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§0. INTRODUCTION

P-invariant Pairings

0.1. Let F be a non-archimedean local field, G = GL(n,F), and

P ¢ G the suboroup of all matrices with the last row equal to
(0,0,...,0,1). Many results about representations of G were ohtained
by studying their restrictions to P (see [GK], [BZ1l, [BZz21, [zZ1]).
In this paper we prove the following important technical result which
clarifies the relations between representations of G and their re-

strictions to P.

Theorem A (see 5.1). Let (w,E) be a smooth irreducible repre-
sentation of G in a (complex) vector space E, ff = (ﬁ,ﬁ) the
contragredient representation. Then each P-invariant pairing

B: E x E - € is proportional to the standard pairing.

0.2. Theorem A implies the following

Theorem (see 5.4). Each irreducible unitary representation of

G remains irreducible when restricted to P.

H. Jacquet noticed that this theorem implies the following result

about representations of G.
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Corollary. Any representation of @G parabolically induced from
an irreducible unitary representation of a Levi subcrouo of G is
always irreducible. In other words, in the case of GL all R-g9roups
are trivial.

Jacquet's proof uses the exnlicit description, in terms of Mackey's
construction, of the restriction of an induced renresentation to P.

We give another vroof in 8.2,

0.3. Using theorem 0.1 we prove that any nondegenerate unitarizable
irreducible representation (m, E) of G 1is generic, i.e. the scalar
oroduct in E can be written as a standard integral in the Kirillov
model of n (see 6.2).

In §6 we generalize this result to nonunitarizable representa-
tions. Namely, we prove that the scalar product between an irreducible
nondegenerate G-module E and its contragredient E can be written
via an integral in their Kirillov models. (This intearal does not
converge, but there exists a natural regularization procedure for its
evaluation, see 6.3-6.4.) This result gives an alternative proof of
the uniqueness and the injectivity of the Kirillov model (see 6.5).

In the case of a degenerate irreducible representation (n, E)

A. Zelevinsky described in [21, §8] a degenerate Kirillov model. If

T 1is unitarizable, we also can write the scalar product in E via

an integral (see 7.4, remark). If we had a reqularization procedure
for a degenerate Kirillov model we would prove an analoaous result for

any n.

An Algorithm for the Classification of Unitary Representations of GIL(n)
0.4. Using theorem A we establish a unitarizabilitv criterion for
irreducible G-modules (see 7.4). It claims that an irreducible repre-
Sentation (n, E) of GL(n) is unitarizableiff it is Hermitian and

its derivatives n (K

. (k)

satisfy some inequalities (these derivatives

are representations of the groups GL(m) with m < n, which

/7
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describe the restriction of n to P, see 7.2).

This criterion gives an algorithm for the classification of irre-
ducible unitary representations of G = GL(n). More precisely, let us
start from some classification of irreducible smooth reoresentations
of G (we use Zelevinsky's classification, which is based on the
detailed §£udy of derivatives of representations of G, see 7.5-7.8).
Moreover, suppose we know the multiplicity matrix m = (mab)” which
describes the decomposition in the Grothendieck group of induced repre-
sentations into irreducible ones. In terms of this matrix we can
calculate all the derivatives for all irreducible revresentations of
G. Now, using the unitarizability criterion, we c;n identify those

irreducible representations of G which are unitarizable (see 7.9).

0.5. 1In [22] A. Zelevinsky described some polynowmials Pab(q),
analogous to the Kazhdan-Lusztig polynomials, and conjectured that

m = Pab(l). Later he proved that these polynomials can be expressed

ab
in terms of usual Kazhdan-Lusztig polynomials for symmetric groups

(not published). Hence, if we believe Zelevinsky's conjecture, we

have explicit formulae for m_, in terms of Kazhdan-Lusztioc polynomials

i.e. our algorithm becomes quite precise. This leads to a very inter-
esting question about complexity of the set of unitarizable representa-
tions. The problem is that Kazhdan-Lusztig polynomials are given by
some recursive formulae and apparently there are no explicit formulae
for them. Thus it might happen that the description of unitarizable
representations can not be given by explicit formulae and only bv

some inductive oprocedure. But maybe for the description of unitary
representations we do not need the whole complexity of the Kazhdan-
Lusztig polynomials (I even do not rule out the possibility that they
can be described by simple-minded methods like those in section 8 with-
out using Zelevinsky's conjecture). Then we can suppose that the
classification of irreducible unitary representations for any reductive

groun (#-adic or real) can be given by reasonablv explicit formulae,
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since the groups GL(n) are more simple but not much more simple than
other groups.
In any case, algorithm 0.4 together with Zelevinsky's conjecture

reduces this question to a pure combinatorial probler.

0.6. Our proof of theorem A is based on the following geometrical

statement.

Theorem B. Any distribution & on € invariant under the
adjoint action of the subgroup P is automatically invariant under

the adjoint action of the whole group G,

We prove the implication Theorem B = Theorem A usina the technique of
Gelfand-Kazhdan (see [GK]). Also the proof of theorem B is reminiscent
0f the proof in [GK]. But there is one essential difference - unlike
[GK] we can not consider each G-orbit separatelv, since there exist
G~orbits which have Ad(P)-invariant but not Ad(G)-invariant distri-
butions*). Theorem B means that these distributions can not be extend-
ed from these orbits to the whole groun G as Ad(P)-invariant dis-

tributions. In order to orove this we use the Fourier transform.

0.7. Let me illustrate the method of the proof of theorem B in the
case of the group GL(2).

First of all, applying the localization principle 1.4, which is a
formalization of Gelfand-Kazhdan's method, we can assume that E is
concentrated on the closure of one G-orbit Ox = RA(G)x. Tt is easy
to check that a P-invariant distribution E on 0x corresnonds to a
distribution E' on the svace P\G ~ Fz\o, which is quasiinvariant
under the action of the centralizer G, of x in G, i.e.

5(g)E' = v(g)E', where g ¢ G, ,vig) = |det gf.
If x 1is semisimple, the distribution E' is proportional to

+) This is the reason why theorems A and B are false for a finite

field F.

M ¢
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the Haar measure on FZ, i.e. the corresponding distribution E is

G-invariant. But if x is unipotent, there exists a gquasiinvariant
distribution E', concentrated on a line in Fz. The correspondina
distribution E is concentrated on the unipotent subgroup of Py
which we identify with the affine line F. E is defined only on the
subset F\O‘.of nontrival unipotent elements and is invariant under
the action of the multiplicative group F*. We claim that it can not
be extended to an F*-invariant distribution on F.

Indeed, for any F*-invariant distribution ¢ on F, its
Fourier transform Q is quasiinvariant. Using this it is easy to
check that a is proportional to a Haar measure on “F, and hence
Q 1is concentrated at 0.

In the general case, for GL(n) with n > 2, the proof is
analogous up to the last statement. This statement - that Q is
proportional to a Haar measure - we deduce from theorem B for a group

GL(m) with m < n. This finishes the proof.

0.8. Let me give a brief description of the contents of the paper.

In chapter I (sections 1-4) we study invariant distributions.
Section 1 contains a brief review of general properties of distribu-
tions. 1In section 2 we formulate theorem B and give several equivalent
reformations which we use in the inductive proof. Section 3 contains
the proof of the theorem. Some technical details, including the
existence of orbital integrals in positive characteristic, are proved
in section 4.

Chapter II (sections 5-9) gives applications to representation
theory. Section 5 contains proofs of theorem A and related theorems
A', A", and the proof of theorem 0.2. In section 6 we discuss
corollaries of theorem A for Kirillov models. Section 7 describes
an algorithm for the classification of irreducible unitary representa-
tions. 1In 7.1-7.4 we prove a unitarizability criterion for G-modules.

in 7.5-7.9 we recall Zelevinsky's classification and formulate




the algorithm.

In section 8 we discuss some miscellaneous results about irredu-
cibility and unitarizability of G-modules. In 8.1-8.2 we vrove some
irreducibility criteria, based on unitarizabilitv. 1In 8.3-8.7 we
show that the algorithm describing unitary reoresentations works
essentially with discrete data. In other words, we show how to
handle complementary series. In particular in 8.7 we establish
some nice inequalities for unitarizable renresentations which are
stronger than the inequalities in the unitarizability criterion 7.4.

In 8.8-8.9 we consider two examples of avplications of the
algorithm 7.9. Example 8.9 gives the classification of nondeaenerate
unitary representations of G. In 8.10 we formulate a conjecture
that duality preserves unitarizability.

In section 9 we prove the unitarizability criterion 7.3 for

P-modules which we use in section 7.

0.9. This paper arose from an attempt to answer the question by

H. Jacquet and T. Shalika, whether each nondegenerate unitarv
irreducible representation is generic (i.e. is tovolooically irreduc-
ible when restricted to P). Relativelv soon I understood that this
can be proved using methods of [B22]. But these methods, even com-
bined with [21], do not allow us to prove an analocous statement for
the degenerate case (see 0.2). The only way to prove it which I see
is to use theorems B and A.

Only much later I realized that the most interesting anvlication
of theorem A is an algorithm for the classification of unitarv repre-
Sentations. I think that theorems A and B, criterion 7.4 and, with
Some modifications, algorithm 7.9 remain true for an archimedean
fiedd F. 1 even almost have a proof and I hope to overcome some

technical problems which appear in the oroof.

"Remark. In [K] A.A. Kirillov tried to prove theorem 0.2 for the
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Archimedean case, using essentially the same ideas. But his oroof

was incorrect and his means were absolutelv insufficient for the procf.

0.10. I thank I.I. Piatetski-Shapiro, who turned mv attention to the
problem. I am very grateful to A. Zelevinsky for numerous fruitful
diécussions,of representations of p-adic oroups.

I thank J. Rosenberg and G. Zettler who read some preliminarv
versions of the paper and made useful remarks. I thank R. Herb,
R. Lipsman and J. Rosenberg for organizing this wonderful Special
Vear.

I would like to thank the faculty of the mathematical department
of the University of Maryland, and especiallv its former chairman

W. Kirwan, who helped me a lot in mv first year in this countrv.
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CHAPTER 1

THEOREMS ON INVARIANT DISTRIBUTIONS

1. PRELIMINARIES: GFNERAL PROPERTIES OF DISTRIBUTIONS (SEE [BZzl,
§l, 6])

Distributions On £-Spaces

1.1. Let X be an {-space, i.e. a Hausdorff tonological svace which
has a basis consisting of open compact subsets. Denote bv S (X)

the Schwartz space of X, i.e. the svace of locally constant functions
f: X » € of compact support. Any linear functional £ on S(¥) is
called a distribution on X. We consider the weak toprology on the
space S*(X) of distributions on X.

Recall that the weak topology on the algebraic dual E* of a
vector space E 1is defined as the weakest tonologv, comrmpatible with
the linear structure, such that the set e® = {e* ¢ E¥|<e*, e> = 0}
is open for each e ¢ E. For any linear subspace L ¢ F its ofrtho-

gonal complement L' is closed and (Ll)l = L. For anv linear sub-

1

Space W ¢ E* the space (Wl) coincides with the closure of W.

