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Invariant Differential Operators and
Irreducible Representations of Lie
Superalgebras of Vector Fields

J. N. Bernstein and D. A. Leites

Introduction

1. Let M be a connected n-dimensional manifold over R and p be the
representation of GL{n, R) in a finite-dimensional space V. Denote by T(p)
or T(V) the space of tensor fields of type p. (For a precise definition see [6],
[7], [4]) On T(p) the group diff M of diffeomorphisms of M acts naturally.

The operator ¢ : T(p,)— T(p,) is invariant if it commutes with the diff M
action.

The problem of classification of invariant operators was probably first
posed explicitly by O. Veblen [19] (see reviews [13}, [7] for details of the
history). It turns out that if we confine ourselves to irreducible representa-
tions of GL(n,R) then, essentially, there is a unigue invariant differential
operator—it is the exterior differential 4 for differential forms. (This was
first proved by A. N. Rudakov [11}. The result was rediscovered later by
Chuu-Lian Terng [7] and A. A. Kirillov [6].) '

A. N. Rudakov considered in [11] the formal analogue of the above
smooth problem. We will show (see Appendix) that these problems are
practically equivalent. Therefore it is reasonable to solve only the formal
variant because the elementary methods of representation theory are appli-
cable to that variant.

2. Supermanifolds and Lie superalgebras have become a topic of
interest primarily because of their physical applications (see [10], [17],
where the successes and the prospects for success of supermanifolds are
reviewed). Here we generalize the above problem to supermanifolds,

We were interested by this problem when we tried to obtain an integra-
tion theory for supermanifolds containing an analogue of the Stokes
formula [1], [2). At the time only the usual differential forms were known,
but they are impossible to integrate. After we had invented integrable forms
(i.e., those that could be integrated) we wanted to be sure that there were
no other tensor objects that could be integrated.
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144  BERNSTEIN AND LEITES

We remark that the Stokes formula on a manifold exists insofar as the
space of differential forms possesses an invariant operator. The uniqueness
of the integration theory then follows from the above result by A. N.
Rudakov. So we have pgeneralized the method by Rudakov and have
described all differential operators in tensor fields on supermanifolds. As
one would expect, only invariant operators act on differential and integra-
bte forms. This proves that an integration theory on supermanifolds containing
an analogue of the Stokes formula can only be constructed with integrable
forms. (However see [2], where pseudodifferential forms on supermanifolds
p are integrated. They are not tensor fields on 9N but they are tensor fields
on the supermanifold 91.)

3. Let us sketch the contents of the paper. Let £ = W(n, m} be the Lie
superalgebra of formal vector fields in » even and m odd vartables,
L, = gl(n,m) the subsuperalgebra of linear vector fields. We assign to any
finite-dimensional representation p of I, an £.-module T(p) of formal
tensor fields of type p.

Differential and integrable forms are examples of tensor fields. We also
define the invariant operators d: @ > Q*' and d: £, > =, on differential
and integrable forms and in their generalization & = @, ., . The main
results of the paper are the following:

1.  An analogue of the Poincaré lemma exists, i.e., the cohomology of 4
vanishes everywhere except 2° and =, _,,. Here these cohomologies
are one-dimensional.

2. We describe all £-invariant operators ¢ : T(p,)— T{p,) for irreducible
representations p, and p, of L, There is an essentially unique
operator, namely 4. For n = 0 there is one more invariant operator,
i.e., the Berezin integral

f:zﬂ,,—>c=>n°.

3. From 1 and 2 we deduce a description of the irreducible continuous
representations of the Lie superalgebra £. All of them are sub-
quotients in T(p) for an irreducible representation p of L,. The
£-module T(p) is irreducible if it does not coincide with any of the &'
or the =, (and for m = | with ®). Otherwise the modules Kerd N &',
Imd NZ; and Imd N @* are irreducible. This constitutes the com-
plete list of irreducible continuous £-modules.

4. In the special case m =0 we classify finile dimensional irreducible
£-modules. We also give their geometrical interpretation and com-
pute their characters.

5. When there are no even coordinaltes, i.e., for n =0, all operators

acting on tensor fields are differential. In comparison with the purely
even case (m = 0) we have only one extra invariant operator, namely
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the integral. When n + 0, the integral is a nonlocal operator. It is
natural to conjecture that the integral is the unique invariant nonlo-
cal operator. In fact this is true—see the Appendix.

Remark. The problem solved in this paper can be generalized in several
directions. For example W{n,m) could be replaced by another Lic
superalgebra of similar structure (see [8]), or we could consider operators in
several variables (see [4], [5], [15])-

The results of this paper were published in part in [3] and [16], and
delivered at the seminars of E. V. Vinberg, A. L. Onishchik, Yu. I. Manin,
and P. K. Rashevsky at Moscow State University, and of A. M. Vershik at
Leningrad State University in 1976. Our acknowledgments are due to A. N.
Rudakov for his interest in this work.

