.
In order to check,that the section K iS specialfor (F, V), let us note that

theidentitymatrix e E V is F-invariant.This impliesthat

II p(2y) II II p (2y) e II = 11 p(Q) e II = II p(2) II 2 E L, ‘y E F

(herewe havechosena basisin V0, consistingof eigenvectorsfor p0 (A_), and

the corresponding“matrix” basisin V).
Usign fact 1 above,choose C0-modules V0 whosehighestweightsform a

basis of a.~’, and use the correspondingC-modules V, to constructa map
m: X —3’ a. Then K 15 a Siegelsectionof the map.

By Cartandecomposition,thereexistsa ball B0 C G0 suchthat
C0 = B0 . A~- B0. Since AlL is compact, we can enlarge B0 so that

B0 - L
4 . B

0 = C0. This meansthat for the ball B = x B0 CC the Siegel
domain S = BpK(L

4) covers X
Example4.3.2. F is commesurableto a maximal compactsubgroup K of C

(i.e. F fl K has finite index in both F and K). Usignfact 2 above,we can
assume F = K’. Choosea maximalsplit torus 4 C ~ anda positiveroot system
~ C ~= ~(4,G), andconsiderthestandardsection K :4 —~Q.

Using fact 1 above;chooseG-modules (p,., V,) anddefine a map m : X -÷a.
Since F is compact, K is specialfor (F, V,), i.e. it is a Siegelsection.

By Cartandecomposition,thereexistsa ball B C C suchthat BA4 - K = C.

Hencefor somelargerball B Siegel domain S = BpK(L4) covers A’.
Example4.3.3. F = { e }, A’ = C. In thiscasethe standardmeasuremx coincides

with the Haar measure p~. Hence 7r~(t)= m~(B(t)) = ~x (B(t)). It is well

knownthat thisvolumegrowsexponentiallyin t.
Remark: In the casewhen F = { e}, the naturalmodel of a large scalespace
A’ = C is given by K \ C. If F is Archimedean,this is just the symmetric
spaceof C. For non-ArchimedeanF, considerthe Bruhat-Tits building B

of the group C (with a right action of C). If we fix a vertex b E B, then
the map g ‘—* bg is a largescaleequivalenceof C with B, which gives a nice
model of the largescalespace C.

Note that for any subgroup F C C the space B/F gives a nice modelof the
large scalespace A’ = C/F. The building B is a union of imagesof natural
simplicial maps —~B, which shows that this model is closely relatedto the
a4-modelsweare considering.
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Example4.3.4: F = K, F C C is an arithmetic subgroup.By the definition of

an arithmeticgroup, thereexistsa connectedreductiveQ-group Q, a subgroup
F0 = ~(Z) C ~ (K), and an epimorphichomomorphismwith compactkernel

p: Q(JR),-~C, such that p(F0) is commensurablewith F. Usingfact 2 above,
we canreduceour analysis to the case G = a(IR), 1’ = F0.

Choosea maximal Q-split torus A C a and a positiveroot system ~ C ~ =

~2(a,A). For our sections K : A —~G we will chooseall the 1C(Q)-conjugates
of the standardembedding4 -3’ Q.

We claim that any suchsection K 15 specialfor (F, V) if (p, V) is a a-modu-

le definedover Q. Indeed,in this casewecan choosea basisin V(~),consisting
of eigenvectorsfor ,c(A). If we denoteby V(Z) the lattice spannedby this
basisthen thereexistsa subgroupof finite index, F1 C F, which preservesthis

lattice, and,without loss of generality,we canassumethat F1 = F (seefact 2).
Then for any y E F p(’y) is a nondegeneratematrix with integralentries, and
hencefor any g E ic(L) II p&) II II p(g’y) II

Using fact 1, choosea-modules(p,~V,) defined over Q, and usingthem
constructa map m: A’ -*a

Considera pair (.~,~ where r is a minimal ~-rational parabolicsubgroup,
A1 C ~ a maximal Q-split torus. Thenwe canfind a section K : 4 -÷a which

will identify (4, ~ with (A1 ,

In [Bor], a Siegel domain S for P is definedas S =KA
4 fl, where K is

the maximal compactsubgroupof C, fl a compactsubset of P. It is also
shownin [Borl that the set {aga 1 I a E A4, g E fl} is relatively compactin C.
Hencefor someball B BK(L4) D S, i.e. Siegel domain S(K) = BpK(L4) C X

which we use containsthe image of the Siegel domain S defined in [Borl. It

is shown in [Bor] that one can choosea finite numberof parabolicsubgroupes

/ = 1, - . . , k, and thecorrespondingSiegeldomainsS., sothat their images
cover X. If we considerthe correspondingsections K

1 : A ~ C, and choose
a large enoughball B C C, then Siegel domains SO<~)= Bpi~,,(L~)will cover

X, which showsthat m: A’ — is an a
4 -model.