1.2, Let 2 be a closed subset of X, U= X\Z. We have natural

exact sequences (see [B2l: §1]):

(*) 0 > Ss(U) - S(X) > s(2) - 0

(*x) 0 » S*(2) 3 g*(x)TS5s*(uy) - o0

(i=extension by zero; res = restriction of distributions E - EIU)'
For any distribution E € $*(X) there exists a minimal closed
Subset supp £ ¢ X, called the support of E , such that

2

X\supp E 0.

Using (**) we will identifv S*(2Z) with the subspace

S3(X) c s*(X) consisting of distributions supported on Z. In partic-
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ular, if Y is a locally closed subset of X (i.e. Y 1is ovnen in
its closure Y) and E is a distribution supported on ¥ we will

define the restriction E|Y by

E]Y = (E|?)|Y.
1.3. Let G be an £-group and v: G x X - X a (left) continuous
action of G on X. We denote by the same svmbol <y the (left)

actions of G on S(X) and S8*(X) given by

(@) E) () = £lrig Hx), <v(@E, > = <Ev(e D>,

g€G x €X, fesS(X), E€S*X).

Let X be a character of G, i.e. a locally constant homomorphism
X: G - €*. We call a distribution E € S*(X) X-invariant under the
action of G (or (G,X)-invariant) if «y(g)E = X(g)E for all g € G.
G,X

The space of (G,X)-invariant distributions we denote bv S*(X)

(or simply s*(x)¢ if x = 1).

Localization Princivple
1.4. Let g: X » T be a continuous map of £-svaces. Then §(X)
and hence S*(X) become §(T)-modules. For any t ¢ T consider the

fiber Xt = q_l(t) and identify the space S*(Xt) with the subsnace

S§ (X) ¢ S*{X) of distributions concentrated on this fiber.
t

Localization principle. Let W be a closed subsnace of S*(X)

which is an S(T)-submodule. Then W is generated by distributions
correntrated on fibers, i.e. the sum of subspaces Wt =WnN S*(Xt),
t € T, is dense in W.

The following corollary is crucial for our proof.

Corollary. Let an £-group G act on the space X nvreserving

each fiber X and let P be a subgroun of G. Suppose that for

t'
each t ¢ T all P-invariant distributions on Xt are G-invariant,

i.e. s*(xt)P = s*(xt)G. Then any P-invariant distribution on X
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is G-invariant, i.e. S*(X)P = S*(X)G.
Indeed, S*(X)Pis aclosed S(T)- submodule of S*(X) and hence
it is generated by subspaces S*(Xt)P. Since S*(Xt)P = S*(Xt)G s S*(X)G

ve have s*(X)¥ ¢ s*(x)%, i.e. s*rx)P = s*(x)C.

Proof of localization princinle. Let M be an §(T)-module.

We sav that M is unital if M = S(T)-M. For anv moint t ¢ ™ nut

I, = {f ¢ s(T)|f(r) = 0}, M, = M/T.M .

The space Mt is called the fiber of M at the noint t. For

any m ¢ M we denote by m its image in M_.

t t
Lerma (see the oroof in [Bzl; 1.13, 1.14, 2.36])
(i) Subquotients of a unital &(T)-module are unital. The
functor M - M, is exact. If me¢M and m # 0 then for some
voint t ¢ T m # 0.

(ii) S(X) 1is a unital S(T)-module and the natural mornhism

S(X), ~ 5(X.) is an isomorphism.

We will prove the following result:

(*) Let M be a unital S(T)-module and W c M* be a closed
S{T)-submodule. Then W is generated by subspaces Wt =w n(M)*
for t ¢ T. The localization principle is a particular case of (*)
for M = s(X), since S(X)t = s(xt).

Put L = W' c M, N = M/L. It is clear that L and® N are
S(T)-modules. Since W is closed it is isomorohic to N*., Moreover,
for each t, wt = (NL)* ¢ N*. Consider the snace W' = ot = S(N,)*
€ N* and its orthogonal complement in N. If n € W'’ then for
any t, n ¢ (Nt)*l, i.e. n, = 0. Statement (i) of the lemma implies

that n = 0, i.e. W'* = 0. Therefore the closure of W' coincides

with w'tt - 9! = N* = W, This oroves (*).
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Frobenius Reciprocity

1.5. Let an g-group G act on an f-space X and let X be a

character of G. Sometimes we can reduce the study of X-invariant

distributions on X to the study of distributions on a sraller space.
Namely, suppose we could f£ind a continuous G-ecuivariant map p: X - Z,

where 27 1is a homoceneous G-space. For simplicitv assure that we have

o s . . G,v
a quasiinvariant measure u oOn 7, i.e. u € 8*(2) 4 for some

character v. Fix such a measure U # 0 and fix a roint Zq € Z.

-1
Put XO =p (zo) c X, H= Stab(zO,G) c G.

-1
Lemma. There exists a canonical isomorphisnm Yy: S*(XO)H'Xv -

H,Xv'l

- S*(X)G’X. If E, € S*(X,) , then supp YU(EO) = G supp (Eg,).

0

; The morphism Yu can be written explicitly:

f -1
<Yu(E0),f> = JZ(Xv ) (g,) -<Eqir(g,)E£> dulz),

' where f ¢ S(X) and g, € G is an element such that g,(2z) = z,4.
This lemma is an easy consequence of Frobenids reciprocitv (see

[BZ1; 2.21-2.361).

Remark 1. If 2 does not have a quasiinvariant measure one

can nevertheless prove an analogue of the lemma. Namely, consider

the character v = AGIH -Agl of the group H (here A is the rodule
of a group). Then there exists an isomorphism
H,xv ! G,X
¥: o S*(Xg) ' Voo osR(x)

(see [B2l, 2.21-2.36]).

Remark 2. Frobenius reciprocity in particular implies that all

G-invariant distributions on Z are proportional.
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§2. REFORMULATIONS OF THE MAIN THEOREM ¥

2.1. We fix a nonarchimedean local field F and put G = Gn = GL(n,F),

P=P ={g-= (gij) € Gn]gni =6 for all i}.

ni

Denote by Ad the adjoint action of G on itself.

Our aim is the following

Theorem B. Let E be a distribution on G invariant under
the adjoint action of the subgroup P. Then it is invariant under

the adjoint action of the whole group G.

Statements X(n), Y(n) and Y*(n)

2.2, Let X = Xn = Mat(n,F) be the algebra of n x n mnatrices. We

l. In the

define the adjoint action of G on X by 2Ad(g)x = gxg
proof of the theorem we can assume that supp £ ¢ G is closed in X
(for instance, we.can multiply E bv some locallv constant compactly
supported function of det(g)). Hence we can consider E as a dis-
tribution on X. Therefore we should prove for each n the following

n

P G
Statement X(n). S*(X) = S*(X) n,

We will prove the statement by induction on n. In the proof we will

use some reformulations of X(n), which are interestinc by themselves.

2.3. Dpenote by A = A, the space Mat{l,n;F) of row-vectors of

length n and fix a standard basis €pre--rey in A. Let § be

the standard action of G on A given by &(g)la = ag_l.
Denote by v the character of the group G = Gn given by

v(g) = |det g|, where | | 1is the standard norm on the field F.

Fix a Haar measure yu on A. It is clear that u ¢ S*(A)G'V.
Consider the f-space Y = Yn = An x xn and the action

Y=6 xAd of G on Y. The measure u gives a canonical morphisn

Uz S*(X) > S*(Y) by u(E) = u®t. It is clear that u(s*(X)G)CS*(Y)G'V.

We claim that statement X(n) implies (and in fact is eguivalent

e,



to) the following.

Statement Y(n). The morphism n: S*(Xn)G - s*(!n)G'v is an

5 isomorphism.
b Put A' = A\0, ¥Y' = A' x X € Y. Consider the morphism
n': S*(X)G +WS*(Y')G'v, given by u'(E) = u'®E, where u' = ulA..

Since G acts transitivély on A' and Stab(en,G) coincides with

Pn , we can apply Frobenius reciprocity ({(see 1.5). It aives an

, isomorphism V¥,: S*(x)P = s*(Y')G’V. The explicit forrmula for ¥y

given in 1.5 shows that u' = Wu°i, where 1i: S*(X)G > S*(X)P is

the natural imbedding. Hence statement X(n) implies the followina
statement.
1 ' G ' G,\) . . .
Y'(n). p': S*(X)7 -+ S*(¥ ) is an isomorphism.
In order to prove the implication X(n)=> Y(n) it remains to
prove that S*(Y')G'V 2 S*(Y)G'v. since Y' = Y\X, vhere
X =0 x Xc Y, we have an exact sequence 0 - S* (X) ~» s* (Y)IS8Ssx(y') » 0

and hence the morphism res: S*(Y)G’V > S*(Y')G’v.

)

Fix an element 2z in the center of G such that* viz) # 1
and define an endomorphism o of S*(¥Y) by a(E) = y(z)E - E .
Since 2z acts trivially on X, v(2) is the identity on S*(X), i.e.
2 (S*(X)) = 0. Hence we can consider a as a morphism a: S*(Y') » S*(Y)-
It is clear that on v-invariant distributions operators osres and
resoo are multiplications by the nonzero constant v(z) - 1.

G
Hence res gives an isomorphism res: s*(y)°rY = S*(Y')G'v.

2.4. Let A* = A; be the dual space of A = Pn. It can bhe described
as a space Mat(n,l;F) of column-vectors of length n. The action
s of G on A* is given by S§* (g)a* = ga*.
Consider the f-space Y* = Y¥ = X X Ax and the action
y* = Ad x §* of G on y*. We identify X with a closed subset

x) This trick does not work for a finite field F.
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X x 0 ¢ Y* and denote by i: S*(X) » S*(Y*) the natural inclusion.

We claim that the statement Y(n) implies (and in fact is ecuiva-

lent to) the following

G G
Statement Y*(n). The morphism 1i: S*(Xn) n, S*(Y;) n js an

isomorphism. In other words, each G-invariant distribution on Y*
is concentrated on X.

In order to prove this implication we fix a nontrivial additive
character ¥ of F and consider the Fourier transform
¢: S(Y) - S(Y*) given by ¢ (f)(x,a*) = jAf(a,x)QK<a*,a>)du(a).

The usual theory of Fourier transform implies that ¢ is an
isomorphism. Let ¢*: S*(Y*) - S*(Y) be the dual isomorphism. It
is easy to check that ¢* gives an isomorphism S*(Y*)G - S*(Y)G’V
and that the morphism &¢*ei: S*(X) — S*(¥Y*) - S*(Y) coincides with
the morphism 1y, defined in 2.3. Hence the statement Y(n) implies
that 1i: S*(X)G > X*(Y*)G is an isomorphism, i.e. the statement

Y*(n).
§3. PROOF OF THE STATEMENT X(n)

The Geometric Structure of G- and P-orbits on X.

3.1 Consider the following invariants of the matrix x ¢ xn:

tx = characteristic polynomial of x (deg tx = n)
n
Kx = [span of e re Xr... e X ] cA
kx = dim Kx = minimal k such that enxk is a linear combination
k-1
of ere X, .. e X
Ty = characteristic polynomial of the operator x on K,
. k k-1 -
(i.e. Ty = AT+ alx +...tay, where k = kx, and
. oK k-i _
e+ Zaienx = 0).