1. Preliminaries

In this section we recall some facts on linear superspaces and Lie superal-
gebras that are necessary to make the paper independent. For details see
(9, (18].

1. Linear algebra in superspaces. All spaces are considered over a field
k of characteristic zero. _

A superspace is a Z,-graded space V = V5@V, where Z,={0,1}. A
vector v € V,, i EZ,, is said to be homogeneous, and we say that it has
parity equal to i, and we write p(v) = i. By I[I(¥) we denote the superspace
defined by II(V)g = V5, II(V); = ¥3. The dimension of a superspace Vis
the element dim ¥ = dim V5 + edim ¥/ of the algebra Z{¢]/(¢’ — 1). Evi-
dently dim V' @ W = dim V" - dim W.

A superalgebra is a superspace A with an even morphism 4 ® A—> 4. On
A, define brackets, putting [4,b] = ab — (— 1)*??®ba on homogencous
elements and extending this formula by linearity on arbitrary ones. A
commutative superalgebra is an associative superalgebra with unit with
trivial brackets.

A Lie superalgebra is a superalgebra £ with operation x @ y =[x, y}such
that

[x,y] = (= 1Y y.x]),
[x,[3.2]] =[[x y]-2] + (=10 [ x2]]

Evidently modules over associative and Lie superalgebras are well-defined.

An A-module homomorphism is a homomorphism ¢ : M —>» N such that
plam) = (— 1)/‘97¥ag(m) for any a € A, m € M. Define an A-module
II(M) = {x(m), where m € M} by the formula

aw(m) = (— 1y (am).
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2. Representations of gl(n,m). On the space of matrices of rank n + m
we define a Z,-grading, putting

& 0)_jp (0 %) =T
P (0 GD) © Ple o/
Here & and 6 are of rank #n and m respectively. Define the bracket by the
formula

[X,Y]=XY - (—1y*"DYX,  where X,Y EMat,,,,

This bracket transforms the space of matrices into a Lie superalgebra
denoted by gl(n,m).
In g{(n, m) we distinguish two subalgebras.

a) The Cartan (diagonal) subalgebra h with basis {h = E; for i=
L2,....,n+ m).

b) The nilpotent subalgebra n, with basis { £, i < j}.

3. Let ¥V be a gl(n,m)-module, v € ¥ an eigenvector with respect to b,
of weight \. We will call v the weight vector of the weight A=
Ay . - -, Ay i) Where A, E k, A, = A(h)). The highest weight vector of V is a

nonzero vector v € V that is an eigenvector with respect to hand n, v = 0.

Theorem (on highest weight). A finite-dimensional gi(n, m)-module V has a
highest weight vector v,. If V is irreducible, then v, is unique up to a multiple.
Its weight \ and parity p(v,) define V up to isomorphism.

The weight A is called the highest weight of the irreducible module
Ve=V@A,..., A . p(0,). The highest weight A of a finite-
dimensional module cannot have an arbitrary set of numerical values
Ay ..., A, but only those that satisfy A, — A, €Z, fori<j<n and
forn << i < j.

The proof of this follows from Theorem 8 in [18].

Examples. a) ¥(0,0) is the trivial gi(n, m)-module of the (1,0)-dimen-
sional superspace.
b) ¥(1,0,...,0;0) is the standard (identity) module in the (n,m)-

dimensional superspace of column-vectors; ¥(0,...,0, —1;») is the dual
gl(n, m)-module consisting of row-vectors (here v =0, for m=0and » =1
for m > 0).

c) The function

e @
tr: = -
8 (G GD) tré —tr®
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is gl(n,m)-invariant and is called the supertrace. It defines a gi(n,m)-
module V(1,...,1; —1,..., — 1;(n— m) mod 2).

4. Lie superaigebras of vector fields. Denote by ¥ the commutative
superalgebra k[[x]] of formnal power series in x, where x = (x,..., x,,,)
=(uy, ..., u,¢,...,£,) so that p(u) = 0 and p(g_,.) = 1. Denote by (x)
the maximal ideal in & generated by {x;}. Define a topology on ¥ so that
ideals (xY, #=0,1,2, ... are neighborhoods of zero. We have that ¥ is
complete with respect to this topology.

Denote by W(n, m) the Lie superalgebra of formal vector fields, ie., of
continuous derivations of k[{x]]. Define partial derivatives 3, = 9/dx;
€ W(n,m) putting 3,(x)) = §;. Clearly, p(3,) = p(x;) and [3,,3]] = 0. Any
element ) € W(n, m) is of the form @ = Zf9,, where f, = D(x) EF. We
will denote W(n,nt) by €. In £, define a filtration of the form £ =£_, D £,
DB, D ---, putiing

£, ={D € W(nm)|NF) C (x)y*'} =Z(x)""3,.

This filtration defines a topology on £, where £, are neighborhoods of zero.
Denote by L =L, the associated graded Lie superalgebra, where
L, =g, /&, Let us identify L, with gl(n,m} via E; < x;9,.

