THE ANALYTIC CONTINUATION OF GENERALIZED
FUNCTIONS WITH RESPECT TO A PARAMETER

I. N. Bernshtein

Let P be a polynomial in N variables with real coefficients, and let ® be a region in the space RP
such that P is nonnegative inside € and is equal to zero on the boundary.

Let A be a complex number with Re A > 0, We define a continuous function P g () by the formula
P@(N x) = {P(x)A for x € ® and 0 for x ¢ €. We shall consider Pg(N as a function of A with values in
the space S' of slowly increasing generalized functions. It is clear that for Re A > 0 Pg(}) is an analytic
function of A. In the first chapter we shall prove the following theorem.

THEOREM 1. Pg() extends as a meromorphic function of A to the entire complex plane A of the
\{rariable A. The poles of this function lie on a finite number of arithmetic progressions Aj, where Aj =
A-nln=0,1,2,..d.

This theorem (in a stronger form) has been proved in [1] and [2] using a theorem of Hironaka on the
resolution of singularities. Our proof makes no use of the resolution of singularities and is therefore con-
siderably simpler.

We make use of the method of analytic continuation applied by Riesz in [7] for the case of quadratic
polynomials. Indeed, Theorem 1 follows from the following theorem.

THEOREM 1'. There exist a differential operator Z» with polynomial coefficients which has poly-
nomial dependence on A and a nonzero polynomial dp in A such that for all A

@g (M) (P (A + 1)) = dp (M) Po (A).
The derivation of Theorem 1 from Theorem 1' can be found in {5] (Ch. III) and in [4].

The proof of Theorem 1' is purely algebraic; it is based on the study of modules over the ring D of
differential operators with polynomials coefficients.

In the second chapter we study integral transformations in the space S'.

Suppose that there is given a polynomial mapping A: X — Y, where X and Y are finite-dimensional
linear spaces over R. From a generalized function & = Sy we wish to construct the "corresponding"
function A*$ = Sy . Such a construction can be carried out for functions &= Sy, , where the space
S&vo', which is defined in [3], consists of functions which satisfy a "large" system of differential equations
with polynomial coefficients (see Definition 4.2 and Thedrem 4.3). With the same methods it is possible to
obtain a number of interesting corollaries which are gathered together at the end of §4. Here is one of
them.

Let P be a positive polynomial in N variables which increases at infinity. We consider the integral
S P2 dx; + . .. -dxN. When Re Ais large it is defined and gives an analytic function f (A).

Proposition. The function f(A) extends as 2 meromorphic function to the entire complex plane of the
variable A and satisfies the following equation which is similar to the functional equation for the I'-func-
tion:

FO=aWNfA+D+...+aMfR+k),
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where ay, . . ., ak are certain rational functions of A.

CHAPTER I
THE ANALYTIC CONTINUATION OF THE FUNCTION Pgi{})

§Modules over a Ring of Differential Operators

Let K be a field of characteristic zero, and let X be a finite~dimensional linear space over K. We
denote by Rx(K) the ring of polynomial functions on X and by DX{(K) the ring of differential operators with
polynomial coefficients on X. If x4, . . ., XN are coordinates on X, then RX(K) = K[Xy, . . -, XN}, and Dx(K)
is an algebra over K with generators xy, . . «, XN, 8/8Xy, » « ., 8/0x) and the relations

: . a8 a
(@, 23] = [3?."5.73.] =9, [E‘v‘”i} =85,
where 0y; is the Kronecker symbol.

If some argument is valid for any K and X or for a K and X given beforehand, then in place of Dx(K)
we shall write Dy, D(K), DN(N = dim X), or simply D.

In DN we fix a filtration D@ pl< ., .S DpNe ., ., where DI is the linear subspace of Dy consisting
of polynomials of degree no greater than n in the generators x; and 8/9xj.
The associated graded ring Iy = é ™ (where (@ = DYDY is a ring of polynomials in the gen-

n=)
4 2 =sw

€rators Xy, « « o3 XNs 337+ - " B2y

. The spaces 32" = ,615 2® give a natural filkration in the ring of
i=p
polynomials Z,
We shall consider modules over the ring Dx(K).

If M is a DN-module* and fy, . . ., fs is a system of generators, then we set M? = D(fy, .. ., fs) and
dM(n) = dim MR,

Proposition 1.1. dpM(n) is a polynomial in n for large n.

Proof. Let M be the free module with generators gy, .« « ., gs» let p: M — M be the mapping given by
p(g;)) = fi, and let L = Ker p. It is clear that MB/L N MD, i.e., dim MR = dim MR —dim (L 0 MD).

- 2N -
Since dim ¥" = s-dim D* = 5 -dim " = S-<n _;N ) , it suffices to show that dim (L N Mn) is a poly-

nomial in n for large n.
We set My = éu M and Lg =éﬂL A MYLN M < My,
It is easy to verify that
a) ﬁz is a free Z-module and Ly is a Z-submodule of My;
b) dim (Ly N MY = dim LN MP, where 7= @ M

i=0

Proposition 1.1 now follows easily from the following proposition.

Proposition 1.1’ (see [9}, Theorem 4.1). Let Z be a ring of polynomials, let H be a free Z-module
with the natural filtration HR, and let E be a Z-submodule in H. Then dim (EN HD) is a polynomial in n for
large n.

