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Analytic Structures

on Representation Spaces of Reductive Groups

Joseph Bernstein

Abstract. We show that every admissible representation of a real re-
ductive group has a canonical system of Sobolev norms parametrized by
positive characters of a minimal parabolic subgroup. These norms are
compatible with morphisms of representations. Similar statement also
holds for representations of reductive p-adic groups.
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1. Analytic structures on representation spaces

Let us fix a real reductive algebraic group G. We would like to study analytic
structures which are naturally defined on a representation (π, G, V ) of the group
G.

The results which I discuss in this lecture hold for an arbitrary reductive
group G but to explain the ideas and motivations I will discuss only the group
G = SL(2,R) and later on the more interesting case of the group G = SL(3,R).

Historically, mathematicians first were interested only in unitary representa-
tions of G and for such representations analytic structure is rather clear.

But later it was realized that it is convenient to introduce and study also some
continuous representations (π,G, V ) . Here V is a complex topological vector space
(we consider only Banach and Frechet spaces); representation π of the group G in
the space V is called continuous if the corresponding map G×V → V is continuous.

Here we immediately encounter a problem how we should think about a repre-
sentation. In order to explain the problem consider the simplest case of the group
G = SL(2,R).

The typical representation of this group is described as follows. Fix a complex
number λ and consider the space Dλ of even homogeneous functions on the punc-
tured plane R2 \ 0 of homogeneous degree λ − 1. Then the group G = SL(2,R)
naturally acts on the space Dλ and we denote this representation as πλ.

Now the problem with this description of the representation πλ is that we
have not specified the class of functions which we consider. We can take smooth
functions, or functions which are locally L2 or one of the many other classes of
functions (Lp, Sobolev functions, Besov functions and so on).
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It is easy to see that all these representations will be non isomorphic as topo-
logical representations. However it is intuitively clear that this are just different
analytic realizations of the ”same” representation or, in other words, all these
representations are equivalent.

Harish Chandra proposed the following way to handle this problem. We
say that a representation (π, G, V ) is admissible if its restriction to a maximal
compact subgroup K ⊂ G has finite multiplicities and it has finite length as a
topological representation.

Given such a representation we denote by Vf the space of K-finite vectors (a
vector v ∈ V is called K-finite if the subset π(K)v lies in a finite dimensional
subspace of V ). The space Vf is not a G-module, but it has natural actions of the
group K and of the Lie algebra g of the group G. These two actions are compatible
in a natural way.

Now we can abstractly define a purely algebraic notion of a (g,K)-module as
a vector space E equipped with two actions, of the Lie algebra g and of the group
K, which satisfy these compatibility conditions. We say that a (g,K)-module E
is a Harish Chandra module if it is finitely generated as a g-module and has
finite multiplicities as a K-module (see details in [1]).

Starting with an admissible topological representation (π,G, V ) we have con-
structed a Harish Chandra module Vf . Now, following Harish Chandra, we say
that two admissible topological representations are equivalent if the correspond-
ing Harish Chandra modules are isomorphic.

I propose a slightly different point of view on this problem. Let us agree
that an admissible representation π of the group G is an equivalence class of
admissible topological representations of G. Concrete topological representations
in this class we consider as different ”analytic realizations” of a given representation
π.

With such an understanding we see that representations of G are parame-
terized by Harish Chandra modules (it is not difficult to show that every Harish
Chandra module corresponds to some topological representation). In particular,
the very difficult problem of classification of irreducible representations of G is
reduced to a still difficult, but purely algebraic, problem of classification of irre-
ducible Harish Chandra modules. This classification problem has been solved by
several different algebraic methods.

1.1. What we want to achieve. Let us come back to our analytic problem.
Suppose we are given a representation (for example represented by a Harish Chan-
dra module E). We would like to describe some natural analytic structures
which we can define on this representation.

In order to explain what we are after let us consider first a model case. Namely,
suppose we are given a C∞ manifold M and a C∞ vector bundle E on M and we
would like to study possible analytic structures on the space V of the sections of
E.