5. Tensor Fields. Let p be a representation of the Lie superalgebra
Ly=gl(n,m) in a finite-dimensional superspace V. Define a W(n, m)-
module T(p) putting T(¥)=F ®,V. The superspaceT(¥) evidently in-
herits the topology of %. Let us assign to a vector field 9 the operator
Ly : T(V)Y— T(V) such that

Lof fo) = 9(fo + (— 1Y FIZD p( E; )(v)

where fEF, v €V and @Y = (— 1PN+ £ The operator Ly is
called the Lie derivative (with respect to @). We will usually write simply
instead of L.

Elements ¢+ € T(¥) will be called fensor fields of type V. The superspace
V is embedded in 7(¥) as 1 ® V. Elements ¢ € V" will be called tensor fields
with constant coefficients. The latter are defined by

9, =0, i=12...,n+m
For any tensor field r = Zfv, we put
({(0) = Zf,(O)s; € V.
Example. The superspace £ considered as an E-module is the space of

tensor fields of type id, where id is the standard (identity) representation of
gl(n,m). We have Ly(9") =[D,D’).
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The operator Ly, is a derivation of the $-module T(F), i.., the analog
of the Leibnitz rule holds

Lo(ft) =Dt + (= 1YPDFL(r), wheref €F,D €L, r € T(V).
(*)

6. We will also use the following equivalent definition of tensor fields.
Denote by U(£) and U(E,) the universal enveloping algebras of £ and £,
respectively. Let us extend the representation p of Ly = £3/£, to a represen-
tation of E,, then to a representation of U{£g).

Let us define a morphism ¢ : 7(¥)—> Hom ,(U(E), V), via @{(tXX)
= (— 1yPE)x(1)(0). The Poincaré-Birkhoff-Witt theorem implies that
UE)=k[d,, .-, 0,,,]® U(Ey. Since Hom(k[3],k] = & we have that ¢
is an isomorphism s¢ we may put

T(V) < Homy . ,(U(E), V).

7. The space of tensor fields can be defined axiomatically. Let T be a
finitely generated F-module with a consistent £-action, ie., the Leibnitz
rule is satisfied. Suppose that

£, T C(x)T. (*)

Then, on the space V= T/(x)T a representation p of L, arises. Let
us assign to 1 € T a homomorphism t*: U(€)—> V, via

t"(u)y = (— 1Y Pt mod(x)T.

Thus we obtain a morphism @ : T— Hom ., (U(E), V). It is easy to verify
that ¢ preserves £- and §-module structures. In addition, ¢ defines isomor-
phisms

T/(N)T =V =T(V)/()T(V)

Since T(V) is a free F-module, the Nakayama lemma implies that ¢ is an
isomorphism.

8. Differential forms. Let us introduce variables %;, so that p(%)=
p(x)+1, and call clements of Q= %[2] differential forms. (Informally
speaking £, is simply dx,.) In € we introduce a grading with respect to the
degree of £. Each § is a finitely generated $-module with basis %*
= £, ..., X&m, where x runs over multi-indices (xy, . . . , K, ,,) Such that
x, EZ, and x, = 0,1 fori < n.

Let us define an odd derivation d: @' > Q*! putting d = ££.3,.

For any vector field @ = Zf3; let us define a derivation iy : 2 > 2~ ' by
putting iy = Z(— PP(9/3%) (we call it the inner product on 9). Define
also the Lie derivative L, with respect to @, putting L, = {d, iy}
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Lemma

a)y p(d)= 1, degd=1;

b) plig)=p@)+ 1, degipg = — 1;
c) p(Lg)=p(D), degLlqy =0;

d) dz = Eld’ d] = 0! [i‘%" iﬁ)‘] = 01

if"i’ =(_1)M)ﬁﬁn’ [d’L“ﬁ] =0, [Lﬂ"-ﬁ?'] =(”1)P(@)il®,®‘l’
[Lag>La] = Liaan-

All these statements are easy to prove. The £-action on £ satisfies () of
Section 1.7 so that § is a superspace of tensor fields.

9. Integrable forms. Consider a superalgebra ¢ consisting of operators
generated by operators of multiplication by f for f €Y, and by iy for
& €. It is clear that $=‘E’F{5,, .., 8,,,] where 3j= By, Introduce a
grading in ¢, putting degd, = — 1, degx, = 0. Putting £,=2 /3(3,), define
on § an ©-module structure. Denote by X a graded $-module with one
gencrator A such that degA=n— m and p(A)=(n-— mymod2. Elements
6 €X,_,_, we will call integrable forms of degree r, since 2 is the formal
analog of smooth forms that can be integrated, see [1}.

On = we will consider the following structures.

a) The structure of a graded Q-module defined by the formula
£(PA)=%(P)- 4, where P E}.

b) The structure of a graded §-module. In particular, multiplication by
is for @ € £ is defined. ’

¢) The odd derivation d is defined by the formula

d(PA) = (Z£3,P)A = (z a(g?; - )A ~[4,P]A.

d) The Lie derivative Ly for D €£ is defined by the formula Ly =
[d,ig)
Evidently

X (wo) = X(w)o + (~ 1Y uX (o),

where w €8, 0 €3, and X is one of 4, iy, or Lg.