Definition 1.1. Let M be a finitely generated D-module, and let S5+ + - fs be a system of generators.
We denote by d(M) the degree of the polynomial dy(n) and set e(M) = a - d(M)!, where q is the leading coeffi-
cient of the polynomial dpp(n).

LEMMA 1.2. 1) d(M) and e(M) do not depend on the choice of the system of generators f4, . . ., 5.

*Unless otherwise specified, we assume that M is a left Dy-module. However, all definitions and results
of this section go over without change to the case of right DN-modules.
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2) e(M) is a natural number.

3)If0 — My — M — M; —~ 0 is an exact sequence of D-modules, then d(M) = max (d(My, d(M,)), and
e(M) = e(My) (or e{My) if d(Mp > d(M,) (or d(M,) > d(My), e(M) = e(M, * e(M,), if d(M;) = d(M,).

Proof. 1) If two systems of generators and the filtrations {MB} and {ﬁ“}, corresponding to them are
given, then it is clear that Mn-ke Minc MYk for some k. Therefore, the polynomial dpp(n) is defined up
to polynomials of lower degree, i.e., d(M) and e(M) are uniquely defined.

2) Since dpi(n) assumes integer values, it is a linear combination with integer coefficients of poly-
nomials of the form ( 7) (see @], Ch. VII). From this it follows that e(M) is an integer. The number e(M)

is positive, since dy(n) = 0.

3) Let fy, « « «» fg be a system of generators in M. Then their images in M, form a system of gener-
ators. It is clear that M} = M%/M; N M, and therefore dp,(m) =dpm(n) ~ di, (n), where dm,(n) =dim (M1
Mn). As has been shown in 3] (Proposition 1.3), for some k we have M] k! M; N MRE M{l+ , Le., dMl(n) -
dM,(n) has degree less than dMl(n) This implies the required formulas.

The numbers d(M) and e(M) characterize the "functional dimension" ofthe finitely generated D-mod-
ule M. We shall need similar characterizations for D-modules which are not finitely generated.

Definition 1.2, Let M be a D-module, and let d = 0, e > 0 be integers. A (d, e)-filtration of the mod-
ule M is a system of subspaces M°S MI< ., .S MRC ..., in M such that

a) DiMRE M“*i,g ME = M,

b) dim MR = (e/d!)nd + o(nd).

If M is a finitely generated D-module, then the standard filtration {MD} is a (d(M), e(M))-filtration.
It is clear that if a D~module M has a (d, e)-filtration, then for any finitely generated submodule LE M
either d(L) < d, or A(L) = d and e(L) =< e (it will be shown below that this is a sufficient condition for the
existence of a (d, e)-filtration).

THEOREM 1.3, Let M be a finitely generated Dyy-module. Then either M = 0 or d(M) =
The proof of this theorem will be given in §5.

COROLLARY 1.4, Suppose that a DNy-module M admits a (d, e)-filtration. Then

aj d < N, implies that M = 0,

b) if d = N, then the module M has finite length not exceeding e (and, in particular, the module M is
finitely generated).

Proof. a) Part a) follows immediately from Theorem 1.3. We shall prove b).
In M let there be given submodules 0 = M;< M; < .. .< Mk = M, with Mj—y = Mj(i=1,2,..., k.

We will show that k = e. We choose elements f, . . ., f|x such that fi € Mj and f; € Mj-y, and we set
Li = DN(fqs « « «»f1). The module Lk admits an (N, e)-filtration (as a submodule of M), and therefore
d(Li/Lj-g = N(i = 1, ..., k). By Theorem 1.3 d(Li/Lj-4) = N. Since e(Lj/Li-y) = 1, it follows from Lem-
ma 1.2 that e(Lg) = k. This means that k = e(Ly) = e, i.e., the length of M does not exceed e.

§2. Proof of Theorem 1°

We first present a purely algebraic formulation of Theorem 1'.

Definition 2.1. Let P be a polynomial in N variables over the field C. We construct over the ring
DN(C()N) (where C(}) is the field of rational functions of the variable A) a module Mp as follows: the ele-
ments of the module Mp are expressions of the form Q - P"'k, where Q is a polynomial in x;, . . ., XN
with coefficients in C(N). (We identify the expressions Q » PA-kand Q' . PA-n,if Q . Pn = Q'+ PK,) The
action of the ring DN(C()\) on Mp is defined by the following formulas:

=@ P*"‘) = (#:0) P*"‘
e QP = ZL Py g 2L QP
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Definition 2.2. We denote by SA the space of analytic functions & () of the variable A € A with val-
ues in §' defined in a region Re A > C (where the constant C depends on & ). We regard the functions & and
& as defining the same element in SA if they agree in some region Re A > C.

SA is equipped in a natural way with the structure of a D(C(}))-module.

LEMMA 2.1. The mapping ¥: Mp — S4, given by the formula ¥(Q - PA-k) = Q - Pg(a—k,isa
mapping of DN(C(A))-modules.

The proof is by direct computation; use is hereby made of the fact that for Re A> m Pg(}) is an m
times continuous differentiable function.

Lemma 2.1 reduces the proof of Theorem 1' to the study of the module Mp. Indeed, it must be shown
that there exists an operator T =Dy (C(A) suchthat D (P.-PY = P

To this end we consider in Mp the filtration M} = {Q PAk, where deg Q = (p * 1nf(here p is
the degree of the polynomial P). ’

It is easy to verify that the filtration {M‘I‘J’ is an N (p + )N)-filtration and therefore the DN(C(N)~
module Mp has finite length.