By definition Ty is the minimal monic polynomial such that
enTx(x) = 0. We call the matrix x P-regular if TX(X) = 0, It
is clear, that tx is constant along G-orbits, kx and T, are

Constant along P-orbits. Besides, the function x - kx is upper

i

ki
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b

semicontinuous.

Geometric lemma (see the proof in 4.1-4.2).

a) For any polynomial t the set X, = {x ¢ X]tx = t} contains §

a finite number of G-orbits.

b) Each G-orbit (0 contains a finite number of P-orbits.
: c) Each G-orbit 0 contains a unique P-orbit OP open and

dense in 0. Namely 0P = {x ¢ 0|]x is P-regular}.

Proof of the Statement X(n)

3.2. We will prove X(n) by induction on n, i.e. ve assume X(m)

to be true for m < n. We fix a Pn-invariant distribhution

E ¢ S*(X)Prl and prove that E is Gn—invariant. Put S = supp £ ¢ Xx.
Let T be the space of polynomials of degree n and q: X » T

the characteristic map g: x ~ tx' Using the localization principle

1.4 we can (and will) assume that S ¢ Xt for some t. Then by

3.1 a,b, S contains a finite number of P-orbits. We will proceed

by induction on the number of P-orbits in S.

Key lemma. S contains an open P-orbit OP vhich consists of

P-regular elements.

Let us deduce X(n) from the lemma. Consider the G-orbit
0 = Ad(G)OP. Since OP consists of P-regular elements it is oven
and dense in 0, i.e. 0 = 5§ c S (see 3.1lc). We will use the

following statement which we will prove in 4.3.

Statement. For any G-orbit 0 ¢ X there exists a G-invariant
distribution 1, such that supp u, = v.

Consider the restrictions of the distributions E and ug on the
P-orbit 0P (this makes sence since OP is open in supp E = S and
supp M, = 0 c s). They both are P-invariant and nonzero. Hence
for some c ¢ C*%, E|0P =c - u0|0P (see 1.5). This means that the

p

EO is P-invariant and supp Eo C S\OP contains strictlv fewver

distribution Eo = E - cuy restricts to zero on 0 The distribution
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P-orbits than S = Supp E. By induction Eo is G-invariant and

therefore E is G-invariant.

3.3. Proof of the kev lemma.

For each i =1, 2,...,n put X; = {x ¢ X]kx =i}, Xi =
{% ¢ xlkx < i}. The sets Yi are closed and X, 1is open in Yi'
Let k be the minimal index such that 8§ ¢ 7}. Consider the

distribution E' = E[X and put S' = Supp E' = & 0 Xy. Then s!
k

is a nonerntv oven subset of §. Since S' contains a finite number
of P-orbits it contains an oven P-orbit OP' Hence it is sufficient
to prove the followine statement:
(*} Any P-invariant distribution FE' on Xk has support §*' = supp E'
consisting of P-recular elements, provided it contains a finite
humber of P-orbits.

Te can study P-invariant distributions on Xk usinc Frobenius

reciprocity 1.5. Consider the natural map w: X, - Ak-l vhere

k

k-1 .
A = {(al,...,ak_1)|ai € A = Mat(l,n;F)} aiven by
m(x) = (enx,enxz,...,enxk_l). This map is P-equivariant and its
image 7 is an onen subset of Ak-l given bv
= ﬂal,---,ak_l)]en,al,...,ak_l are linearlv indevmendént}. 7 is a
homogeneous P-space and it has a guasiinvariant measure u, = uk-l,
which is vk-l-invariant with respect to P.

-1

Pat 2z = (en—l""'en—k+l) €2, X=mw “(z), H= Stab(z,p).

Then bv Frobenius reciorocity the distribution E' corresronds to
an (H,vl—k)—invariant distribution E" on X such that &' = Ad(pP)S*,
where S" = Supp E". Hence we should prove:

(**) any (H,v17K

)~invariant distribution E£" on X has
Suvport S" consisting of P-regular elerents, orovided it contains

2 finite number of H-orbits.

3.4. Let us describe H and X in detail. Put m = n-k and let

B ¢
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A_ B
us write the nxn matrix x in a block form x x , where A_, R_,
c. D ¥
X X
Cxand Dx are matrices of sizes mx m, m x k, k x m and k x k.
Bv definition
H = {x ¢ Gn}eix = e, for m< i =n} = {x¢€ Gn‘Cx = 0, D = 1k}
= =, . F i
X {x ¢ xn|eix e, ; for m+l<isnand e  ,%¢ span(en,...,en+3)}
= {x ¢ Xn|Cx =0 and D € w,
where W is the set of k x k matrices of the form’

Note that each matrix w ¢ / is cormpletelv defined by its
characteristic polynomial < (the coefficients of the upper row
coincide with minus coefficients of <t1). We will denote it hv WT.

The function x = Ty is continuous on X (indeed Ty is the
characteristic nolynomial of Dx) and constant on F-orbits. Since
S" consists of a finite number of H-orbits, Ty assumes onlv a
finite number of values on S". Fix one of these values < and out

XT ={x €X|Tx =1} ={x € X]Dx = WT}' Then XT n s* is oven in S*

so we can restrict E" to XT. Hence in the oproof of (**) we can
(and will) assurme that E" 1is an (H,vl_k)—invariant distribution on

X_.
T

Put U = V = Mat (m,k;F). We identify XT with Xm x V by

X, V
(x,v)~+ \j> For any u € U we denote by u the matrix
0, o
1 u T . ]
¢ H. BAll these matrices form a subgroup U ¢ H. Ve identify
0o 1

g 0
the group Gm with a subgroup of H by g-+<: :> . Then H 1is a
0o 1
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semidirect product of Gm and U. The action of H on X is ajven
by
ad(g) (x,v) = (gxg-l,gv), g € G, Ad(u) (x,v) = (x,v - xu + uw ) ,

u € U. Let ul,...,uk be the columns of the matrix u € U. Put

vt = {u €Ulu; = 0}

= {(x,v) € X = = = =
= X,V Tlvl =V, = el = UL 0= 0}
o

X2 = {(x,v) € X v =0} .

Lemma (see the proof in 3.6). The natural map K: U+ x X: - XT ’

given by (u,x) - Ad(u)x is a homeomorpvhisr.
. . - . + + . +
Using k we will identify XT and U «x XT. Since U acts
. . + . : : .
only on the first factor in U+ x XT and E" is U+—1nvar1ant, it can

: . +
be written as E" = u+ ® E+, where u+ is a Haar measure on U and

E+ € S*(X:). The measure u+ is vl_k invariant with respect to Gm'
hence E' is Gm-invariant.

Now let us note that as Gm—snaces X: is isororphic tn the
sSpace Y;, introduced in 2.4. Since we have assured that the state-
ments X(m) and hence Y*(m) are true, the support S+ of the dis-
tribution E+ is concentrated on Xg = {{(x,0)}. Hence the subset S"
of XT satisfies the following conditions.

(i) s" is Ad(U)-invariant

(ii) 8" ¢ Ad(U+)X:.

3.5. Now let us prove that conditions (i), (ii) implv that &" consists
of P-reqular elements, i.e. that for anv x¢ S", T(x) = 9.

Consider the set R = t(S") and prove that R ={ 0}. Since
the map x —+ t(x) commutes with the adjoint action we have

(i)' R 1is Ad(U)-invariant

‘. + 0 Lo}
(ii)' R c Ad(U )Xm, where xm = (ﬁ ;) > T(XT).

(we use the fact that T(WT) = 0).
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; &8
é The action of U on is oiven by Ad(u) (x,v) ={x,v + xu), where
% (er) (: :) € R. If u ¢ U , i.e. ul = 0, then (xu)l =0,

Hence (ii)' implies that vy = 0 for all (x,v) € R. Bv (ii)' it
is sufficient to prove that any element (x,0) ¢ R is equal to 0.
Let u € U. Then Ad(u)(x,0) = (x,xu) € R and, as we have proved,

(x-u.)1 = 0. Since it is true for all u we have x =0, Q.E.D.

3.6. Proof of the lemma 3.4.

We have «(u,(x,v)) = (x.v'), where ' = v - xu + uu%.

Let us write this for each colurn:

Vi T 4
' = -
Uz = XU.Z + u3
' = -
Veop T k-1 Tk
U = -
Vk = Vk xuk + Zaiui.

It is clear that for any ui,...,uk there exist uniaue Upreonslys Vy

which satisfy this system of eguations.

§4. PROOFS OF SOME LEMMAS

Description of G-Orbits in X.
4.1. Let C = FI[A] be the aloebra of polynomials in one variable.
Each element x ¢ X defines on A a C-module structure bv X - x.

This gives a one-to-one correspondence
{G-orbits on X} <+ {n-dimensional C-modules M up to isomorphism}.

The centralizer Gx of x in G corresponds to the group AutCM.

ot e e e . e e o g et

Fix a monic polvnomial t € C and its decomposition




t = Tl'...'Tr, where

necessarily distinct.

i.e. t(x) = 0. Define
v o= (vl,...,vr), where
v, =

i

Lemma. Let x, vy

the same G-orbit iff v
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t; are irreducible monic volynomials, not

Let x ¢ X be any matrix, annihilated bv t,

of x bv

are given by

the t-invariant v = Vx
0<v15v25...$vr =n
dim Ker(rl(x)-...-ri(x)).

¢ X be annihilated bv

= V_.
X Y

t. Then they lie on

Indeed, let M be the C-module correspondinag to x. We can

decompose M ~ g Ma, were Ma = C/(fg(a)), fa are irreducible poly=
nomials, r(a) > 0. Since t(x) = 0, the polvnomial fa appears in
the sequence Tyreee T, at least r(a) times. Denote by bi

the multiplicity of T in the sequence TyrToreeesTye Then

it is clear that v ,-v. ; = dimF(C4Ti))-#{a[fa =

Ty r(a) = bi}.

It is easy to see that this formula enables us to reconstruct fa

and r(a), and hence the C-module M

invariants v,,...,v_.
1’ "r

up to isomorphism, from the

This proves the lemma.

of degree n and x € X, i.e. t_ =t

lemma implies 3.la).

Description of P-Orbits
4.2. cConsider a G-orbi
correspondinag G-module.

(as topological spaces)

t X

in X.
t 0 =1ad(G)x 1

Vle have P\0 =

’

n

then

If t is a polynomial

t(x) = 0 and the

X and denote by M the

P\G/Gx

2

(A\O.)/GX a3 (M\O)/AutCM

. Hence we can reformulate 3.1b),c) as

statements about AutCM orbits in M\ 0.

Decompose M = mMa ’ Ma = C/(fz(a)) . Assian to each vector

£ = g, €M invarian

these invariants comple

ts Wy = Min{i|fa(x)l€a = 0}. It is clear that

tely determine

AutgM, This proves 3.1b).

£

up to the action of

polynomial of minimal decoree such that t(x)

Denote by t the minimal polynomial tﬁln

o,

of x, i.e. the

and put C = C/(t) .