Example4.3.5. F = L~, a maximal unipotentsubgroupof G. Fix a maximal

split torus A C.~,normalizing U, andset Z = ~4, C); ~ = ~4, (I).
EachwE W =Norm(4, C)/Cent(A,G) definesahomomorphismw:A-÷ACG,

and we considerthesehomomorphismsas sections.Thesesectionsare (F, V)-
special for any G-module (p. 1/). Indeed,choosea basis in V, consisting
of A eigenvectors.Then in this basis p(a) is diagonal for a E A, and p(’y)
is unipotentanduppertriangularfor ‘y E F, which impliesthat p(a)) Il
forallaEA, -yEF.

Choose C-modules (p,. Vi), as in fact 1, and consider the corresponding
map m : A’ -÷a. Iwasawadecompositionof C shows,that for someball B C C,
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C = BLU. Since L is a union of wL4, w E W, we seethat Siegel domains

S~= Bpw(L4) cover A’, andhence m: A’ ~ is an g4 -model.
Remark 1: In this case,one can easily describea bettermodel for A’. Namely,
consider ~ as before,and constructan a-modelm’: A’ —~a, which corresponds
to the trivial reflectiongroup in a, asfollows:

(A,, m’(.g)) = log II p(g) V
1 II /log~c I

where v1 E V. is a U-invariant vectorof weight A1.
The correspondingsection L -# a is the standardembedding.Thus m’ is

a large scaleequivalenceof A’ and a. The map m canbeobtainedfrom m’

usingthe composition A’ -~-a-#a/W~

Remark 2: Supposewe are studying the C-module H = Ind~(iP), where
: U ~ ~ is a nond~igeneratecharacterof U. Thenit is easyto checkthat

a weight w on ~ ‘~ A’ is gi-summableprovided that it is summableon a
4.

Thus the correctlarge scalemodel of the pair (A’, ~,1i)shouldbe ~fI- andnot .~.

Example4.3.6. F is an open subgroupof finite index of..the fixed point group
C” for someinvolution a : a -~a-

Using fact 2 above,we can assumethat F = C”. Let A C G be amaximal

split torus such that a(a) = a for a EA. Wewill assumethe following facts:
(i) ~ = ~(4, G) is a root system,and elements w E W(~)are realizedby

inner automorphismof C.
(ii) Thereexistsa ball B C C suchthat C = BA F.
For F = K thesefacts are proven in [Ro], but probablythey are true for

any local field F with char(F) ~ 2. To every G-module (p
0, V0) assigna

a-module (p, V) by V = End(V0), p(g)(v) = p0(g)vp0(a(g~’). If V0 has
highestweight A0, then V hashighestweight A = 2A,~.Let usshow that
thereexistsa C >0 suchthat II p(a) II II p(ay)Ij for all a EA, ‘yE F. Indeed,

the identitymatrix e E V is F-invariant,soII p(ay) II II p(ay)eII = II p(a)e I~=

II p(a)II , wherewe computethe normswith respectto a basisin V0 consisting
of eigenvectorsfor A.

Choose a-modules ~ V01), as in fact 1, and using the corresponding
modules(p1. V,) constructa map m :

Fix a positive root system ~ C ~ and considersections w : 4 —3’ A C G

defined by elements w E W = W(�). Thenall of them are Siegelsections.As
follows from (ii), for largeenoughball

B C=BLF=U Bw(L~)F,

whichmeansthe Siegel domainsS cover A’.
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Remark: Set W’ = Norm (~,F)/Cent(4, F) C W.I think that the following facts

are true:

(i) W’ is a reflectiongroup in a.

(ii) There existsa large scale equivalence m’ : A’ ~÷a/W’ such that m is

equivalentto thecomposition

A’—~a/W’-~a/W-‘-a4.

For F = JR thesefactscanbe deducedfrom [Ro].

4.7. Proofsfor 4.4

In this section we consideradelicgroups.We fix a global field F anddenote
by ~ the correspondingring of adeles.We also fix a reductiveF-group C.
denoteby C the correspondingadelicgroup~ (~), and by ra the algebraic

radial function on C (see4.4).
In order to describethe homogeneousspacesA’ = C/F whichhavepolynomial

growth, we will usethe samestrategyasin 4.6, with the following modifications.
Step]: Let A be a~plitF-torus,A =A(/A),L —Hom(Cm,A),a=LnR.
We fix an element c E A* such that I c > 1 and I c~I � 1 for all places p.