In Mp we consider the increasing sequence of submodules Mj = DN(C(A) (PA-1). Since the module
Mp has finite length, M;j_; = Mj for some i. In other words, there exists an operator %; = Dy (C(3)) such
that 2; (P-i+t) — pri,

If now in the coefficients of the operator ; we let A—i — A, then we obtained the required opera-
tor P such that 2 (P.-PY = P*, This completes the proof of Theorems 1 and 1.

CHAPTER I1I
INTEGRAL TRANSFORMATIONS IN THE SPACE S’

§3. Algebraic Constructions

In this chapter we shall apply the methods of Chapter I to the regularization of certain integral trans-
formations in the space S'.

We first state precisely what we mean by the space of generalized functions S' and the space of gen-
eralized forms Q'.

Let X be an N~dimensional space over the field R, xy, . . ., xy be coordinates on X. We denote by S
(by Q) the space of infinitely differentiable functions (differential forms of degree N) on X which are rapidly
decreasing together with all derivatives. We provide S and & with the usual topology (see [5]). The form
dxy . . . dxN gives an isomorphism S — Q (¢ — ¢dxy...d x N).

The bilinear form (9, ) = fpo(p =S, o.= Q) provides a pairing of the spaces S and .

We consider on S the natural structure of a left Dx-module (in the case of the field of real numbers
we mean by Dx the ring DX(€)). Then € has a unique structure of a right Dx-module such that (¢, 0%)
= (Do, w)forall ¢ €S,w €9, P = Dy . Indeed, if D is a polynomial in the xi, then 02 =P.0 ; if Dis
a vector field, then 09 = —Lsw ,where Lzo isthe Lie derivative along the field 9 of the form w.

We set Sk = G * and 0% = S*. We define on Sk the structure of a left Dx-module and on (P&, 0 =
{8, 0D, <FD, 9> =<F, Do> , whetre D = Dx, & = Sy, ¥ S Qr,p=SoecsQ, () —is the pairing of S' with
£ and G' with S. The form (¢, w) here gives a homomorphlsm of DX-modules S —~ Sx and @ — Q%

We denote by F: Sy — SX the Fourier transform (F depends on the choice of coordinates). As is
known (see [5]), for any function

F @) = — i~ F8, F(—zs) = — iz;F 8.

In this chapter we shall consider the following situations.

I. Let X and Y be finite-dimensional spaces over R, and let A: X — Y be a polynomial mapping. If
& 1is a contimous function on Y, then it is possible to define a function A*& on X by the equation A4*& (z) =
& (Az), We wish to define the operation A* on functions & = Sy .
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II. Let A: X — Y be a polynomial mapping as before. We wish to define the operator A4 of integra-
tion on sections. This operation must take a form of Q% into a form in Y. For example, if ¥ =®x has
compact support, then it is possible to define the form A,F © Qy by the equation (4,5, @) = (F, A%},
where ¢ €Sy.

III. We wish to define the product & = &,-&, of generalized functions &, and &, and also the
product of a function =S8y and a form ¥ = Qx.

Situation I has been considered in detail in the case dim Y = 1 in [3]. We are interested in the follow~
ing two questions:

1) how to define the operations A*, A,, and the product for a sufficiently broad class of generalized
functions;

2) what equations (with polynomial coefficients) should the functions so obtained satisfy.

We first take up the second question. We shall present the algebraic constructions for the situations
I, 11, and III.

Definition 3.1. Let K be a field of characteristic zero, let X and Y be finite-dimensional spaces over
K, and let A: X — Y be a polynomial mapping with coefficients in K. Let Xgs o+ s XNand ¥4, . . ., Ym be
coordinates on X and Y, and let Aj be the expression of yjas a polynomial in the x;.

1. Let M be a left Dy-module. We construct a left Dx-module A*M as follows: as an Rx-module
A*M = Ry g@ M (where in Ry the structure of an Ry algebra is defined by means of the mapping A*:
Y

Ry -~ Rx), and the operators 3/9x{ act as follows:

24; 8
dz, ®T’)§J—f (Q=Rx, fEM).

m
8 B
ween=Ler+ 3o
t i i=1
If f €M, then we set A*f =18 ¢ A* M.
2. If L is a right Dx~module, then we define a right Dy-module A,L as follows:
AL = (LR Dy)/L,,
Ry
where L, is the subspace generated by the elements
{t

The structure of a Dy-module is introduced by the equation (f®@ 9) %, =f Q@ 9D, (€L, T, D,
Dy). Iff € L,then we set Axf = f® 1 € A«L.

8
azi ® D

J=1

< . B4, 8
Efﬁ@a—gj—@} (=L DDy

3. a) If M; and M, are left Dx-modules, we define the Dx-module M, XM, , as follows: as an Rx-
module M, X M, =M, ‘@ M, , and the operators 8/9xi act as follows:
x

7 h®h = h®h+h®5-h (&M, he M),

IffieMyandfy €My, thenweset 1 X/f,=/H LEMKM,
b) If M is a left and L a right Dx-module, then we consider the right Dx-module, L[Xy M = LR® M
x

in which the operators 8/8xi act as follows:
P 2 ¥ ]
(g®f)a—zi=8—37®f—g®§;‘ L, feM).