- % -
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put M° = {£ € M|Ann(£,C) = 0} = {& € M|Ann(£,C) = Ann(M,C) }.
Statement 3.lc) geometrically means that:
(*)Mo is an open dense subset of M and the group AutCM acts

transivively on Me.
o

By definition MM =lJMJ , where J runs throuch nonzero ideals
of C, MJ = Ann(J,M). Since there are finitely many different ideals
J and for any J # 0 MJ is a proper linear subspace of M, M°  is

open and dense in M.
Any vector £ € MC defines an inclusion C ¥ C& ¢ M. Since c
is an injective E-module*), Ct¢ is a direct summand of M. The Krull-

Schmidt theorem implies that any two vectors £,&' € ¥° are conjugate

under AutCM. This prove 3.lc).

Existence ot Orbital Integrals

4.3. Proof of the Statement 3.2

In case char F= 0 a more ageneral result was proved bv Ranga Rao
and P. Delione (see [ R 1). Usinc specific properties of GL{(n) we
will adjust the oroof for arbitrary characteristic. Let x € X,

0 = Ad(G)x. We would like to prove the existence of G-invariant
distribution  u, such that supp yy = 0.

Denote by t the minimal polvnomial of x.

(i) Consider at first the case when t 1is irreducible. Then
C = C/(t) is a field and G, ¥ GL(n/dim C, T) is a unimodular oroup.
Hence on ( there exists a Haar measure My Besides, in this case
0 is closed, since any element Yy € U satisfies the equation t(y) = 0
and by lemma 4.1 is conjugate to Xx.

(ii) Now consider a ceneral case. Fix a decomposition
t =TT, ...-T, as in 4.1 and consider the t-invariant v = (vl,...,vg

2
of x (see 4.1). Since t is the minimal volynomial of x we have

*)Indeed, consider the C-module L = HomF(ﬁ}F). Since Ann(L,C) = 0

there exists an inclusion G-+ L. Since dimL =_dimC, this inclusion
is an isomorphism. Hence L is a projective C-module, i.e. C
is an injective C-module.
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n
0<\)1<\J2<...<vr=n.
By a v-flag we mean a sequence ¢ = (L1 c L2 C ... C Lr) of
subspaces such that dinlLi = vy The set @v of all v-flacs is a

compact topolocical space and the natural action of G on @v is
transitive. To any matrix vy € 0 we assion a v-flag ¢Y = (Ll""Lr)'

where Li = ker(rl(y)- . -Ti(y)). Consider the snace ZV = X x Qv
with the natural action of ¢ and put 0 = {(y,¢y) € Zv|y € 0}. The
natural projection pr: Zv + X 1is a proper map and hence it defines

the morphism of distributions PIr,: S*(Zv) + S*(X) bv

<Pr,(E),£> = <E,pr*(f)> . Therefore it is sufficient to construct a
G-invariant distribution g such that Supp (u,) = 7.
(iii) Consider the natural projection pr,: Zv - ¢v. In order to

construct the G-invariant distribution Hy we will use the
<

Frobenius reciprocity (see 1.5).

Fix the v-flaa ¢ = ¢

= = et = = = pr 1
P, = Stab(¢,6), x = L A" = b, . Q¢ = {y € 0|¢Y ¢} = pr,7(¢) N O.

According to 1.5, Remark 1, it is sufficient to construct a (P¢, X)-

x = (Ll C ... C Lr) and put

invariant distribution My € S*(X) such that Supp(u¢) = Q&.

(iv) Put P ={x ¢ x|xLi <L for all i}. It is clear that

*
P¢ =P =PnG and Q¢ c P. Put U ={x ¢ X|xLi <L,
M= P/u. It is clear that U is a nilpotent two-sided ideal of P and

for all i},

the algebra M is isomorphic to Xmix e X xmr, where mpo= Vo= v g
For anv z ¢ P we denote bvy w(z) = (zl,...,zr) the corresrondira
element of U.

Put U =1+ U c P¢. It is the unipotent radical of P¢
and the gquotient M = P¢/U is isomorphic to the group of invertible
elements of M.

Let vy ¢ Q¢, i.e. Ker(rl(v)- cee styv)) o= L;. Then the
element w(y) = (yl,...,yr) satisfies Ti(yi) =0 for all i.

Lemma 4.1 implies that n(y) lies on the orbit OM of the element

"(x) under the action of the oroup M = Gmy *++.x Gp.. Since 0M is
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closed, n(q¢) c 0y The morphism n: §¢ + 0y is P¢-equivariant and,
again using Frobenius reciprocity and the existence of a P¢-invariant
measure oOn OM’ we can reduce the problem to the construction of the
(H, X)-invariant distribution u such that Supp u = Q, where
H = Stab(n(x),P,) =M, - U. Q= 7w (x)) 0 Q¢.

(v) The main observation is that:

(*) ﬁ_l(n(x)) n §¢_= n—l(n(x)) =x + U.

Now if we denote by u the Haar measure on U and consider
it as a distribution on x + U, we see that it is -invariant and
(MX,X){nvariant. (Indeed, the Haar measure on U is (M,X)-invariant,
since X = A(Py) ly = 8y - mod(U) = mod U = mod )

In order to prove (*) it is sufficient to prove that for
almost all y € x + U we have y € 0 and ¢v = ¢. Since vio= Xy
we have Ti(yi) =0, i.e. Ti(Y)Li ¢ L, ;- Hence Ker(rl(y)- . -Ti(vﬂ
contains Li’ Since for v = x this kernel coincides with Li’ for
almost all y (more precisely, for y from some Zariski ooen subset
of x + U) we have equalities Ker(rl(y)~ - -Ti(y)) =L, for all

i. This means that ¢y = ¢, and lemma 4.1 implies that vy is coniucate

to x, 1i.e. y ¢ 0. Q.E.D.

4.4 Remark. The distribution Uy we have constructed is positive,
i.e. <u0,f> > 0 for positive functions f. Hence it defines a measure
on X. 1In other words, for any continuous function f on X with

f
compact support the integral J f(x)duo(x) converces absolutelv.
0
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CHAPTER 11 !

APPLICATIONS TO REPRESENTATION THEORY

In this chapter we study representations of the croun G = GN(n,r)
and their restrictions to the subagroup P. We use the notations of
{(Bz1], [BZ2]. 1In particular the notation (v ,H,E) reans a renresenta-
tion n of a group H in a corplex vector space E. The representation
T is called smooth (algebraic in the terminoloay of [BZ1], [RZ2]) if
the stabilizer of each vector ¢ ¢ E is open in H. The catecory

of smooth representations of H we denote by Ala(H).
§5. P-INVARIANT PAIRINGS OF G-MODULES

Proof of Theorem A.

5.1. Theorem A. Let (r,G,E) be a smooth irreducible repnresentation,
(ﬁ,G,ﬁ) the contragredient representation, Bo: Ex E - ¢ the canonical
pairina Bo(g,%) = <g,£>. Then any P-invariant pairing B: E x E->C¢C

is G-invariant and hence is proportional to Bg.

Proof. It is known that n and # are admissible (see
[Bz1,3.25]), so (n ® i, Gx G, E® E) is admissible and irreducible.
Consider the regular representation (Reg, G x G, S(G)) given bv

. -1 .
Reg(gl,gz)f(g) = f(g1 ggz) , £ € s(ag), ¢119,:9 € G. We will use

the following standard lemma (see 5.6).

Lemma. For any admissible representation (v,G,F) there exists

2 nonzero morphism of G x G-modules.

m : S(G) > E®E
u

If w is irreducible, " is an epimorphism.
Pairings B: E x E - € correspond to morphisms E® E + ¢, i.e.
to elements of (E ® E)*. The morphism m* o (E® E)* + 8*(¢), ad-

joint to nu, is G x G-invariant. In particular, if a pairing B

S
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is g-invariant for some g € G, then the correspondinc distribution
Ey = n:(B) is Ad(g)-invariant.

Since n is irreducible, nu is onto and u: is a nonomrmorphism.
Hence EB is Ad(g)-invariant iff B is g-invariant.

Thus we have: B is P-invariant = EB is Ad(P)-invariant = EB
is Ad(G)—ihvariant (by Theorem B) = B is G-invariant. Since n is

irreducible and admissible, B 1is proportional to the standard pairing,

Q.E.D.

5.2. Let us discuss a slichtly different version of theoremr A.

Let (n.G,E) be a smooth representation. Fix a Haar reasure U
on G and for any f ¢ S(G) define an operator n(f) = JGf(g)ﬂ(g)du(g)
: E~ F and put U. = Ker W(f). Consider the weakest topology on E
for which all subspaces Uf are open (the weak topology). DNenote bv

£ the completion of E in this topology and bv (7,a,8) the natural

representation. It is easy to check that

(i) E is a dense G-subrmodule of B and it coincides with the
smooth part of E.

(ii) For admissible n,(;,é) is canonicallv isomorvhic to the
representation (ﬁ*,ﬁ*) dual to the contracredient reoresentation
(7,E).

one can also define (7,8) by E = Hom (S(G),E), (7(g)a)(£) =
a(Reg(l,g—l)f). Namely, for any E ¢ £ the morphism ag: S(G) -~ £,
given by ag(f) = ﬁ(f)g, maps S(G) into the subspace EcE of
smooth vectors.
Theorem A'. Let (n,G,E) be a smooth irreducible revresentation.
Then anv P-eguivariant morphism 8: E - E is r-equivariant and, hence,

is proportional to the standard inclusion.

This theorem 1s just a reformulation of theorem A. It can also

be proved directly. Indeed, for any B8: E - £, £ ¢ S(G) the operator

e

7 (£)ep: E - E has a finite dimensional image, which lies in E. Hence

R
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for any B we can define the distribution EB € S*(G) bv
Eg (f) = tr(i(£)ep).
Thus we have constructed a morphism of G x G-modules Hon(E,ﬁ) -
> S*(G). Using the formula tr(m(f)eBon(f')) = tr(a(f* * £)oB) it
is easy to show that, in case of irreducible rn, this is a monomorvhism.
The rest of the proof is the same as in 5.1.

The same arguments enable us to prove the followina generaliza-

tion which may be of some use.

Theorem A", Let (r,G,E) be an admissible representation.
Suppose E has only one irreducible G-subrodule V, i.e. anv
proper G-submodule of E contains V. Then for anv P-equivariant
morphism B: E > £ its restriction to V is provortional to the

standard inclusion V - E - E.

Corollaries of Theorenm A.

5.3. Proposition. Let (r,G,E) be a smooth irreducible revnresentation,
and let B, be a nonzero G-invariant bilinear (or Hermitian) form on

E. Then any P-invariant bilinear (respectivelv, Hermitian) form B

on E is proportional to Bo.

Proof. Since n is admissible and irreducible Bo defines an
isomorphism E ~ E (respectively, E ~ E, where E is the space
complex conjugate to E). The form B defines a P-invariant pairing
of E with E~ E (respectively, of E with E ~ E).

Theorem A then implies that B is oproportional to B,-

5.4. Theorem. Let (0,G,H) be a unitarv topolocically irreducible
representation. Then its restriction to P is also topolocicallv

irreducible.

Proof. It is sufficient to check that any continuous P-ecuivariant
morphism a«: H -~ H is a scalar operator.