We may consider many different analytic structures on V : smooth sec-
tions, Cn-sections, L2-sections (or, more generally, Lp-sections), different kinds
of Sobolev spaces of sections, of Besov spaces of sections and so on.
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There is a convenient way to represent all these structures. Namely, we fix
the space V = V∞ of smooth sections and study different topologies T on this
space.

For a given topology T we denote by LT the completion of the space V with
respect to T. It is convenient to consider the space LT as a subspace of the space
of distribution sections of the bundle E.

For example, while the space V does not have a canonical structure of
a (pre)Hilbert space it clearly has a canonically defined Hilbert topology (i.e.
topology defined by a norm N of Hermitian type , which means that the function
v 7→ N(v)2 is a Hermitian form on V ). The completion L of the space V with
respect to this topology is a canonically defined Hilbertian space of sections of E.

More generally, for every real number s we can canonically define L2 type
Sobolev topology Ts. It is defined by a Sobolev Hermitian norm Ss on the space
V ; the completion of the space V with respect to this norm is the Sobolev space
of sections Ls.

The explicit description of Sobolev norms Ss is standard, but a little involved.
The easiest way to define them is to use Fourier transform - but we are trying to
avoid this since we will not be able to generalize this method.

A relatively simple description can be given when s = k is a positive integer.
In this case, if E is a trivial bundle and φ is a section of E (i.e. a function)
supported in a small neighborhood with coordinates (xi) we can define the Sobolev
norm Sk(φ) to be (

∑ |∂αφ|2)1/2, where the sum is over all multiindeces α of degree
less or equal to k.

It is important that each analytic structure T on the space V which we con-
sidered has local description. Formally, this means that for any smooth function
f on M the operator of multiplication by f is continuous in the corresponding
topology; thus using the partition of unit we see that a distribution section v lies
in the completion LT if and only if this holds locally.

1.2. Analytic structures on representation spaces. Now let us come back
to the case of an admissible representation (π, G, V ). For every such representation
we can consider its smooth part (π, G, V∞), where V∞ is the space of smooth
vectors v ∈ V (a vector v ∈ V is called smooth if the corresponding function
G → V , g 7→ π(g)(v), is smooth).

By a remarkable theorem of Casselman and Wallach, for every two realiza-
tions of a given admissible representation π their smooth parts are canonically
isomorphic as topological representations; in fact they have shown that the func-
tor V 7→ Vf defines an equivalence of the category of smooth admissible repre-
sentations of G and the category of Harish Chandra modules (see details in [2]).

In other words, any representation has a canonical ”smooth model”
(π, G, V ) for which V = V∞.

My aim in this lecture is to discuss different analytic structures (in particular
Sobolev structures) which can be canonically constructed on a given representation
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π of the group G. As before, we will describe these structures as different topologies
on the smooth model (π, G, V ) of the given representation π.

2. Case of the group SL(2,R)

Consider as a simple example the group G = SL(2,R) and its representation
(πλ, G,Dλ) in the space of homogeneous functions described above. This represen-
tation is called a principle series representation; it is induced by some unramified
character µ of the Borel subgroup B ⊂ G, πλ = IndG

B(Cµ).
Since the space Dλ is realized as the space of homogeneous functions on R2\0,

by restricting to the unit circle S1 ⊂ R2 \ 0 we can identify the space V with the
space F, where F = C∞(S1)even is the space of even functions on the unit circle.

Thus, we can define s Sobolev structure on the space V using the norm Ns

given in the realization Dλ by the formula Ns(v) = Ss(v).
The problem with this definition is that for generic λ the space V has two

natural realizations, as Dλ and as D−λ, and the norms Ns obtained from these
two realizations are not equivalent. Hence this approach does not work.

However, let us analyze these two realizations more carefully. Since the spaces
Dλ and D−λ are both identified with the space F the equivalence between them
is given by some operator Iλ : F → F. This operator, which is usually called an
intertwining operator, can be explicitly described. It turns out that it is a
pseudo-differential operator of order r, where r = Reλ. In fact, it can be realized
as a convolution operator with some distribution Rλ on S1 which is smooth outside
of the origin and near the origin is more or less homogeneous of degree −λ− 1.