Remarks. 1. Definition 3.1 (in the case K = R) agrees with the natural representations. For example,
the natural mappings A*: Sy —» Sx, A,: Qx - Qy and Sy X Sx — Sx extend to mappings of D-modules
A*Sy into Sy, AsQx into @y and Sx [ Sx into Sx.

If & = Sy, then it is natural to suppose that the function A4* & = S% "must" satisfy the same equa-
tions as the element A* & satisfies inthe Dx-module A* (Dy (&) (similarly for A, , X and X)) .

277



2. The modules A*M and A% L can be obtained from a single construction. Indeed, for any right
Dyx-module L and left Dy-module M we consider the linear space (L, M) = (LR® M) LM, , where LM,
Y

is the subspace generated by the elements
feei-Zed L
§ 9 ] = © f} @=L, feM).
=1

“Then A*M = (DX, M), AxL = (L, Dyy« Moreover, (L, M) _AL®M L?AM
X

The following proposition describes the properties of the operations A*, Ay, X, and Xo-

Proposition 3.1. 1) The operations A*, 4, X and X, are well defined and do not depend on the
choice of systems of coordinates on X and Y.

2) For a finite-dimensional space Z over a field K we dencte by £z(#z) the category of left (right).
Dz-modules. Then the operations A* and Ax define functors A* : £y - %x, A, : £x — £y . The opera-
tions X and Xbo define bifunctors [X): (Zx, £x) — Lx. Ko: (Bx, Lx) - Ax.

3) Suppose that polynomial mappings A: X — Yand B: Y — Z are given. Then (BA)* = A*B* and
(BA)x = BxAx. If M, M' = %y, L &= #x, then
A MRM) = A"M[QAM and A, (Lo A°M) = ALK M

4) Let A: X — Y be an invertible polynomial mapping, and let A: Dx — Dy be the corresponding
ring isomorphism. The isomorphism A induces category isomorphisms Ag: £x — £y and As: Bx — By .
Then A, = A», A* = A%

The proof of Proposition 3.1 consists of simple verificatipu.

The following basic theorem describes the behavior of the numerical characteristics d and e intro-
duced in §1 for the operations A*, Ax, X and X

THEOREM 3.2. Let K be a field of characteristic zero, let X and Y be finite-dimensional spaces
over K, and let A: X — Y be a polynomial mapping of degree q (if A is a mapping at a point we set q = 1).
Then

1) If a left Dy~module M admits a (d, e)-filtration, then the Dx—module A*M admits a (d', e") filtra-
tion, whered—dim Y = d'~dim X, e' =e - qdim X * dim Y,

2) If a right Dy-module L admits a (d, e)-filtration, then the right Dy-module A+L admits a (d', e')-
filtration, where d ~dim X = d'—=dim Y, e' = e¢ - qdim X +dim Y,

3) If the left Dx-modules My, M, admit filtrations of the type (dy, ey and (d,, e,), then the Dx-module
M, X M, admits a (d', e")-filtration, where d' =d, + d, ~ dim X, e’ = ey ° e

(A similar assertion holds for the operation [X.)
Theorem 3.2 will be proved in §5.

COROLLARY 3.3. For any finite-dimensional space Z we denote by Zz,(#z,) the category of finitely
generated left (right) Dz-modules M for which d(M) = dim Z.

Let A: X — Y, be a polynomial mapping as before. Then A (Lye) < Lxn 4, (Fx0) = Zyo X (Lxor Lxo)
< Zx, and 1& (% x0, Zxo) E xp

Corollary 3.3. follows immediately from Theorem 3.2 and Corollary 1.4.

§4. Regularization of Integral Transformations

We will carry out the regularization of functions of the type A*& (and similarly &,-&,) according
to the following program.

1. We first construct a smoothing family of functions & (A) depending analytically on the parameter
A such that

a) &) < Sy, &(0) = &,
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b) when Re A is large, & (1) is a function which is continuously differentiable many times.
2. When Re A is large, it is possible to define a function A*& (A) by the equation A*& (W) (z) = & (A)
(Ax). This function (as an element of the space Sk) depends analytically on A.

3. Under certain hypotheses on the generalized function & the function A*& (1) with values in S;(
extends analytically to a neighborhood of the point A = 0 (possibly as a mermorphic function). It is then
possible to set

A*&=-the zero-order term of the Laurent series at A = 0 of the function A*& (}).
We first constructthe smoothing family.

Definition 4.1. Let Y be a finite-dimensional space over R, and let yy, . . ., Yy be coordinates on Y.
We choose a strictly positive polynomial in yy, . . ., ym which is increasing at infinity (for example, P =
1 + y% + . . + yz ). )
. m

For any function &€ < Sy and any complex number A we set &, () = F-1 (P-'F&).

LEMMA 4.1. For any function & & Sy there exist constants @, 8 > 0 such that for Re (ax—8) > !
the function F~! (P*#) isl times continuous differentiable.

Proof. As is shownin (5], €= YD, where T, & Dy, fi = L, (Y), We will find o and 8 for each
term 2y.

k
It is easy to check that P97 = 3 §,p™f , where k =deg 7, and the 7, are elements of Dy
i=0

which have polynomial dependence on A. This means that the function F-1(P-*Zf) can be written in the
form XT,F(P-*'f) wherethe 9; are operators of Dy of bounded degree which depend on A. It there-

fore suffices to find the constants o and 8 for the function f.
From the Seidenberg-Tarski theorem it follows that P(y) > CllyJl¥ for all y € Y and some «, C > 0.
Therefore for Re aA > the function P"‘f, multiplied by any polynomial of degree ! lies in L((Y}; thus, for

Re oA > 1 the function F~YP-%) is ! times continuously differentiable. This completes the proof of the
lemma. :

We have shown that for Re A large &g (M) is a sufficiently smooth function. Therefore, if we are giver
a polynomial mapping A: X — Y, then (for large Re A) it is possible to define the function A4*&,(}) . We
wish to determine under what conditions on & the function A* &, (A) extends analytically to a neighbor-
hood of the point A = 0.