Let (»,G,E) be the smooth part of (o¢,H). It is known (see

4%,
Y
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[B21, 4.21]) that # is irreducible and F is dense in H. Consider
the Hermitian form Ba aiven by Ba(g,n) = <ak&,n>, where «,> is
the scalar product in H. The form Ba is P-invariant and bv
pronosition 5.3. on E we have an equality Ba(g,n) = c<E,m>, Cc € C.

Since E is dense in H, it implies a = c-1l 0O.F.D.

HI
5.5. Remark. We can prove a more brecise result.

Theorem. Let (o,G,F) be a continuous representation of G
in a complete tovological vector svace H, (r ,G,E) 1its smooth nart.
Suppose = 1is irreducible. Then any continuous P-equivariant rornhism
a: H > H 1is a scalar operator.

Indeed, we have a natural inclusion H - R (see 5.2). Bv

theorem A’ aIE = c-lE. Since a 1is continuous, it is a scalar.

5.6. Proof of lemma 5.1.

Let G,H be arbitrary {-agroums, (~,G,E) and (p,E,V) smooth
revresentations. Define the representation (E(n,p), G x H, Hom(E,V))
by Hom(E,V) = Homg(E,V), Hln,p) (¢,h) (a) = pih)eaon(g l), a ¢ G,
h ¢ H, a € Hom(E,V).
we have a natural imbedding i: ¥ ® p » H(v,p) oiven bv
iz nyg = <€,E>-n. Denote by (h{(w,p), G x H, h(E,V)) the smooth
; vart of H(w,p). Then 1 is an inclusion i: & ® p - h(r,p).
Suppose n is admissible. Then for any open compact subcroup
N © G the space EN of N-invariant vectors is finite dimensional and

¥ _ (E%)*. This implies that h(E, ") = Hom(EN, V) ~ (EN)* @ v ~

~

~ (E ® V)N, i.e. i give an isomorphism i =% @ p 3 h(wv,p) .
Now suppose G is a unimodular 4£-group and fix a Haar measure

on G. Define a morphism of representations




Vi
’“u: (Reg, G x G, S(G)) - (H("l")r G x G, H(EIE)) b_V
{
nu(f) = JGf(q)ﬂ(g)du(g). Since Reg is a smooth representation its
image belongs to h(m,n). If n is admissible we obtain a nontrivial
mnorovhism np: S(G) E x E of G x G-modules. If w is irreducible,

then % ® v is irreducible and hence nu is an epimorohism. Starting

from (ﬁ,ﬁ) instead of (v,F) we obtain lemma 5.1.

§6. SCALAR PRODUCT IN THE KIRILLOV MODEL

Ririllov Model

6.1. Let Uc P be the subgrouv of unipotent upper triangular matrices.
Fix a nonzero additive character Y:F » ¢* and define the nondedenerate

character © of U by 6(u) = w(u12+...+u ), where u = (ui ).

n-1l,n j

Consider the smooth induced reoresentation (T,P,g) = IndZ(e).
By definition 8§ ={f: P » @|f(up) = 6 (u)f(p) for u € U, peP
and f is smooth under the richt action of P }. Denote bv (x°,P.,S)
the subrepresentation in the subsvace of functions with compact sunport

modulo U.

-

Analogously define representations (t',P,S') and (t°.P.S')
by replacing 6 by oL,
Note that t and ' are isomorphic. The isomorphism ¢ is

given by ¢f(p) = flep), where ¢ = (Gij-(—l)n_l) € P.

Let (#,P,E) be a smooth reoresentation. A Kirillov model

for = is by definition a nonzero morohism of P-modules K: E + §. A
P-module (#,E) which has a Kirillov model is called nondegenerate.
The followina facts are proved in [BZ1,§5].

-~z '

(i) There are the natural isomorphisms T ~ 7 and <t ﬁ‘?g.
Corresponding pairings are given by intearation over U\P-

(ii) Anv proper P-submodule of § contains S. 1In particular
the P-module S is irreducible and anv morohism i: S -+ § of

P-modules is oroportional to the standard inclusion.

(iii) Let (v,P,E) be a smooth remresentation, K: F - § its

-

/

il
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Kirillov model. Then there exists a morphism of P—modﬁles ig* S - E

such that KolK = ls.

6.2. Fix a right invariant Haar measure UU\P on U\P and define

the P-invariant scalar product < , > on S by

(*) C <f,h> = ( f(o)-h(o)du (o), £, he s,
U\P U\P

Let L2(S) be the completion of & with resmect to <,> and

2 . . .
L° (S) its smooth part (with respect to the natural action of P).

sm
It is clear that Lim(s) is naturally imbedded in 5 (it consists of

functions £ € S such that JU\PIf|2du converges).

Theorem. Let (n,G,E) be a smooth irreducible reoresentation
and ‘K: E - § its Kirillov model (i.e. K is a nonzero morphism of
P-modules). Suppose @ is unitarizable, i.e. there exists a
G-invariant positive definite Hermitian form B0 on E. Then

*
K(E) ¢ Lim(s) and for some constant ¢ e:mf

<K(g), K(m)> = ¢ -+ BylE,m).
Proof. Consider an inclusion iK: S » F (see 6.1(iii)) and put
" = iK(S)' Statements 6.1 (i) & (ii) imply that <,> is the only

P-invariant Hermitian form on S. It means that we can normalize

BO such that Bo(iK(f),iK(h)) = <f,h>.

Let H be the completion of E with respvect to the norm aiven

by Bo. Then by theorem 5.4 E+ is dense in H. Fence iF can be

extended to the isomorphism iéz) = LZ(S) ¥ H.
) 2 o
Consider the inverse map K': H - L?(S). Then K'(E) ¢ Lsm(S) c 8.
Using the unigueness of the Kirillov model for an irreducible G-

module (see [G-K], [Sh], [BZl} or 6.5) we see that X = K', 0.5,.D.




Regularity of the ¥-Function at s = 0,
6.3. We want to generalize theorem 6.2 for nonunitary reoresentations.
Let f ¢ 8, £' ¢ §' (see 6.1). Define formally the function ¥(s,f,£')

of the complex variable s by

(*) V(s;f,£') = JU\Pf(p)f'(p)v(p)sduU\P ,

where vyi(p) = |det D

If £ ¢S or f' ¢ S' this integral converges and is regular as a
function of s. Moreover V¥ (0;f,f") gives the canonical vairings
§ with s' and § with §'.

Let (»,G,E), («',G,E") be two admissible renresentations of finite
length with Kirillov models K: F - §, K': E' - §'. Define formally
for ¥ ¢ E, ' ¢ E' the function ¥(s:;z, £') by V¥(s;z,z') =

= ¥is;K(g), K'(£')).

Statement. For any £ ¢ E, E' ¢ E' the integral (%) defining
the function ¥(s;K(£),K"(¢')) 1is absolutely convergent for Re s »> 0.
Furthermore, ¥(s;£,£') is a rational function of qs, where ¢ is
the cardinality of the residue field of F. There exists a nonzero
polynomial P(qs) which depends only on w and n' such that
P(qs)Y(s,g,g') is a polynomial of qts for any £ ¢ E, E* ¢ R',

This statement is standard (see e.g. [JPS]).

6.4. Theorem. Let (rG,E) be a smooth irreducible representation,
(#,G,E) the contragredient representation, X: E + §, K': £ + §'
their Kirillov models.

Then

(i) For any & ¢ E, £ ¢ E the function ¥(s,Z,Z) is recular
at s = 0.

* ~ ~
(ii) There exists c¢c € ¢ such that Y(s,£,E) =¢ . <E,E>.

Proof. Let k be the maximal order of the poles of all functions

¥(s,£,£) at s = 0. Define a pairing B: E x £ - € by

i %

¢

e\



P i

© o 4 A 8 o R R

80

B(£,E) = (s* - Y(s,g,g))ls=o. It is clear that B is a P~invariant
nonzero pairing. By theorem A there exists ¢ ¢ C* such that
B(£,E) = ¢ « <&,&>.

Choose a vector £ € E such that K(£) ¢ S and R(g) # 0 (it
is possible because of 6.1(iiY), and then choose a vector g e ®
such that <5,E> # 0. Since the function Y(s,g,g) is regular

everywhere and (sk . Y(S,E,E))Iszo =c .« <£,E> # 0 we see that

k = 0. Further, again using 6.1(ii) we can find ¢ ¢ E, £ ¢ £ such

that ¥(s;£,£) # 0, which gives k = 0. Hence k = 0, O0.E.D.

6.5. Corollary. Let (v,G,E) be a smooth irreducible nondegenerate
representation. Then its Kirillov model K: E » S is uniquely defined

up to a scalar and it is an inclusion.

Proof. The contragredient representation (%,G,E) also has a

Kirillov model K': E - 8'. This can be proved either by using the

Gelfand-Kazhdan approach as in [GK] or [BZl], or by using more simple

results about pairings of representations of the group P (see [BZ2,§3)):

Consider the formula from theorem 6.4
~ ~ *
¥(0;E£,8) = c « <E,E>, c €€ .

Let £ € E, K(¢) ¢ §. The function K(¢) 1is completelv determined
by its scalar products with all functions £' ¢ S'. Since S' c K'(F),
we see that K(£) is determined by the constant ¢, i.e. all morphisms
K: E > 8§ are proportional.

If K(¢) = 0 we have <i,i>=0 for all £, i.e. £ = 0.
This corollary gives an alternative oroof of the theorem by

Gelfand-Kazhdan (see [GK], [Sh], [BZl]) and of the conjecture by

Gelfand-Kazhdan, proved in [BZ2], [JS].
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" §7. CLASSIFICATION OF UNITARY IRREDUCIBLE REPRESENTATIONS OF

G =GL(n,F) VIA MULTIPLICITIES

Criteria for Unitarizability
7.1. Lemma. Let (",G,E) be a smooth irreducible reoresentation.

Suppose n is Hermitian and | is unitarizable. Then n is

P
unitarizable.

Proof. Let Bo be a G-invariant Hermitian form on E anéd B
a P-invariant positive definite form on E. By corollarv 5.3 B is

G-invariant and proportional to Bo’ i.e. m is unitarizable.

Remark. It is sufficient to assume that L is semiunitarizable,

P
i.e. that the form B is vositive semidefinite and nonzero. Since B
is orovortional to Bo, it is nondegenerate and hence positive

definite.

For a given representation (v,E) it is usually easv to determine
whether there exists a G-invariant Hermitian form on F, but it is
very difficult to determine whether this form is positive definite.
The lemra above allows us to restrict the problem to P. In the next sub-
Sections we will formulate an inductive unitarizability criterion for
P-modules and deduce from it a unitarizability criterion for G-modules.
Using this criterion we will describe an algorithm which classifies
all unitary representations of G in terms of multiplicities of

induced representations.