It is easy to verify that the £-action on T satisfies {*) of Section 1.7 so
that ¥ is a space of tensor fields. The corresponding space £/(¥)Z = V3 is
isomorphic to k[ﬁ]A.
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10.  Special cases

a) m=0. We have that & =0 for i>n and Z,=0 for i <0. In
addition, the mapping A+> %, .. . £, defines an isomorphism of &'
with X, preserving all structures.

b) n=0. In this casc there is an even £-module morphism [:Z_,
— k called the Berezin integral. It is defined by the formula [9]
fg, ...t A=1, and fgp L EmA=0 if Ty, =0.
We will also denote by [ the composition [:Z_,, -k =>Q° of the
Berezin integral and the natural embedding.

¢) m=1 We generalize & and 3, to the spaces & containing &’ and
E where A€ k. Let x=(u,, ..., u,,£). Consider a k-graded &-
module ® = @ (we assume that deg £; = | € k) generated by £,
where deg£* = A and J’(i Y =0, with relations E &= §"+' Define
3, and 3, = 9%, via 3,(EM =0, 34,4 = 0 and My =Aer 0,

Now on &, derivations 4, iy, and L, consistent with the derivations 4, i,
and L in & are evidently defined.

Evidently, ® = @®* is a commutative superalgebra.

Clearly, @ is a superspace on tensor fields and for &% = @, _, 9" we have
a decomposition

005925350, *)
where
a(w)=wé°, B(i, . . ﬁ,,é")=A.

Evidently, the homomorphisms o and 8 are consistent with the -
module structure and the operators 4, iy, and Lg. The explicit form of the
%-basis in @, £ and ® easily implies the exactness of ().

2. Results

1. An analog of the Poincaré lemma
Theorem 1.

l. The sequence

d . d
P>
is exact. Kerd N §° = k (constanis).
2. The sequence
. iz_m_,iz,m—‘? .. f)E,,A,,,E)O

is exact everywhere except Z _ . The space Kerd/Imd is generated by
£ ...4,0,...9,4
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3. For m = | the sequence

NNEEY AT 2 AR
is exact for any A+ 0. For A =0 we have Kerd/Imd = k ( generated

by £%.
4. For m =0 the sequence
4s Az dodes
is exact.

2. Description of invariant operators. Let V, ¥V, be irreducible finite-
dimensional g/(n, m)-modules and ¢ : T( V,)— T(¥,) a nonzero L-invariant
operator.

Theorem 2. Replacing, if necessary, V| by TI(Vy) and V, by TI(V,), we
arrive at one of the following possibifities.

a) There is an isomorphism ¢': V>V that defines the isomorphism
c:T(V)=>T(Vy

b) T(V,) and T(V;) are isomorphic ito neighboring terms in one of
sequences of Theorem 1 and ¢ is a multiple of dor |.

3. Description of irreducible E-modules. We will consider two catego-
ries of £-modules—discrete and topological. An £-module 7 such that for
any i € I the superspace U(Ro)i is finite-dimensional and g i =0 for
large (i) € N, we will call discrete.

To any discrete £-module 7 there corresponds a topological £-module
I* = Hom, (1, k) with 2 basis of ncighborhoods of zero consisting of anni-
hilators of finite dimensional subsuperspaces in /. The module [ can be
recovered from I* since I = Hom§(/*, k) where Hom} siands for a super-
space of continuous homomorphisms.

These two categories of discrete and topological £-modules are analogs
of the category of finite-dimensional g/-modules, where g/ is a finite-
dimensional simple Lie algebra. In particular, for m = 0 these categories
coincide with that of finite-dimensional £-modules.

The following theorem describes irreducible £-modules in the category
of topological £-modules and automatically yields a description of irreduc-
ible discrete E-modules.

Theorem 3. If V is an irreducible gl(n, m)-module, then T(V') contains the
unique irreducible ¢ -submodule irr T(V), where irt T(V) = T( VY if T(V)
does not occur in any of the sequences of Theorem 1, and
irQ =Kerd N, irrZ, =Imd NZE,
i@ = Kerd N ¢~

The modules it T(V) and TI(ir T(V)) are mutually inequivalent and
exhaust all irreducible topological £-modules.

I
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4. Characters of finite-dimensional C-modules. Let £ = W(0,m). Let W
be the Weil group, ¢ the first fundamental weight, p half the sum of the
positive roots (of the Lie algebra 7,), and {,} the weights of the Ly-module
L_.Let® =3, _psgnwe* and N = I1(1 + ee®).