It turns out that for this it is sufficient that the function & should satisfy a "large" system of differ-
ential equations with polynomial coefficients. We give the precise definition of the space S; of such func-
tions.

Definition 4.2, Let Z be a finite-dimensional space over R.

1. For any function & =Sz we denote by D (&) the Dgz-submodule in S'Z generated by & and we
set dg (n) = dne (n), d (&) = d (D (8).

2. We denote by S'Z0 the subspace in Sz consisting of functions &, for which d (¢) < dim Z.
3. Similarly, we introduce the numbers ds (), d(F) for forms F &Qz and the space Q'ZDC n'z.

The space S, was introduced in [3] (see Definition 2.1 and Theorem 3.1). It is proved there that func-
tions of the space S; have nice analytic properties (see Theorem A).

We shall prove certain elementary properties of the space S, (we will not formulate the analogous
properties for the space Q).

Proposition 4.2. . 1) §; is a D~-submodule of §'.

2) We consider the Fourier transform F: S§% — S’Z. Then if &Sz, it follows that de (n) = drs (n).
In particular, d (&) =d (F&) , and hence the space S'Zo is invariant under Fourier transform.

3) Suppos'e that in a connected region C < C there is given an analytic function & (A) with values in
S'Z. Then there exists a countable set E — ¢ suchthat if A, pe=C\ E , then dgu(n) =ds yw (n), and if
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AEC\E, pc=E, then dyo)(n)>dsw(n) for all n. In particular, if &(A)& Sz for all A in some region
C;<C,then & (A) = Sz forall: €C.

3a) If in a connected region CS C there is given a meromorphic function & (A) with values in Sy,
then all the coefficients of the Laurent series of the function &(\) at any point A € C lie in S'Zo.

Proof. 1) If &, & =Sy, Dy, Do=D and & = 9,8, + D&, , then D(&) < D(&,) + D(&,), and therefore
d (&) << max (d (&,), d(&)) , i.e.,, &€=8,.

2) Let zj be coordinates on Z. We define the isomorphism F: Dz — Dz by F(zj) = —i(3/8z;), 8/
9zj) == izj. It is clear that if =8y, D=D; then F (D& =F (D)F&) and F(Dn) = D“. Therefore
FDz(é’) Di(F&) , Le., dg(n)=drs(n).

3) For each A € C we define in the finite-dimensional space D% the system of equations (D& (1), w>
= 0, where w run through the space Q. Each of these equations depends analytically on 2, and hence every-
where except on a countable set E, of points A the system has maximal rank. The rank of this system at
the point A is by definition equal to dse (n). This implies the assertion of the lemma if we take E = | E,.

3a) Multiplying é’ (A\) by a scalar function, it can be assumed that it is analytlc. We will show that
T‘;—é’(l) =8, forall A €C. The function & (A) = (8 () — & )/ — 1o  lies in Sg for A = A, and hence

(TidT 3) (Xo) = & (M) " lies in Sp. Continuing this process, we find that all the derivatives of the function & ()
lies in Sy.

THEOREM 4.3. Let X and Y be finite-dimensional spaces over R, and let A: X — Y be a polynomial
mapping. Let us suppose that a function && Sy, is given. Then the function A*&p (1) (defined for large

Re N extends analytically as a meromorphic function to the entlre complex plane A of the variable A, and
moreover A*&p (A)  Sxo.

We will analytically extend the function A*&p(A) by the same method as in §2. We first formulate
the method in a general form.

Definition 4.3. 1. We denote by 5 the automorphism ofthe field C(}) over the field C obtained from
A— A*1;if X is a linear space over C, we denote by 7 the corresponding automorphism of the ring
Dx(C(A) = Dx(C) ® C(N.

2. An n-module is a D(C(A))-module M in which there is defined an isomorphism n: M - M linear
- over C such that n (D) = (D) n(H forall D= D (C(A), f = M. Further, an y-morphism of n-modules
is a morphism of D(C()\))-modules which preserves the operation 7.

3. In the D(C(N\))-module SA we define the automorphism 5 by the formula (5f) (A) = f(A*+ 1),

Proposition 4.4. Suppose that there is given an n-module M which is finitely~generated as a D(C(A)}-
module and an n-morphism ¥: M — SA, Then

a) for any element 5 € M the function ¥f extends as a meromorphic function to the entire complex
plane A of the variable A; the poles of the function ¥f belong to a finite number of arithmetic progressions
of the form Aj = {Ai-n Jn=0,1,...4.

b) The function ¥f ()) satisfies the equation
' Y W=D, MY A+ D)+ + D W)Y R E),
where 9,,..., D, <= D (C(M).
Proof, 1t is clear that a) follows from b). We will prove b).

We consider in M an increasing chain of submodules M; = DIC(N) x (f, 17V, .. ., n-1f). Since the
ring D(C(N) is Noetherian (see [3]) and the module M is finitely generated, it follows that the sequence of
modules Mj stabilizes, i.e., Mk-4 = Mk for some k.