Then we identify L with a subgroupof A usingan embedding i: L -~A,
2 ‘-* 2(c). - The inverse homomorphism j: A -3’a is given by the condition

(A,/(a))=log~X(a)~/logjcJ,for AEL*. Since Joi:L—~’a isthenatural

embedding,A/LA(F) is compact,and j(A(F)) = 0, we seethat i and j give
mutually inverse large scale equivalencesof L ‘-~ ~ and A/4(F). We choose

~, ~ asbefore,andset A+ j 1(a~)

Step2: We fix a systemof sections K : 4 -~ C~ all conjugateunder G(F), and
definehighestweightG-modulesasin 4.6.

We define the norm II II on GL(n, ~) by ~gI~=~ ), for g = (ge).
For every finite-dimensionalvector space V over F we define a norm on

CL(V(O\)) usingsomeisomorphism V~÷F’~.

For every C-module (p. 1/) we definea large scalemap m~: C -~÷JR by
m~(g)= log II p(g) If V hashighestweight A, thenfor any section ~: 4 -÷ C

the function m~(K(Q)) on L4 is equivalentto (A, 2) log I c I - Indeed, in a

basis of eigenvectors for K(A) we have for each 2 E L4 II p(K(Q)) II =

P(K(2))~ II = I c~, ~ = c ~ (here we used that I c,
1, I � I for all

placesp, see4.6).

Step3: Wedefine functions m~ : V -~ JR and a map m: X ~a usingC-mo-
dules (p, V,) asin 4.6. We call a section K :4 -÷G(F, V)-specialif

II p(gy) II ~‘- p(g) for g E K(L
4), ‘y E F; and we call it a Siegel sectionif

it is (F, V~)-specialfor all i.



ON THE SUPPORT OF PLANCHEREL MEASURE

Now consider
Example4.4.1. F = C(F). Choosea maximal F-split torus A C G anda positive

root system ~ C ~ = ~(4, C). We claim that the standardsection K : 4 —~

is (F, V)-special for any highestweight a-module V, i.e. II p(g-y) II II p(g) II
for all g EL4 ,yE F.

Indeed,choosea basisof V consistingof eigenvectorsfor A, and for each
g E C denoteby p(g),

1 thematrix entriesin this basis.We canchoosean order-

ing of the basis suchthat p(g)1 = A(g> for g E A, where A is the highest
weight of V.

Choosean idex / suchthat the entry b = p(y)1,~, E F is nonzero.Then
= b . C

0’’2k>, and therefore II p(2y) II ~ I c0”~ I = c I = II ~(2) II
for 2 EL4.

As follows from [Bor~, thereexists a ball B C G suchthat BA~F = C. Since

A/LA(F) is compactand 4(P)C F, we can enlargeB so that BL4F = C,
i.e. so that the Siegel domain S = B- p(L4) coincides with A’. Thus
m : A’ -~-a4is a largescaleequivalence.
Remark: The decomposition C = BL4F implies that the space A’ = G/F is

compactlygeneratedin the senseof 4.5, and that theresultingnaturallargescale
on A’ is equivalentto thealgebraicone.
Exwnple 4.4.2. Let i~C G be a parabolicsubgroup,f = MU its Levi decompo-
sition, F=P(F)~Z(B\)CC.

This exampleis a mixture of examples4.4.1. and 4.3.5. We leave it to the

readerto define a map m : A’ -~aand to show that it is an a.4-model.In fact,
in this caseone can constructa largescaleequivalencem’ : A’ —~‘_a/WM,where

WM is the Weyl groupof M. In orderto do so one caneitheruse themethod
describedin remark 1 to example4.3.5,or to prove directly that as a largescale

space A’ is equivalentto M/M(F) = P/~(fl. (IA), usingthe fact that G/P
is compact.
Example4.4.3. C = C

0 x C0, F = i~G0. This is a negativestatement,so let
us consider just the simplest case: F = Q, C0 = SL(2). We can write

C = C(IR) x C(f), X = A’(lR) x X(f), where (K) standsfor the real compo-

nent, (f) for the product of all the p-adic components.Let usignore the real
component,which we have already analyzed in example4.3.1, and consider

the group CU’) and its homogeneousspaceA’(f).

Let N be theset of naturalnumberswith adistancefunction

d(n, m) = log n + log m — 2 iog(n, m) where (n, m) is the greatestcommon
divisor of m and n. Using Cartandecompositionfor p-adicgroupsit is easy
to check that the naturalembedding N —~A’(f), n -~ diag(n, n

1) is a large

scale equivalence,which providesa concretemodel for the large scale space
XU).
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Thismodel showsthat the space X(f) hasexponentialgrowth.

On the other hand, usingthe samemodel we candescribesummableweights
which are closeto minimal. (Namely the weight w(n) = n(log n)” is summable

for d > 1 and is not summablefor d ~ 1. This showsthat as a largescale

space X(f) hasa very regular structure, without beinga spaceof polynomial

growth.
We will leaveit to the readerto constructan explicit model for thehomogene-

ousspaceA’ in example4.4.4.
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