7.2. We need some constructions and results from [Bz2].

First define exact functors

® Alg(P ) » Alg(P _,) and Y : Ala(P ) - Alg (G, _;)

as in [Bz2,§3] (see also 8.2). For any smooth renresentation (w,p,E

We define its derivatives ﬂ(k) € Alg Gn—k’ k=1,2,...,n, by
TT(k) Y_(Q—)k_ln.
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The highest number h for which ﬂ(h) # 0 is called the-depth

of n and the representation n(h) is called the highest derivative

of w . We say that n is homogenous (of depth h) if the depth of
any nonzero P-submodule of is equal to h.
For any representation (v,E) of the group G we define the
(k) n(o) - (k) )(k)'

derivatives w , k=0,1,...,n, by T, W = (n[P

For the classification of unitary representations it is convenient

to introduce the shifted derivatives n‘k] = vl/2 . n(k), where vl/z

. . 1/2 - 1/2

is the character of G given by v (g) = |det gl . Henceforth we
1/2

consider multiplication by v as an autoequivalence of the category

Alg(G).

*
7.3. Let us identify the group F with the center of the group G,

'
'
i
(
)
'

m > 0. For any irreducible representation (w- Gm,L) we denote bv

X its central character, given by w(}) = xm(x) . lL’ and bv e(w)

the real number given by IXm(x)| = |x|e(“), where |A| 1is the stan-

*
dard norm on F . We call the number e(w). the central exvonent of «.

For any smooth representation ("'Gnl'E)we denote by e(n) the
set of central exponents of all irreducible subquotients of n. The

set e(r) ¢ R we call central exponents of w. For example, if

is unitarizable e(m) = {0}.

Unitarizability criterion for P-modules.

Let (n,Pn,E) be a smooth renresentation, homocgeneous of depth h.

Suppose n is of finite length. Then n is unitarizable if and only

if

(1) n[h] is a unitarizable representation of Gn—h

(ii) For any k < h e(n[k)) > 0, i.e. all central exvonents of
n[k] are strictly positive.

We will prove this criterion in §9. We say that a P-module
is p-positive if e(n[h]) =0 and for anv k < h e(n[k]) > 0. Then

the condition (ii) can be written as
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(ii)' wn is a P-positive representation. Iy
We will use a version of this criterion for semiunitarizable revresenta-
tions, i.e. representations which have a nonzero invariant vositive

semidefinite Hermitian form.

Provosition. Let (w,P,F) be a smooth renresentation of depth

h, such that n[h] is semiunitarizable and n is P-nonnegative, i.e.

LK)

e ) 20 for k< h. Then n is semiunitarizable., We will prove

this in §9.

7.4. VUnitarizability criterion for G-modules.

Let (v,G,E) be a smooth irreducible reoresentation. Then w
is unitarizable if and only if
(i) m is Hermitian
(ii) The highest shifted derivative "[h] is a unitarizable
representation of Gh-h
(iii) n is P-positive, i.e. e(mn¥)}y 5 0 for k < h.
Indeed, according to [Z1,6.8) the remresentation n% is homogeneous
of depth h (and of finite length). Then criterion 7.3 and lemma 7.1

establish the criterion.

Remark. Let (n,G,E) be an irreducible unitarizable representa-
tion. Then using 5.3 and the results of §8 one can reorove results of

A. Zelevinsky: ﬂl is homogeneous and its highest derivative ﬂ[h] is

i irreducible (andPunitarizable). Moreover the considerations of §8
essentially prove that the scalar nroduct in E can be written as an
integral in its degenerate Kirillov model (see [71,5.2]1). It would be
interesting to apply an analogous approach to nonunitarizable renresen-

tations. For nondegenerate n it is done in 6.3-6.5. For degenerate

7 I could not do it since I do not know an analogue of the reculariza-

tion procedure, described in 6.3.

i
|
|
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Zelevinsky's Classification of Irreducible smooth G-Modules

7.5. Let Rn (n =0, 1,2,...) be the Grothendieck group of the cate-
gory of smooth Gn—modules of finite length (here Go = {e}, Ro =2Z).
The induction functor defines a bilinear morphism Rn x Rm - R y
M,p) > T X p.

We put R ='®:=0 Rn' Then x defines on R the structure of a
commutative algebra.

For any a ¢ € we denote by v® an automorphism of the ring

R, given by vim) = vE oo
Define a morphism D: R > R by Dfn) = ﬁ(O) + n(l)+ cee ﬂ(n)
for & ¢ Rn (see 7.2). Then D is a ring homomorphism, i.e.
(n x p)(k) = Zi+j=k n(l) x p(]), and D commutes with' v¥([Z1, §3]).
We will use another homomorphism D[ . ul/2 o D of the ring

R, based on shifted derivatives, i.e. D[ ](w) = ZWIk](see 7.2).

Denote by Irr = UIrrn the subset of R, corresvonding to
irreducible representations. This subset defines on R the structure
of an ordered group. By definition the multiplication x and morphisms

a {1

v , D, D are positive operators.

7.6. We would like to parametrize the set Irr of irreducible
representations in terms of cuspidal representations. So denote by
C = Ucn’ n > 0, the subset of cuspidal representations in Irr,

l‘lp)r L o,

The subset A ¢ Cd of the form A = (p,Vp,Vzp,...,v
we call a segment; £ 1is called the length of A and the representation
v(£~l)/2p the center of A. The number d is called the denth of A.

The set of all segments A ¢ ( we denote by S.

(p,Vp,.-.,Vx—lp) c Cq be a segrent.

Statement ([21,§3]). Let &

Then the representation p x vp X...le-lp contains a unicue irreducible
constituent <«A> of the depth 4 = depth (a).
. - - -2
We define the segments A and A' by A = (psVpsrsee,sV P)

A = vl/2 . A . If Z£=1 we put AT = A" = @. From [21,§3] we can




¢

deduce:

a a
V<ld> = <v A>

1/2

D<A> <hA> + <A_>, D[ ](<A>)

<V A> + <AY> ,

1 L] -—
where <A> ¢ Irr£d r <lO'> € Irr(t-l)d and wve but <A's> =1 € R
if A" =g,
Note that the operation A - A' preserves the center of a seg-

ment.

7.7. Denote by 0 the set of finite rultisets in S. 1In other words,
an element a ¢ (¢ is a sequence of segments Al’AZ""’Ar €S up
to vermutation.

For any a = (Al""'Ar) € 0 we put depth (a) = Iz depth (Ai)
a = (81r-wvnb)), a' = (8]s-+-s87)  (if for some i 4! =@ we simnly
throw it away).

Define an element w(a) ¢ R by

n(a) = <Al> X o4 eX <Ar> .

. . - —a ! = =
Consider multisets al—a, ay=aj, ay aé,... and put hi depth (ai).
Formulas in 7.5 and 7.6 imply that hi = depth N(ai) and the highest

shifted derivative n(ai)[h] is isomorphic to w(a ). For large i,

i+l
Hence there exists a unique irreducible con-

[h1][h2]...[hi]
Stituent <a> of w(a) such that <a> = 1.

ai=¢, i.e. n(ai)=1€R0.

Theorem ([21,§6, 8.1]).

a) depth <a> = depth a. The highest derivative <a>(h) and

the highest shifted derivative <a>[h] are isomorvhic to <a > and
<a's,

b) The map a ~ <a> gives a one-to-one corresnondence
0~ 1rr.

c) Elements n(a) for a ¢ 0 form a basis of the ring R. 1In

Other words R is the polynomial ring over % in variables 4 ¢ S.




|

86
Define the matrix m = (mabla,b € 0) by

<a> = Zmab"(b)

This matrix is invertible (even unipotent, see [2Z1]) and the inverse
matrix describes the decomposition of representations wn(a) into

irreducible components. Because of this we call m the multinlicitv

matrix.

7.8. It remains to describe central exponents and the Hermitian
duality in this classification.
If n € Rn' o € Rm are positive elements, then- e(rxc) = e(n) +
+ e(o), e(w'nr) = e(r) + na.
For A = (p,Vp,...,Vt-lp) c Cy we put e(r) = £ - e(center A) =
= L-e(p) + dL(£-1)/2. Then e(<bd>) = e(d).
For a = (Al,...,Ar) we put ef(a) = Ze(Ai). Then e(<a>) = e(a).
Denote by + the Hermitian conjugation, i.e. the ring homomorohism
+: R~> R given by 1~ #t = F the Hermitian contragredient of w. Then

we have

6Et = v %), et = —e(m.

The morphism + preserves Irr and €. Moreover, if p € Cd

we have p+ = v—Ze(p)/d - p.
. + + -1 4
The morphism + acts on S and 0 since (p ,(vp) ,...,(\)£ P )=
- . i-2 +
= (pOIVDO,---,\)L 1rac') with 0% = v o -

Note that center A+ = (center A)+.
Statement ([21,7.10])

+ + + +
<f> = <A >, <a> = <a >

ant = (@H
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Algorithm for Description of Unitary Representations Via Multinlicities
7.9. Assume we know the multiplicity matrix m = (mab), i.e., we know
all multiplicites. Let us describe an algorithm which enables us to
find out whether a given irreducible representation <a> is unitar-

izable. We can rewrite the criterion 7.4 in the following way.

Criterion. Let a € 0. Then the representation <a> € Irr is

unitarizable if and only if
+

(i) a = a
(ii) Let h = depth(a). Then the representation <a>[h] = za's
is unitarizable.
(iii) For any k < h in the expression <a>[k] = me:b n{b) all
coefficients m:b with e(b) = 0 wvanish.

Condition (i) can be checked straight-forwardly. 1In (iii) we

can express all coefficients mk via the multiplicity matrix m,

ab

using the formula

[]

D (<b,> x <A2> X..aX <Ar>) = TT(<V1/2Ai> + <A'>).

1 i

So it remains to check (ii). But this is the same problem of unitariz-
ability for a smaller group. Hence after several steps we can find

out whether the representation <a> 1is unitarizable or not.

§8. UNITARIZABILITY AND IRREDUCIBILITY: MISCELLANEOUS RKRSULTS

Some Criteria of Irreducibility

8.1. The algorithm 7.9 shows that knowledge of multinlicities enables
us to describe all unitary revresentations. Conversely it turns out
that the study of unitary representations enables us to sav something
about multiplicities. More precisely, it allows us to agive some

Criteria of irreducibility.

Progosition. Let (v,G,E) be a representation of finite lenath.

Suppose that n = n+ in the Grothendieck group R and the hichest
[h]

shifted derivative « is irreducible and unitarizable, Then
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a) If m is pP-positive, i.e. e(n'™®)) - 0 for 1 <k < h,

then n is irreducible (and unitarizable).

b) If nm is P-nonnegative, but not P-nositive, i.e. e(ﬂ[k]) >
and for some k < h e(n[k]) > 0, then n is reducible .
Remark. If w[h] is reducible, then = 1is also reducible

(see [21,8.1}]).

Proof.
a) Let o € Irr. By 7.8 o and «t have the same depth,

say d, and their highest shifted derivatives are Bermitian dual, i.e.

e(m+[d]) = —e(w[d]). Consider an irreducible constituéent « of the

. + . . S
representation . Then is a constituent of ©n X

[d]

m. If

w*iely

d = depth(w) 1is less than h = denth(n) then el(o €

(ar,

), e

€ e(mr should be both positive, which is irmpossible. Pence any

constituent « has denth h and since n[h] is irreducible, nm has
onlv one constituent, i.e. n is irreducible. Bv criterion 7.4
is unitarizable.

b) By 7.3 n|P is semiunitarizable. If =~ were irreducible,
it would be unitarizable(see Remark 7.1), and therefore P-positive,

contradictinag the condition of the oronosition.