This means that there exist operators &, ..., &, = D.(C(A) suchthat n*f = 571'4"‘“ J AT D.f
Applying the operator %K to this equality, we obtain f = T, v/ + ... + D, n*f, where D; =1* 317.. The proof
of the proposition is complete.
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To prove Theorem 4.3 it remains to verify that the function A* &p (A) belongs to a finitely generated
n-module. For this we investigate the algebraic constructions of all the mappings.

1. We denote by F the automorphism of the ring Dy (and the ring Dy(C(N)), given by the formulas

. 2 . :
Fly)=—1i ET F(;y—;) = —iy;, where yy, . . ., ¥y are the coordinates on Y.

If L is a Dy-module (or a DY(C(\)-module) we denote by FL the Dy-module which is constructed as
follows: as a linear space the module FL is isomorphic to L and under the natural isomorphism F: L —
FL we have F (Zg)=F (D)F (g) forall P Dy, gL

2. We construct the Dy(C(A)) -module Mp. The elements of Mp are expressions of the form QP-A-k,
where Q € RY(C(N) (here QP-A~k = @'p~A-1_if QP! = Q'PK). The operators a/ayJ j=1,..., m are de-
fined by

a ARy 0Q  p-hek Mkt
a5 QP =L P <x+k)o,, P
In Mia we define the automorphism 5 by the equation »(QP~ ‘k) = 7(Q p-A-k-t (we note that the mod-
ule Mp is obtained from the module Mp introduced in §2 by letting A — — A).

As shown in §2, the module Mp admits a (m, (p + 1)™)-filtration, where m = dim Y and p is the de-
gree of the polynomial P,

3. Let Mg = Dy(&),and let M = M;® C(}) be a Dy(C(V)-module. Since & & Sy, , it follows that M
admits an (m, e)~filtration for some e.

4. 1t is easy to verify that the mappmg & — A*&p (1) defines a mapping ¥ Dx(C(N)-module M =
ASF-1 (M5 X FM) into the Dx(C(\)-module S . If the natural structure of an n-module is introduced in M,
then the mapping ¥ is an n~-morphism.

From Corollary 3.3 it follows that the module M is finitely generated and d(M) = dim X. Therefore,
Theorem 4.3 follows from Propositions 4.4 and 4.2.

THEOREM 4.5. Suppose that there is given a polynomial mapping A: X — Y and a positive poly-
nomial P on X which is increasing at infinity.

1) If &,& < S, , then the function &, () - & = Sy which is defined for large Re X extends as a
meromorphic function to the whole plane A. Moreover, &p(4): & & Sxo.

2) Let § =Qy, . For large Re A we define the form 4,%» (» =9y by
Fe () o> =<P7F, 49y (9 Sy).

Then the form A4,%p (A) extends as a meromorphic function of A to the entire plane A. Moreover,
A Fr (M) = Qy,.

The proof of Theorem 4.5 is similar to that of Theorem 4.3 and is therefore omitted.

The means of constructing the function A* & (and similarly 4, % and &,-8,) présented in Theo-
rem 4.3 depends on the choice of the polynomial P, However, fixing P, we obtain a linear mapping A* :
Syo — Sxo- There are hereby not always equalities which "must"™ hold (for example, the equality a/axl

A€ — 2 azJ A (—— 8)) However, they are satisfied if we go over from Sy to the space Sx/L, where L is
=1

the Dx-module in Sk generated by the negatwe terms of the Laurent series at the point A = 0 of the func-
tion A*&p(A).

We present several interesting corollaries of Theorems 4.3 and 4.5.

COROLLARY 4.6. Leta polynormal P, a region @, and a function Pg()) be given as in the introduc-~
tion, and let the function & = §, . Then the function & (A) = & P (A) which is defined in the region Re A >
C, lies in S;, extends as a meromorphic function to the entire plane A, and satisfies the equation

EM=DMNEA+N+... + DA)ER+ K,

where %, ..., D, & D€ (W).
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COROLLARY 4.7. Let P be a polynomial in N variables, & = S, , and suppose that in the region

Re A > C the integral f(A)= SP-"-%’-dx}.'. .dzy is defined. (For example, & =1, and P is strictly positive
and increases at infinity.) Then the scalar function f () extends as a meromorphic function to the entire
A plane and satisfies the equation

FN=a WA+ + .. +a PR+ 5,

where ay, . . ., ak are certain rational functions of A.

COROLLARY 4.8. Let L be a differential operator with constant coefficients on the space RN, &, =
St. Then there exists a function & < §, suchthat L& = &,

Proof. Going over to the Fourier transform, we obtain the equation Q.-& = &,, where &, =S,
and Q is a polynomial. It can be assumed that Q is nonnegative (otherwise we replace Q by the polynomial
Q). Let P=1+xf+...+xf.

For Re A > 0 and large Re p we consider the function & (A, p) = QF-*(P-+F&,) . Just as in Theorem
4.3, we prove that & (A, p) extends as a meromorphic function of A and p to the entire space C? = {a, o,
while & (A, p) & Spr

It is clear that Q-8 (A, p)=&(A 4+ 1, n) and & (0, p) = & (w) = FYP*F&) . Inparticular, &, (0) = &.