Theorem 4. Let L, be an irreducible Ly-module with highest weight x and
even highest weight vector. Then

1) coshT(L)=NchL,

2}  coshd® = (1/9) ¥ sgnw-w[e""*" I a +¢e“)]
weE W @=(10,....0

3) coshd=_,_,=—(e)"(1/D) D sgnw
wE W

XW[e""’+" II (l+ce"')].

w10, ..., 0)

3. Proofs

1. Proof of Poincaré lemma. Let K be one of complexes
d 4 d d
Q-Q's --cor- - F, | OF

Put L, = L , . The formula L, = [d,i,, ] implies that L; act trivially on the
cohomology H (K} of K.

It is easy to verify that x*£* and x*8”A are eigenvectors with respect to
L. Hence, K = K/ ® K" where K/ = Ker L, K” =Im L,. Since L, is invert-
ible on K", it is also invertible on H(KX."), implying H(K")= 0. Thus,
H(K)= H(K)).

Since all L; commute, we have H{K) = H(N K). Let us describe N X;'.

a) The case of differential forms. The operator L; multiplies x"£” by

?tj =K+ The condition ?\ 0 means that ;= »; = 0. Hence

NK' =k-1c

b) The case of integrable forms. The operator L, multiplies x A by
A=x—p+ (1P If p(x) =0, then » <1 and A; = 0 implies
k=0, vj—l If p(x)=1, then k<1 and A, =0 implies x, =1,
.

j

0. Thus nK’—k .. .5,,,3 L0ACE_

This proves 1 and 2 of Theorem |. Statement 3 is proved in the same
way. Statement 4 follows from 1 and 2.

2. Discrete and topological £-modules. Tt is more convenient to prove
Theorems 2 and 3 in terms of discrete modules.
The following statements are evident:

a) Hom,(J,,],) = Hom(13, I?).
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b) Closed £-submodules in I* are in one-to-one correspondence with
£-submodules in 7 (we assign to I’ C I the module (f/1")* = Ann [’
CI%).

Put I(V)= UE€)® e,V for any finite-dimensional L, module ¥,

where as in Section 1.6, we extend the action of L, to a U(£}action.
Clearly I(V) is a discrete £-module.

Lemma. I(V)* = T(V*).
Proof
T(V*) = Homye,,(U(E), V*)
== Homy(U(2) ® e, V> k) = Hom,(I(V ), k).
Thus, instead of studying T(}") we may study 7(¥), which sometimes is
somewhat easier to describe.

3. Peculiar vectors. Let I be a discrete £-module. The subsuperspace
I =(z € I|R,z=c} is Eyinvariant, so it is naturally endowed with an
Lg-module structure. Vectors z € I™ are called peculiar; see [9].

Lemma, Hom,(/(¥),1)=Hom, (V,I%).

Proof
Home(I(¥),) = Hom, (U(£) ® ye,, Vo 1)

= Hom, (¥,I) = Hom, (¥, I%).

This lemma reduces the problem of describing £-invariant operators
¢ : I(¥)—> (V) to that of describing L,-homomorphisms cq: V= I{(V)".
If ¥, is irreducible, then a homomorphism ¢, is completely defined by the
image cy{0) of the highest-weight vector v € V. The vector cy(o) is the
highest-weight peculiar vector. Hence a description of the various homo-
morphisms ¢ is reduced to the description of the highest-weight peculiar
vectors. This description will be carried out in the following Section 3.5.
Remark. The vector cg(r) need not correspond to any homomorphism
¢: I(V))> I(V,) with irreducible Ly-module ¥,. This happens when the
Ly-module U{Ly)eq(v) is reducible.

4. Description of peculiar vectors in I(V). The decomposition U(E)
= k[3,, ..., 98,,.]® U(Ey) implies I(F) = k[3] @ V. We will describe pe-
culiar vectors in a somewhat more general situation.

Lemma. Let [ be an £-module, V a subsuperspace in I satisfying
a) EVCV, £ V=0
b) I=k[QA]®V.

Let z € I be a highest-weight peculiar vector and X its weight. Then there
is a highest-weight vector v € V of weight p such that one of the following
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holds:
a) z=v, A=
b) For some r we have
z=3,0,+ 2, 35+ 0,
i>r
where v, E V, v, %0, i » r and v is the highest-weight vector of weight

A. We have either | < r < n+ i or r=n+ m and the following may
occur (all of them satisfying p, = A, + 8,):

a) Ifr<n,rhenA=(0,...,0,—1,...,—1;1,...,1;6),where0
accurs r — 1 times;

B) If m>1, r=n+1, then A=,...,0;p1,...,1;0), where
PEZp> 1.

Y) Ifm>1L, r=n+m, then7\=(0,...,0;p,0,...,0;(_)),where
pELp;L

8) Ifm=l,r=n+l,theni\=(0,...,0;3;6),wheresEk.

¢) Ifn=0,m>1thenA=10,...,0;0) while z=39,...3,0+35.