8.2. We call a G-module 1 of finite length G-nositive, if for anv

k < h = deoth(r), including k = 0,

The formula (m x c){k} x g , 1+ 3j =%k implies that n x ¢
is G-positive iff both n and o are G-positive. Criterion 7.4
and proposition 8.1) imply

Criterion. Let " be a G-module of finite length, h = depth(").
Then n is irreducible and unitarizable iff = = n+ in R, n[h]

is irreducible and unitarizable and n© 1is G-positive.
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Corollary.

a) If n, o are irreducible and unitarizable, then n x o is
irreducible and unitarizable.
b) If v, ¢ are irreducible and Hermitian and © x ¢ is unitariz-

able, then n and o both are unitarizable.

Proof.

a) By induction, the highest shifted derivative
(v x c)[h+d] = n[h] x c[d] is irreducible and unitarizable (here
h = deoth(r), 4@ = deoth(o)). Since n x o is G-rmositive as a nroduct
of G-vositive modules, n x ¢ is irreducible and unitarizable.

b) By induction the highest shifted derivatives n[h] and o

[al
are irreducible and unitarizable. The revresentation n x o is unitar-
izable and hence G-nonnegative. Therefore n and o are G-nonneaative.

By vrovosition 8.1b) they are G-vositive and hence unitarizable.

Boundary of the Complementary Series
8.3. Let o be a smooth irreducible revresentation of Gn' Por any

2 € R denote by w(a) = wv(c,a) the representation of G

2n
¥(c,a) = vi% x v %t = i) x (Vo) t.
Let h = depth (¢). Define inductively an interval 1I(g) ¢ ™ by
[h] a

I(c) ={ala € I(o Y, v o and (vac)+ are G-positive}. fThe latter

condition can be written as

k]

(*) For any 0 sk < h e(o )y - e(o[h]) > (h - k)a and

RS S P (VN

e - e > -{(h - k}a .

Proposition. If a € I(o) n(a) is irreducible and unitarizable.
If ¢ 1lies on the boundarv of I(c) w(a) is reducible. If a lies
Outside of the closure of 1I(s), r(a) 1is not unitarizable.

Indeed, if a ¢ I(g) then by induction the highest shifted

" (a) [2h] (h]

derivative = 1 (o ,a} is irreducible and unitarizable and
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w(a) 1is G-positive. By criterion 8.2 1w is irreducible and
unitarizable.

If o lies on the boundary of 1I(c), then either 1ﬂa)[2h] is
reducible, or it is irreducible and unitarizable and w(a) is G-
nonnegative but not G-positive. By proposition 8.1lb) w(a) is reduc-
ible.

If a lies outside of the closure of I(c) then either n(a)[zh]
is not unitarizable or «w(a) is not G-nonnecative. In both cases
7.4 implies that w(a) is not unitarizable.

Representations w(a) for a € I(oc) we call a (ceneralized)

complementary series. Note, that if ¢ is unitarizable, T(oc) is not

emoty, namely I(o) > 0, and I{c) 1is symmetric with respect to 0.
Proposition 8.3 together with corollary 8.2b) allows us to describe

all complementary series.

Remark. The length of the interval 1I(c) 1is alwavs less than or

equal to 1 (if o # 1 ¢ Ro). Indeed, if the highest shifted deriva-

tive c[h] is not 1 ¢ Ro’ then I(c) ¢ I(c[h])

[h]

induction. Now, let o =1, i.e. o 1is nondegenerate. Apnlyina

and we can use

condition (*) for k = 0 we see that for a ¢ I(o)

ha < e(cfo]) = e\vl/zc) = h/2 + e(og)

-he < e(o®) = h/2 + ec’) =h/2 - elo), i.e. |a - elo)/hl < 1/2.

Reduction to the Discrete Data
8.4. Ve want to show that the algorithm described in 7.9 essentially
works with discrete data.

Let 4,4, ¢ C be two segments. We say that 4, and A, are
linked if 8y 4 Byr By 4 8y and the set theoretic union 4, Ua, c c
is also a segment.

1 1 2 2

Statement ([21,§8]1). Let a = (Al,...,Ar), a, = (Al,...,As).

2
]

Supvose that for any i, ] the segments Ai and A. are not linked.
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S

Then <a; > x <a2> = <a1+ a, >, where al+ a, is the union of multisets.
Consider the action of the grouv IR on ( aiven bv atp - vap.

Orbits of this action we call R -lines in C, and orbits of the sub-

group Z ¢ R we call Z-lines. We say that a multiset a is

concentrated on a line N1 ¢ C if all seaments of a lie in 1.

Then we see that any irreducible representation can be written as

<a1> x <a2> x...X<ak>, where al,...,ak are concentrated on different

Z -lines Hl,...,Hk. Hence all problems about multinlicities m

ab
can be reduced to one line.

From now on we fix a unitary cuspidal irreducible renresentation
p € Cd and consider only seqments A and multisets a, concentrated
on the R -line Hp = {Vap, a € R}. We will identify in a natural wav
R and Hp, a*p, = vap. In particular pa+ = o, -

Let a be a multiset which we susvect to be unitarv. Using the
statement above we can consider only the case when a is concentrated
on a subset

n = {ta+Z}c R =1

a o’ where 0 = a = 1/2 .

We consider 2 cases.

Case 1 (rigid case): ¢ = 0 or o = 1/2, i.e. Hp is a Z -line.

Case 2 (nonrigid case): 0 < aq«< 1/2.

8.5. Let us show that in the "nonrigid" case we can exclude the vara-
meter a.

¥le can decompose a into the union of multisets a. and a_
Concentrated on a« + Z and =~a + Z . By statement 8.4
<a> = <aa> x <a_a> .

Let us denote by b the multiset v—aaa concentrated on the Z-line
Z and put o = <b>. Then <a> = n(c,a) (see 8.3). The renresentation
"(o,a) is irreducible and unitarizable for all a in the interval
I(c), described in 8.3, and it is reducible when o lies on the

bOlmdary of I(o). According to the statement 8.4 both boundarv noints

of Y(s5) are half-integers. Hence for a € (0,1/2) either all represen-
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tations n(c,a) are unitarizable, or all of them are not unitarizable.
Let us rewrite condition 8.3 (*) for the unitarizabilityv of

v (oc,a).

Ky _ ey, - - Kka< et ® (ot b1

(*) (h - k)a < elc - e

Ssince it should be true for all a € (0,1/2) it is ecuivalent to the

condition

[x] [h]

%) e™) — e ™) > n-x)2, ety - ewtBly 2 o

Hence we have proved the following inductive Criterion.
Criterion. Let b ¢ 0 be a multiset of denth h concentrated
on Z-line Z ¢ Hp, and let a € (0,1/2). Then the reoresentation

a -a , + a -a, + . s . . .
v¥<b> x v <b'»> =<v b+ Vv b > is unitarizable if and only if

<vab[h] + v-ab[h]+> is unitarizable for all a € (0,1/2) and (**)
holds for o = <b>.

This criterion does not depvend on a. It allows us to formulate
an algorithm, dealing only with discrete data, for the classification
of unitarizable representations in the nonrigid case. 1In the rigid

case we automatically work with discrete data.

Some Conjectures.

8.6. In 8.5 the length of 1I(c) is less than or egual to 1. Kence

if I(c) © (0,1/2) we have 3 possibilities: 1(c) = (o,1),
I(¢) = (-1/2,1/2) or 1I(o) = (0,1/2). For instance, if o is
unitarizable, I(c) = (-1/2,1/2); if vl/zc is unitarizable,

I(s) = (0,1) (see corollary 8.2 a)).

Conjecture.

a) if 1I(o) = (-1/2,1/2) then o is unitarizable. RespectivelV:
if I(o) = (0,1) then v/?%: is unitarizable.

b) If I{(g) = (0,1/2), then o = oy X Oy where oy and o,

are irreducible representations, I(cl) = (~1/2,1/2), I(cz) = (0,1).
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This conjecture, if true, reduces the studying of the non-rigid

case 2 to the rigid case 1.

8.7. Now one remark about the rigid case.

Lemma. Let b be a multiset concentrated on one %Z -line # or
1/2 +  and o = <b>. Suppose that o is unitarizable. Then for

all 0 =k < h

depth(c) we have

[k]

(*) e(o }y = (th - k)/2 .

[k}

This inequality refines the condition el(o ) > 0 of 7.4,

Proof. Since o xo is irreducible and unitarizable by 8.2a),

I{o) = (-1/2,1/2). Thus for any a € (-1/2,1/2) we have (see 8.3(*))
o™y - e(¥y Z ey L am - k).

This gives the inequality (*).
I should confess that inecuality (*) reminds me of the inequalities

for Kazhdan-Lusztig polynomials.

Unitarizability and Duality
8.8. Let us apply the unitarizability criterion to the case when
<a> = w(a). According to [Z1,4.2] this is true if and only if any

two segments of a are not linked., For simplicityv consider

All A2

the case when a is concentrated on one T-line Hp (see 8.4),

Lemma. w(a) is irreducible and unitarizable if and only if
+ :
a8 = a and for any segment A € a we have |center(a)] < 1/2 (we

consider the representation center(A) as a real number on Hp ~ ).,

Proof. Suppose n{a) is irreducible and unitarizable and
4 € a. Then the highest shifted derivative n(a') is also irreducible
and unitarizable. If A" # @, then bv induction ?
Center (4) = center(a') > -1/2. If A' =@, i.e. A consists of

One element, then the condition that <A> is G-positive, i.e.
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e(A[o]) = e(vl/zA) > 0, implies that center(A) > -1/2. Since A4,
2t ¢ a, we have |center(a)| < 1/2. Conversely, suppose that at = a
and |center{a)] < 1/2 for all A € a. Then all reoresentations

<A> are G-positive and applying criterion 8.2 we can prove bv induction

that w(a) is irreducible and unitarizable.

8.9. In [2z1, 91 A. Zelevinsky described an automorphism t of the

ring R, which he called duality. On generators <A> it is agiven bv

£-1 £-1

t
<h = (P, VpreeesV p)> = <lA> = <{ o} \)p},.-.,{\) pl>,

where on the right side we consider the multiset of £ one-point
segments.

One can show that t maps Irr into itself. The representations
<A>t play a very important role - they are the so-called sguare inteo-

rable representations.

Lemma. Let a = (Al,...,Ar) € 0. Then the representation

m(@)® = <a;
if a¥ = a and for any segment 4 € a we have |center(a)]| < 1/2.

Proof. According to [Z1,9.6] for A = (p,vp,..-,vl_lp) we

>t XoooX <Ar>t is irreducible and unitarizable if and onlv

have

peasty = 2<a >t

where
i 2- :
Ai = (lervl+lpl"'lv 19), 1= 0,1,..-,£

and we assume <A£> = 1. Hence <A>t is G-positive if and only if

ew}’2s) > 0, i.e. center(s) -1/2. Now criterion 8.2 implies the

lemma.
Remark. This lemma gives a classification of nondegenerate irreduv”
cible unitarizable representations.