We define the function &, (n) as the zero-order term of the Laurent series with respect toA of the
function & (A, u) at the point (—1,u). Itis clear that @-&; (u) = &, ().

If we now denote by & -the zero-order term of the Laurent expansion of the function &, (p) at the
point p = 0,then €= S, and Q.& = &, This proves the corollary.

§5. Proof of Theorems 3.2 and 1;3

If a filtration {MD} is given in a D~module M, then we have the sequence of numbers g, = dim Mn.
We shall present several simple assertions regarding such sequences.

Definition 5.1. 1) We denote by II the set of nondecreasing sequences a = (@, ags « - » an, - » o Of
nonnegative numbers.

2) fa,bel, thena = b_means that ap = by, for all n.-
3) If 2 € 11, then we define the sequence ga by (0a)y =ap* . . . * an.
4) If a, b € 11, then we define the sequence g * b by
(@ % D)y = a9 (by — bnot) + @y (Broy — byog) + oo + @ubo = by (@ — @) & ... 4 by
It is easy to verify the following assertion.
LEMMA 5.1. 1) Ife,b,c€ll,a =b,thenoca Zob,a*xc=b * ¢,

2) If ay, is a polynomial for large n with ap = (e/d!) nd + o(nd), then (oa) is a polynomial for large n
with (0a)y = (e/(d + 1) hnd*1 + o(nd™Y),

3) if ap = (e/dNnd + o(nd), by = (k/m!)n™ + o(nM), then (a * b)p = (ke/(d + m) Hnd* M + o(d+my,
We shall now prove several facts regarding filtrations of a D-module M. ‘

Proposition 5.2. Let M be a D(K)-module, and let d = 0, e > 0 be integers. Then the following condi-
tions are equivalent.

1) M has a countable basis over K and for any finitely generated submodule L M either d(L) < d, or
d(L) =d and e(L) = e.

2) The module‘ M admits a (d, e)-filtration.
3) In the module M there exists a filtration {MN}tsuch that
a) DM "< M™, UM" = M,

b) if we set ap = dim MP, then for some k we have (cKa)y = (e/(d + k) hnd*k + o(nd*k).
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Proof, 2)=3). Obvious.

3)==1) . Let L be a D-submodule in M, and let fy, . . ., fg € MM be its generators. Then dL(n) =
antm. If we set by = dr,(n — m) (by = 0 for n < m), then b, = an. It is clear that by is a polynomial in n
for large n and by, = (d(L)/d(L) Hhnd(L) + o(nd(L)), Therefore

(©8),, = (e (L)Nd (L) + B)!) niw 4. o (nLivky < (5a), < (e/(d + K)!) i+ 4 o (nd+k).
Thus, d(L) < d or d(L) = d, e(L) <e.

1) =2), Let f4,f3, « « - be a basis for M. We set r(n) = (e/d')nd + nd"/z. It follows from the hypo-
thesis that for each i there exists a natural number s(i) such that dim D(fy, . . ., f{) = r(n) for all n Zs(i).

We introduce in the module M the filtration MM ~ Z D9, and show that dim M? = r(n) for all n.
i=1
For this it suffices to show that dim Z D™, < r(n) for alln and m. -

i=1

We carry out the proof by induction on m. For n = s(m) we have

dim 3} D"V, < dim D™ (fy, . . ., fu) <7 (R).
i=1
For n < s(m) we have
m . m—1 .
dim Z D""s(‘)’fi = dim 2" Dn—s(l)]zi,
=] i=1
where the right side is no greater than r(n) by the induction hypothesis. Thus, we have constructed a (d, e)-

filtration of the module M, i.e., we have proved the implication 1)= 2) . This completes the proof of Prop-
osition 5.2.

Proof of Theorem 3.2, Part 1). We decompose the mapping A: X — Y into a product of the mappings
A X+ X*Y,A;: XtY—XtYandAy: X+Y —Y, where Ay(x) = (x, 0), Ay(x, y) = (x, y ¥ Ax) and
Ag(x,y) =y. It is sufficient to prove the theorem for Ay, A,, and A, separately.

1. The Mapping A,. It is possible to decompose the mapping A; into a composition of imbeddings of
the form B: Z — T, where B is a linear imbedding of codimension 1.

On T we introduce coordinates t, z4, . . ., ZN in such a way that the equation t = 0 specifies the space
Z< T,

Let M be a DT-module with a (d, e)-filtration {MPf. Then by definition 3.1 B*M = M/tM.

~We set L = {fe M| for some n tnf = of. Lisa D7-submodule of M, since if & & D% , then
D f=Di"f=0.

LEMMA 5.3. Suppose there is given a Dy-module L (here Dy = K[t, 8/8t]) such that for each f € L
tof = 0 for large n. ThentL = L.

Proof. Letf €L. We set Lj = Dyt""f, .. ., “'lf) where tof = 0. Then 0 = L,C L, .. .S Ly,
and f € Ln. 1t is sufficient to prove that for each module L1 Li/Lj-{ the equality tLi = Lj is satisfied.

The module L is generated by one generator g (eq ual to the image of t0~1f) such that tg = 0; this
means that the elements (8/8t)3g form a basis in Ll. Moreover, t(3/9t)ig = — ](a/at)J' g, i.e., tLj = Li.
This completes the proof of the lemma.

We return to the proof of Theorem 3.2. We have shown that tL, = L. Therefore, if we set My = M/L,
then B* M, = My/tM; = M/(tM + L) = B*M. Replacing the module M by M;, we may assume that tf # 0 for
any nonzero element f € M.