So let us try to define the s Sobolev norm Ns on the space V to be Ns =
Ss+r/2, where r = Re(λ) and where the Sobolev norm Ss+r/2 is computed using
the realization Dλ. Then from the description above one can immedeatly see that
the corresponding topology on the space V does not depend on the choice of the
realization (at least for generic λ). This allows us to define a canonical s-Sobolev
structure on the space V (for generic λ).

There are also other representations of principle series. They correspond to
characters of the Borel subgroup which lie in a different component, i.e. have
different discrete parameters compared with characters λ above. These represen-
tations are realized in the space of odd functions on R2 \ 0; since locally on S1

they are exactly the same as representations Dλ they have the same analytic struc-
ture. Thus the Sobolev norm Ns on representations Dλ induces similar norm on
these ”odd” representations. In other words, discrete parameters do not affect the
analytic structure.

We have described our Sobolev norm for generic point λ. For arbitrary λ this
construction may not work - for example the operator Iλ may have pole, or, after
normalization, it becomes bounded but not invertible. However there are standard
algebraic methods which allow to reduce the study of these cases to the study of
representations with generic λ.

Now we can use a deep algebraic theorem that every Harish Chandra module
E can be imbedded into some generalized representation of principle series, i.e. a
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representation induced from some finite dimensional representation of the Borel
subgroup B. We can extend our Sobolev norm Ns to these generalized principle
series.

Then, again using deep algebraic results about Harish Chandra modules, we
can show that the resulting norm Ns on the space E does not depend on the choice
of a particular embedding.

Thus using these methods we can extend the definition of the Sobolev norm
Ns to all admissible representations (π, G, V∞) of the group G.

In particular the norm N0 defines a canonical Hilbertian structure on an
admissible representation.

3. Construction of Sobolev norms for a general group G

Let us discuss the case of a general reductive group G. For simplicity assume
that G is split (e.g. G = SL(n,R)). Then again we can consider a series of
representations (πλ, G, Dλ) parameterized by unramified characters λ of the split
Cartan subgroup A ⊂ G; each of these representations can be realized in the space
F of functions on the flag variety X = G/B, where B is a Borel subgroup.

In this case it is not clear how to define Sobolev norms on V , since the usual
family of Sobolev norms Ss on the space F depends on one parameter s while
representations Dλ depend on several parameters λ.

However, it turns out that the flag variety X has a very special geometric
structure. Using this structure we can equip the space F of functions on X with
a canonical system of Sobolev norms Ss parameterized by points s of the R-linear
space a∗ = Mor(A,R+).

This space a∗ is dual to the Cartan sub algebra a = Lie(A). Using the
exponential map we will identify the space a∗ with the group of positive characters
of the Cartan group A, or, equivalently, with the group of positive characters of
the Borel group B. We will mostly think about the space a∗ in this realization;
for example, in case of a general reductive group G the space a∗ is defined as
a∗ = Mor(P,R+) ' Mor(P,R+∗), where P is the minimal parabolic subgroup of
G.

Now, similarly to the SL(2) case, we can define s-Sobolev norm Ns on the
space V as Ns(v) = Ss+r/2(v), where the positive character r = Re(λ) ∈ a∗ is
defined by r(a) = |λ(a)| and the norm Ss+r/2 is computed in Dλ realization.

This construction defines a canonical system of the Sobolev norms Ns on any
representation V of the group G which is isomorphic to one of the representations
Dλ for generic λ. This system of Sobolev structures is parameterized by points
s ∈ a∗.

Again, using algebraic methods we can reduce the case of an arbitrary admis-
sible representation V to one of these non degenerate cases and using the definition
described above we can define a canonical system of Sobolev topologies Ts on the
space V .
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4. Construction of the family of Sobolev norms Ss on the space F

Let us describe how to construct the Sobolev norms Ss on the space F of functions
on the flag variety X. For simplicity we consider only the case of the group
G = SL(3,R) – it shows all the ideas and all the difficulties.