Let us deduce Theorem 2 from this lemma. Let ¢: T(V )= T(V,) be a
nonzero invariant operator. The homomorphism ¢* : I{¥¥) > I(V}) corre-
sponds to this operator, hence there is a highest-weight peculiar vector
c*(o*) € I(¥}). Let A be the weight of ¢*(p*). Consider the highest-weight
vector o € V* described in the lemma. Since the Ly-module V'} is irreduc-
ible, the highest-weight theorem implies that p is the highest weight of ¥}
and o is a multiple of a highest-weight vector o* € V7. By multiplying by a
scalar, we may assume that v = ¢*. This condition uniquely defines c;
therefore dim HomS( T(V,), T(V,) = (1,0).

In fact the weights A and p tell which of (a), (b), or (c) takes place. If z
and z’ are vectors corresponding to different homomorphisms ¢ and ¢, then
z — z’ depends only on v; and o, their weights being different from p, which
is only possible for z — 2z’ =0.

It is clear that the case A= g, z = p corresponds to an isomorphism
V, = V,. Let us describe which cases of the lemma correspond to d and |
Denote by A(T) the highest weight of the Ly-module ¥V* for 7= T(V).
Then

A2Yy=(0,...,0;0,...,0,—r), if m>0;
AMZpepo=(0,....0,—1 ..., ~LL.... 1)
if0<r<a (0isrtimes);
ACpon-)=0©....01+r—nl....1) f r>n;
AP)Yy=(0,...,0; —s).
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The proof uses the explicit description of the ¥-basis in £, = and &, and is
quite straightforward.
Thus, the following possibilities of the lemma correspond to 4 and |:

d:Q >+ —cases (bA)and (b8) for s€Z,5<0;
d:Z —Z_ —cases (ba), (bf), and (bd) for s€Z,5>0;
d: >\ —case(b8) for seZ;

{:2_,, 8 —case (c).

Note that only one peculiar vector, that of the case (bé) for s =0, does
not correspond to any invariant operator acting on tensor fields with
irreducible fibre.

Indeed, since the highest weight of U/(Ly)z is 0, irreducibility implies its
triviality due to the highest-weight theorem. But

E o (2)=E i1 1(8,40) =30 — 1 Eprr 10 # 0.

5. Proof of Lemma 4. In Section 3.6 we will prove Lemmas 5.1 and
5.2, which describe peculiar vectors for Lie superalgebras W(n, m) for small
rn and m. In this section we will deduce the general case from this
description; it is based on the following idea (compare with {11}, [12]).

Let R C[1,2, ..., n+ m] be a subset of indices. Consider a Lie subalge-
bra

Bf = {Ej}(f)ﬁﬂje RX=(X},cn}
and subsuperspace ¥ = k[3;];¢x ® ¥ C I. Then the £*-modules 7 and
V*® satisfy conditions a) and b) of Lemma 4, and z is a highest-weight
peculiar vector with respect to £2. Using the description of peculiar vectors
for £7, we will obtain restrictions for the weight and the form of z.
Applying this trick for various R we will describe z completely.

Let us prove Lemma 4. Let z = 20, so that all v, # 0. The depth of a
veclor z is d(z) = max|p|.

Case 1. d(z)=0, ie, z € V. This corresponds to (a).
Case 2. d(z)= 1, ie., z= 23,0, + v, where v; and v are b-invariant and

v; 7 0 for some /. Since z is a highest-weight vector, _E,jz =0 for i <j. The
coefficients of aj and | being zero, we have

U= (—h l)p(Ey)p(E'l} )Ujr P(Ey )6 = 0. (:)

In particular, © is a highest-weight vector of weight A,

Let r be the smallest subscript such that ¢, = 0. From () it follows that
p = p, is the highest-weight vector. But, for j > r we have E;v,= * v, so
that v, 0.
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Lemma 1. A peculiar vector z of depth 1 has the following weight:

1, W(1,0). Ifz=30+ 5, then A= —1.

2, W(2,0). If z=09p +d0, + D, then A=(—-1-1)
Ifz = 8202 + ‘E, fhER A= (0, - 1).

3. W(Q,1). Ifz=3p +d0,+ 0then A= (—1L1D.
Ifz=00,+ ¥, then A= (0,5) where s E k.

4, W(0,2). If z=203uv +dv,+ D, then A=(p, 1), wherepEL p > L
Ifz=0.0+ & thenA=(0,—plLpELp> 1.

Using this lemma we will consider the various cases of Lemma 4.

(ba), r < n. Applying Lemma 5.1.1to £, we have thatA, = — L Ifi<r,
then applying 5.1.2 to £7 we have that A= 0. If i > r,then 5.1.2 and 5.1.3
imply that A, = —1 for i < n and A, = 1 for j > n. That implies case {ba) of
Lemma 4.

(b8,7,8),r > n. From 5.1.3 it follows that A, =0 for i < n. Further, it
follows from 5.1.4 that if n < i< r then A, =0, A, < 0 and if r < i then
A, =1, A, > 0. In particular, this implies that n + | <r <n+ mis impossi-
ble. The case (b8) holdsform > 1,i=n + 1, the case (by) holds for m > 1,
r=n+ m, and (b3) holds for m = 1.

Case 3. d(z)> 1.
Lemma 2. Let z % 0 be a highest-weight peculiar vector.