In the module B*M we introduce the filtration B*M? = Mn/Mn Nl tM and we let ay = dim B*MP. Then
ap = dim MP — dim(M?/M? N tM) = dim MP — dim M™"!, This means that (da)p = dim M? < (e/d!)nd + o(nd).
From Proposition 5.2 it follows that the module B*M possesses a (d — 1, e)-filtration.

2. The Mapping A,. Let M be a Dy+y-module with a (d, e)- ﬁltratlon {MB}. The module AzM is iso~-
morphic to M as a linear space. It is easy to verify that the filtration A;MP = MA is a (d, e « qdimX*dimY)-
filtration of the module Az M.
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We remark that for g > 1 the estimate qdim)(+dimY can be made more precise by using the special
form of the mapping A,.

3. The Mapping A;. It is possible to decompose the mapping A3 into a composition of projections B:
T — Z, where Z is a subspace of T of codimension 1,

Let t be the coordinate on T such that the equation t = 0-specifies the subspace Z. Then for any Dy~
module M B*M = K[t]® M. If in M there is the (d, e)-filtration {M™}, then we set B*M" = 3| # @ M™".

i=0
Then (dim B*MN) = ¢(dim MD), i.e., B¥*Mn is a (d + 1, e)~filtration of the module B*M. This completes the
proof of part 1) of Theorem 3.2.

The proof of part 2) of Theorem 3.2 is similar to that of part 1).

~ We now prove part 3) of Theorem 3.2. We consider the space X x X and the diagonal mapping A:
X—=+XxX. ’

In the space M, @ M, it is possible to introdgce the structure of a Dy x y-module in a natural way.
In this module we define a filtration (M, ® M)" = X Mi ® M7 . Then dim (M; ® Myl = (dim MD)*
(dim MP), i.e., M; ® M, admits a (d, + dy, e,ez)-futr?foion.

It is easy to verify that M, [ M, = A* (M, ® M;). Therefore, part 3) follows from part 1).

Proof of Theorem 1.3. We will carry out the proof by induction on N; we may assume that for any
module L over the ring Dy. either L = 0 or d(L) = N-1,

We assume that there exists a nonzero finitely generated DN(K)—module M such that d(M) < N and
arrive at a contradiction,

IfK is a field containing K, then for the module Mz =M ® K over the ring DN(K) Dy (K) ® K

we have Mg # 0 and d(MK) d(M) < N. Therefore, replacmg the field K by K it can be assumed that the
field K is uncountable and algebraically closed.

We let t denote the last coordinate XN

LEMMA 5.4.% The operator t in the module M has a nontrivial spectrum, i.e., for some o € K the
operator (t — o) is not invertible.

Proof. If for all o € K the operator (t — o) is invertible, then we obtain a homomorphism of the field
of rational functions K(t) into the operators on the linear space M over K. We choosef ¢ M, f #0, and as-
sign to each element Q € K(t) the element of Qf € M.

We note that K(t) has uncountable dimension over K (since elements of the form (t—q)~! are linearly
independent). Since M has countable dimension over K, it follows that for some Q € K(t) we have Qf = 0.
But then f = Q~1Qf = 0 which contradicts the choice of f.

From the lemma just proved it follows that there are two possible cases.
a) For some a €K{t— o) M = M and Ker (t— o) = 0.

b) For some o €K Ker (t~ a) = 0.

We consider both possibilities.

a) We consider the Dy_j-module M = M/(t — a) M and introduce in it the filtration MR = MB/MP N (¢ —
o) M. Then dim MD = dim M- dim M1 = ap. Since gy is a polynomial in n of degree less than N~ 1,
it follows that for any fmltely generated Dy.y~-module LE M we have d(L) < N—1. From the induction
hypothesis it follows that M = 0, i.e., (t—a) M = M.

*The proof of this lemma coincides almost exactly with a proof of Hilbert's Nullstellensatz sent to me by
M. Novodvorskii. (Hilbert's Nullstellensatz can be formulated as follows: the factor ring of the ring of
polynomials C[xy, . . ., XN] by 2 maximal ideal is isomorphic to the field C.J
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b) Making the change (t = ¢) —t, it can be assumed that Ker t = 0. Replacing M by the submodule

L= {f € M [ty = 0 for large nf, it can be assumed that for all f € M tnf = 0 for large n.

We shall prove that the operator (3/8t — o) has a trivial kernel on M for any ¢ €K.

Indeed, let (% - o.> f=0 andtif = 0, Then (gt- —a) thf — " <'§T"“> f = ntn=1f — O, ie., thr = 0,

Continuing this argument, we find that t%~% =, , ., =tf = f = 0.

d
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‘Let p be an automorphism of the ring Dy given by p(x{) = xi, p (3.;_) =_—a—‘:-(i =1,..,N— 1) , pt) =
. i i

( _gt—) = —t . We consider the Dy-module Mp which is obtained from the module M by means of this

automorphism. It is clear that d(Mp) = d(M) < N and that in the module Mp Ker (t— o) = 0 for all o €K.
By Lemma 5.4 (t = a) Mp # My for some « €K, and we again return to case a). This completes the proof
of Theorem 1.3.

Remark. Theorem 1.3 is a simple consequence of the hypothesis on the "integrability of character-

istics" formulated in [6]. Moreover, the method of proof is closely related to methods of [8].
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