8.10. Lemmas 8.8 and 8.9 make reasonable the following.

Conjecture. puality +t: Irr - Irr maps unitarizable representa-
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tions into unitarizable representations,
§9. PROOF OF CRITERION AND PROPOSITION 7.3

9.1. Let (v,P,E) be a smooth representation. We call =«

9 -degenerate if ¢ () = 0. We call n & -homoaeneous if for anv

nonzero subrepresentation p Q_(p) # 0.

Criterion and proposition 7.3 inductively follows from the followina.

Proposition. Let (w, Pm+l'E) be a smooth representation of

finite length.

a) Suppose w is @_-degenerate. Then r is (semi) wunitarizable
iff V1’2 . yT(1) ¢ Alg G,  is (semi) unitarizable.
b) Suppose n is Q_-homoqeneouS. Then © is unitarizable iff
(1) ¢ (v) ¢ Alg P~ is unitarizable.

(vl/z‘r'(n)) > 0.

(ii) e
c) Suppose n is 0-—nondegenerate,  (r) is semiunitarizable

and e(vl/zw_(n)) > 0. Then « is semiunitarizable.

9.2. 1In the proof of proposition 9.1 we will use the geometric realiza-

tion of the representation (n,E), described in [BZ1,8§5].
)

*
The group Pm+1 is the semidirect product of the subarouns

8., for i>m or Jj > mj angd

b = {dpy5) | iy = 855

vV = = . NS . j < - i i Wi
Vi [4pij)|plj 513 for 3 m} Let us identify Vi with the
linear space Mat(m,1;F) of column-vectors of lenath m and denote by

*
YW the dual space W = Mat{(l,m;F) =V of row-vectors. For any

vV € V. we denote by wu the character of w, given bv

wu(w) = Y<v,w>, where ¢ 1is a fixed nontrivial additive character of
F. We denote by & the natural action of G, on W, given by
-1

§(a)w = wg .

*) V is the unipotent radical of P and G is a Levi component of P.
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Statement. Let ("'Pm+1'E) be a smooth representation. Then

there exists a sheaf F on W with an action & of the group Gm
and an isomorphism i: E X S(F) of the space E with the space §5(F)

of compactly supported sections of F such that

vig) Y ?6(q) (i 8))

i(m{g)E)

i(n(v)g) v, i(g) g €G s+ v €V, EEE.

The triple (F,5,i) 1is uniquely defined by (n,F) uo to a canonical
isomorphism.

This statement is a variant of Mackey's construction. It is

oroved in [BZl, 5]. More precisely, in [BZz1] the factor vl/z

is omitted, so we should apoly [B2l] to vl/zn.

We will identify E with S(F) wusing the isomorvhism 1i. Put

E, = S (F) ={¢ ¢ S(F) |suop ¢ c W\O}, n = n|E

o]

For any point w ¢ W we denote by F the stalk of the sheaf F at

w
w. Consider two points 0 ¢ W and e = (0,...,1) € ¥v. It is clear,
that
Stab(O,Gm) = Gm’ Stab(e,Gm) = Pm'
By definition we have
Y (1) = (6,G,F)), ¢ (m) = (8,P,F)

(this coincides with the definition in [BZ2, 31).

From these formulae we see that:

(i) n 1is ¢——degenerate o F is concentrated at 0 = V acts
trivially on E.

(ii) = is ¢ -homogeneous = F has no nonzero section concentrated

at 0.
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9.3. Proof of the proposition 9.1. "

(i) Suppose n is ,¢_—deqenerate. Then V acts triviallv on
E and "]G = y1/2
m

(ii) Suppose that the representation & (v) = (B,Pm,Fe) is

¥ (n). This implies 9.la).

Hermitian, i.e. the space Fe has a Pm-invariant Hermitian form Be.

Since Gm acts transitively on W~0 and Pm = Stab(e,Gm), we can

define a G-invariant system of Hermitian forms B, for all w ¢ W~N0.
Now fix a Haar measure p§ on W and define the Hermitian

£ =
form B0 on EO SO(F) by

By (¢s0") = stwww.wdu(w).

Since yu is (Gm,v)—invariant, the formulae of statement 9.2 describinag
the representation n imply that the form B, is G-invariant with
resvect to "o It is clear that B, is positive definite if and

only if Be is positive definite.
Statement. The correspondence Be > Bo is a one-to-one

correspondence between Pm~invariant Hermitian forms on (6,Fe) and

P s . c s g E ).
nt+1 invariant Hermitian forms on ( o’ o)

For the (easy) proof see [BZ2,§3].

(iii) Let us fix a positive definite Hermitian form Be on Fe

and the corresponding form Bo on Eo. We want to find out when we
can extend Bo to the positive definite Pn+l—invariant form B
on  (q,E). The answer is given by the following.

Analytic criterion. The form Bo can be extended to the ..

P~invariant positive definite Hermitian form B on % iff for anv
¢ € E = S(F) the integral I¢ = JW\OBW(¢W,¢w)du(w) converaes.
Indeed, if all these integrals converge we can define B by

B(g,n) = JWBW(¢w,nw)du(w). Conversely, suppose we can extend Bo
to B. Consider any open compact subgroun w° ¢ W and denote bv

o . o

V" the dual subgroup of V (i.e. V° ={(v ¢ Vlwv(w )y =1}). Then

o) .
v is an open compact subgroup of V and we can define an operator
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A:E - E by

A = fvon(u)duv(u) / measure(v®) .

This operator is a projector and in the geometric realization it is
given by A(¢) = X - ¢, where ¢ € E= S(F) and X is the character-
istic function of wC.

Since the form B is Pm+l—invariant, A is an orthoaonal nroiec-

‘tor with respect to this form. Hence for anv ¢ ¢ E we have

]

holZ = I (1-awli 2

= na-oeid = ta-oel? = [ e ? auon
o wEWSW

This implies that the integral I converges.

¢

9.4. 1In order to finish the oroof of proposition 9.1b) it remains to

. 1/2,-
check that integrals I¢ converce for all ¢¢€E iff el(y /24" (m)) > 0.

(i) Denote by s a generator of the maximal ideal of the rina

of integers of F (i.e. |m| = q‘l). Ve will identify n with the

central element p - 1_ € G .
m m

Consider the quotient revresentation (n' = n/no, G,

m
E' = E/Eo). Since n has finite length, ' also has finite lenath.
The operator n'(p) is then finite, i.e. it generates a finite

dimensional algebra of operators.

Denote by Uyreeeolp the eigenvalues of «'(g). BV defini-~
tion |uil = q—e(m) for each i, where e(w) is the central exponent
of an irreducible subquotient of «n' = vl/zw‘(n). Hence we can rewrite

1/2

condition e(v ¥ (n)) » 0 as

(*) Iuil < 1 for all i.
(ii} Consider the space C of functions f: W~0 » € such that
supp £ lies in a compact subset of W and f is locally constant on

w<0, and define the representation (5/Gm,C) by
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S(g)E(w) = v(g)f(5(g )w).
The restriction of 6§ on the subspace
C, = {f ¢ C|f =0 in a neighborhood of 0}

we denote by 60.

The Hermitian form Be defines a pairing B: F ®E - C bv
Bld,m)(w) = Bw(¢w,nw), which is a morphism of representations
p:r m ® ™ » 6. It is clear that B(¢,m) ¢ Co if ¢ ¢ Eo or m € Eo.

Denote by C ¢ C the image of p. This space of functions

B
satisfies the following conditions
* %

(*%) (a) CB > C,

(B) CB is the linear span of positive functions f ¢ CB.

(y) Put C' = CB/CO and denote by A the action of the
operator §(p) on this quotient space. Then A generates a finite
dimensional algebra of operators and all its eigenvalues are of the
form piﬁi.

(§) For any yu = Myreserl there exists a vositive function
f ¢ Cy such that £ £ C  and A(f) = uuf (mod C_) .

Condition (a) follows from the fact that FE, and hence CB’ is
invariant with respect to multiplication on locally constant functions
on W;(B) follows from the volarization formula.

The pairing § defines an epimorphism p': E' x E' = C' of
Gm-modules which proves (y). If ¢ ¢ E\Eo is a vector, such that
"(p)o = p¢ (mod Eo), then the function f = B(¢,¢) satisfies condi-
tion (s).

(iii) Lemma. Let CB ¢ C be a subspace, satisfvina (a) - (§).
Then
a) if !uil < 1 for all i, then for any f ¢ C_. the
integral 1, = wa(w)du(w) converges.

£
b) If |u|] =1 for one of the y = y;, then I, does not

i
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converge for the corresponding function £ ¢ C_.

B

This lemma implies that the conditions of criterion 9.3 (iii) are

satisfied iff |u;| < 1 for all i, that proves 9,1b).

Proof of the lemma. Consider some norm | | on W, put
W {w € W] lwll = q'n} and define the function £(n), n ¢ Z, by
£ = [, fnduon.
n

This reduces the lemma to the analogous lemma about functions on 2,

where

C = {f: @ -~ C|f(n) = 0 if -n is largelh
Co = {f € C, supp (f) is finite}

I, = z__f(n)

(6(p)£)(n) = £(n + 1)

(we use the fact that &§(@) preserves integrals).

Condition (*%*) (v) implies that f(n) 1is an exponential
polynomial for large n, i.e. f£f{(n) = ZPk(n) . xi , where xi are of
the form uiﬂ . This implies a).

i
If |ul =1 and Af = yuf(mod C_)), then f =c . um?®  for
large n. Since f £ Co’ the constant ¢ is not egual to 0, and

hence If does not converge; this proves b).

9.5. Proof of 9.1 ¢). Let B, be a nonzero positive semidefinite form

on & (n). As in 9.3, 9.4 we define the pairing 8: E ® F » C

and put CB = Im p. This space satisfies conditions (**) (a) (B) (¥)
of 9.4.
Lemma. If ]uil <1 for all i then there exists a nonzero

vositive Gm—equivariant functional 1I: CB + € (here vositive means
I(f) = 0 for f = 0).
The formula B(¢,n) = I(B(¢,n)) defines a nonzero positive

semidefinite P-invariant Hermitian form on F, that proves 9.lc).
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Proof of the lemma. Choose some norm «x = || [ on W. ¢

For any s > 0 the integral 1If{k,s:f) = fwf(w)K(w)sdu(w) conver-
ges and defines a positive functional 1I(x,s) on CB'
The function 1I(x,s;f) is a rational function in qs, and the
order of the pole of this function at s = 0 1is bounded by some
number k, which does not depend on f (it does not exceed the degree
of the minimal polynomial of the operator A). Let us choose minimal
vossible k and put

I(k;f) = 1im SkI(K,S;f)
s+0

I(x) 1is a nonzero positive functional on C In order to prove

g*
that it is Gm—equivariant it is sufficient to check that 1I(k) does
not depend on «.

If « = k', then 1I(k,s) = I(k',s) and hence I(x) = I(k').
Besides, 1I(lx;s) = ASI(K,s), i.e. I{Ax) = I(x). Since for anyv

-1
other norm «' we have Mx = k' = X "k for some X > 0, we have

1

I(k) = I(Ac) = I(k') = I(A k) = I(x),

i.e., I(x) = I(x'). This proves the lemma.
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