1. If € is either W(1,0), w(2,0), or W(1,1), or W(1,2), then z = 0.
2. For € = W(0,2) we have z = 3,0,0 + &, A= (0,0).

Let us show that if d(z) > 1 then n=0. Letn > 1 and z = ‘v, where
v, # 0 and |#] > 1. Choose indices i,jsothati <jand»+y> 1. Apply-
ing Lemma 5.2.1 to €7 where R = (1,4, j}, we obtain a contradiction.

Now let n =0 and z = £9°,, where , >0 and |#[ > 1. Since all 9; are
odd we see that », < 1. Let »,= »,= 1. From Lemma 5.2.2 we obtain that
A=A =0 Nowifr differs from i and j, then applying Lemma 51410 £"
we see that #, = 1 since », = 1, », = 0 implies », + 0. From Lemma 5.2.2 we
see that A, =0. Thus»=(1, ..., 1), A=@0,...,0).

Suppose that in the decomposition z = 33"v, there is 2 multi-index »
such that [#] = 1. Let , = 1, », = 0. Applying Lemma 5.1.4 to B¥ we obtain
a contradiction to A, = A, =0.

Finally z =9, ...3,0+ & and we see that © and & are highest-weight

vectors. Hence we obtain case (c) of Lemma 4.

6. Proof of Lemmas 5.1 and 5.2
a) Put b = x,0,.
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5.1.1. (#BXdo + 8) = —2ho since (°8)(0) = u?3(5) =0. Hence p=0
and A= —1.

5.1.2. Let z, = 3,0, + 3,0, + ©. Applying 5.1.1 to €' and £ we have
A=(-1,-1). If z=0,0, we similarly obtain A, = — 1. Now consider a
vector z = E,; z= —3,0+ 3,E,;v and let us apply 5.1.1 to £'. We have
p=0.Hence A, =0,ie, A=, — 1)

5.1.3. Letz=d,p, + 3,0, + &. From 5.1.1 it follows that A, = — 1. We
have (u£d;)z = — hyo; — E|y0,. From the formula () of Section 5 we have
Ev;= -0, Thus o, = hyop, ie, pp=land A, =1, ie, A=(-1,1)

The case z = 3,0 + & is dealt with in the same way as 5.1.2.

514, Letz=2d,0,+ d,0,+ & Asin 5.1.3, we have that A, =1,

From the highest-weight theorem we have that A, EZ and A, > 1.

If z = 3,0 + &, then (§99,)z = — kyv; hence p, =0,

The highest-weight theorem implies p, € Z, p, < 0. Hence A= (0, - /),
where —/=p,— 1< ~1.

5.2.1. a) £ = W(1,0) see [18]. Put ¢ = 4?9, s = 4. An induction easily
shows that

[4,8]=—8"YQrh— r(r - 1)),
[5,8])= -3+ 2[3r(r — Dh—r(r — )(r —2)].
Itdiz)=r>1landz=9p+ ..., then
z= =¥ 2rh—r(r—Djo+ ... =[2m—r(r—-1]F v+ ...
sz=[3r(r—Dp—r(r—1(r—2)J3 2+ ...
Hence 2p=r—1,3u=r—2,0r3r— )=2(r - 2),ie,r=1.
Contradiction

b) Let £ be any of the Lie superalgebras under consideration, and
z € I a peculiar vector such that z = Z&’p,, where v, + 0.

Then all #, are either 0 or I. For i < n the statement follows from the
case W(1,0), and for i > n from the fact that 32 =0.

¢) Letf = W(2,0)and z=89,0+ ..., where v 0. Then 2" = E,;z
= —9p+ ... is a peculiar vector contradicting b).

The case W(l,1) is treated in the same way.

For case W(1,2) it may happen that z = 3,3;¢ + ..., but then Ej Eyz
= *+3p + ... is a peculiar vector that contradicts b).

522, Letz=29,3,0+ ... . Then (§nd,)z = [3,5(nd,) + 0,({3,) — &;Jo +
D= 3,E, 0+ (u, — 1)3,0 + 6. Hence p, = 1 and E, v = 0. In the same way
we prove that g, = 1 and E,0 = 0. Thus v is a highest-weight vector and
A=(0,0).
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These formulas imply that z’ = z = 3,3;v is a highest-weight peculiar
vector, A=(0,0) and d(z") < 1. It follows from 5.1.3 that d(z) ={, ie.,
e V.