In this case the space a∗ is two dimensional; it is best realized as a quotient
space of the space {(x1, x2, x3)} modulo the subspace {(x, x, x)}. Unramified char-
acters of the Borel group are parameterized by the points λ in the complexification
a∗C. There are also some other characters which differ from the characters λ by
some discrete parameters. As before we can ignore these discrete parameters and
reduce all constructions to finding the family of Sobolev norms Ss on the space F.

By definition, the space Dλ is unitarily induced from the character λ of the
Borel subgroup B (which in this case is the subgroup of upper triangular ma-
trices). This means that Dλ consists of smooth functions φ on G satisfying
φ(bg) = µ(b)φ(g) for g ∈ G and b ∈ B; here µ = ρ−1λ is the character of the
Borel subgroup B which differs from λ by the standard character ρ.

Restricting these functions to the maximal compact subgroup K we will iden-
tify all the spaces Dλ with the space F of smooth functions on the flag variety
X.

We have the natural action of the Weyl group W = S3 on a∗ and on a∗C given
by permutation of coordinates.

It is known that for generic λ all representations Dwλ are isomorphic. Let us
describe this more specifically for the case of a simple reflection σ; for example we
consider the simple root α = (1,−1, 0) ∈ a∗ and the corresponding permutation
σ = σα ∈ W of indeces 1 and 2. In this case σλ has the form σλ = λ− λα · α for
some number λα and the equivalence between spaces Dλ and Dσλ can be described
using an intertwining operator Iσ,λα : F → F, which depends only on σ and on
the number λα.

In fact, in this case the operator I can be described quite explicitly. Namely,
consider the natural fibration of the flag variety X over a Grassmannian Xα =
Gr2,3. The fibers of this filtration are circles, and on each of these circles we
can define an intertwining operator Iα as in the case of SL(2,R). Together these
operators represent the operator Iσ,λα : F → F.

The system of Sobolev spaces Ls for s ∈ a∗ should satisfy the following con-
dition:

(*) Iσ,λαLs ⊂ Ls−rαα/2, where rα = Re λα.
Since any weight s ∈ a∗ is a linear combination of simple weights α and

β we see that this condition, together with the similar condition for the root β
and with the condition that the space L0 is the space of L2-functions, completely
determine all the Sobolev norms Ss on F (up to topological equivalence). Namely
if s = aα + bβ we have to define Ls to be the image Iσα,−2a ◦ Iσβ ,−2b(L2(X)) (for
generic s). One can check that this definition gives a family of Sobolev norms
satisfying (*).
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5. Remarks

Remark 1. Let (π,G, V ) be a unitary admissible representation of G. Then we
have two Hilbertian structures on V - one canonical structure described above and
another given by the unitary structure on V . It is natural to assume that these
two structures always coincide (and in simplest cases this is true).

If this conjecture holds it may help in the description of unitary representa-
tions of the group G.

Remark 2. If we consider representations of a p-adic reductive group G then we
will find exactly the same analytic structures. They are parameterized by points s
of the real vector space a∗ = Mor(A,R+), where A is the maximally split Cartan
group of G. The proof in this case is different, since there are many representations
of G which can not be realized on flag varieties (so called cuspidal representations).

Remark 3. In case of the group SL(2,R) we can use Calderon-Zygmund theorem
which implies that the intertwining operator Ir is continuous with respect to Lp

Sobolev norms, i.e. it defines a continuous operator Ir : (F, Sp,s) → (F, Sp,s−r).
Using this we can canonically define Lp Sobolev structures on representations
isomorphic to Dλ.

Thus, it is probable that if we fix a number p ∈ [1,∞) then for any group G
and any admissible representation (π, G, V ) of G we can define a canonical family
of Lp type Sobolev norms Np,s on the space V which is parameterized by points
s ∈ a∗.

Probably the same construction will also yield canonical Besov structures on
the space V .
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