7. Let us prove Theorem 3. Let ¥ be an irreducible Lymodule,
T © T(V) a proper closed submodule.

a) Let us prove that there are an irreducible Lymodule ¥’ and a
nonzero invariant operator ¢ : T(¥)— T(¥’) such that T C Kerc. In fact,
as is shown in 3.2.b, T(V)/T =1I* for a discrete module I and
Hom & (T(¥)/ T, T(V")) = Hom (I(V'*}, 1) = Hom, (V'*,1 €. By the defi-
nition of a discrete module, we have 1% 0 and I™ contains a finite-
dimensional irreducible Ly-submodule ¥”. Choose ¥’ so that V'™* = V.
Then HomS(T(V)/T,.T(V' )0, ie., there is an invariant operator ¢:
T(V)— T(V") such that ¢(T)=0.

b) Since c is not an isomorphism, Theorem 2 implies that T(V) = K,
T(V")= K"*! are neighboring terms in one of the sequences of Theorem 1
and c: XK'= K™+ is the corresponding homomorphism. Let us write down
the preceding term of the sequence: k' '> K"'> K r+1(if K" =9 this is
impossible, but now 7 C Kerd =K1, hence T= K =irr Q%. Put T’
= ¢~ '(T). By the same reasoning for 7 we see that either T = ¢K e,
T = Kere, or ¢T' =0, and then 7' N Ime =0. Since T C Kere the Poin-
caré lemma implies that T=1Ime =Kerc for K" #Z_,.

If K*=2_,, then either T=Imd, T = Kerd, or T is & one-dimensional
complement to Imd in Kerd. It is clear then that T'= k- H where H
=¢...£,,...0,A Butitis easy to verify that this space is not £-
invariant (e.g., 9, H is not proportional to H); hence this is impossible.

We have obtained a complete description of all closed submodules in
every T(V), which implies Theorem 3.

8  Proof of Theorem 4. Formula 1 is evident, since ch®’=N. To

prove formula 2 let us use a sequence dr S St |, where
p(i) =0 (recall that p(d) = T). The exactness of this sequence implies that

chd{l = 2 (-—c)’chﬂ”"
[0

= (N/GD) 2 sgnw- W[ ’go(—i)"ep*"wﬁhl]

wEW
p+rp,
= (H/GD)WEWSEHW' W( le;'i':ejﬁ )

Inserting N under the summation sign, we obtain formuia 2. Formula 3
is a generalization of formula 2 to negative r and is proved in the same way
using

—r—m
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Appendix. Invariant operators in smooth and
forma! tensor fields 5

Let 9 = (U,9,) be a connected superdomain (see [1,9]} of dimension
(n,m) with coordinates x = (&, £). Let F(AL) = C*(9L) be the commutative
superalgebra of smooth functions on @ and Vect(L) be the Lie superal-
gebra of vector fields on @l. To any representation p of g/(n,m) in a
finite-dimensional superspace ¥, we assign a representation of Vect(L) in
the superspace T(AL; V)= F(A)® V of tensor fields. Vect{Q)}action on
T(A: ¥) is defined by the same formula as in the formal case (see Section
1.4).

On F(Q), Vect (), T(%L; ¥) we define a topology of uniform conver-
gence on all compacta in all derivatives. An invariant operator is a continu-
ous homomorphism of Vect(9L)-modules ¢: T(A; V)= T(AU; V;). An op-
erator ¢ is differential if it is focal, ic., it does not enlarge the support:
supp () C suppt where 1 € T(; ¥,). Denote Hom{‘,m(m the superspace
of invariant differential operators.

Proposition. Hom$%,,, o) (T(U; V), T(U; V})) = HomSy, ) (T(V)),
T(V,)). Elements of this space are differential operators with constant coeffi-
cients.

Proof. Let ¢ € Homy,(a, and p € V. Define ¢ : T(U; V) - ¥, via ¢(7)
= c(f) p). Evidently g is continuous. Since ¢ is local we have that (1) =0
if p &supps. From standard advanced calculus we have that ¢(7)
= Za,87(p), where ¥ runs over a finite set of multi-indices and 4,
€ Hom,(V,, ¥;). From the continuity of ¢ it follows that the || are
bounded for every point in a small neighborhood of the point p,ie,cisa
differential operator in a neighborhood of p. Since [c, 8,} = 0 for every i, we
see that ¢ is an operator with constant coefficients. Since this is true for
every p € A we see that ¢ is a global differential operator with constant
coefficients. Similarly we prove that Homj},,,, consists of differential
operators with constant coefficients.

The condition that ¢ =Xq 3", where a, € Hom,(V), ¥;) belongs to
Hom‘{,m(m or Hom%,,,,, means that [¢,D]=0 for & € Vect() or
% € W(n,m). For each p € % let us consider a Lie superalgebra morphism
a,:Vect (U)—> W(n,m) (the decomposition into the Taylor series at the
point p). Since the image of a, is dense, then {¢, Vect (L)} = O implies that
{c, W(n,m)] =0. Conversely, let [¢, W(n,m)]=0. Then [c,®], where &
€ Vect (), has a zero Taylor series expansion in each point pE A,
implying [¢, D] = 0. Hence {c, Vect ()] = 0. The proposition is proved.

Theorem 5. Let V, and V, be irreducible gl(n,m)-modules, n>0 and
c:T(U; V)= T(U; V,) a nonlocal invariant ocperator. Then T(AU; V)
=3 _,.(U) and T(A; V) = QXAQL), and c is a multiple of the integral.

We will omit the proof of this theorem.
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