INDUCED REPRESENTATIONS OF THE GROUP GL(n)
OVER A P-ADIC FIELD

I. N. Bernshtein and A. V. Zelevinskii

1. Let F be a local non-Archimedean field and Gn = GL(n, F). If 8 = (n;, . . ., 0r)
is the decomposition of the number n, and p;, . . ., Pr representations* of the groups Gn,,
. +» Gpny, then using the standard construction of induction we may construct a representa-
tion i{py, . . ., Pr) of the group Gn (see [1, p. 11], or Paragraph 5 below). As H. Jac-
quet proved (see [l and 2]), any irreducible representation w of Gp is imbedded in a repre-
sentation of the form i{p,, . . ., Pr), where all the pi are irreducible and cuspidal.t
Therefore, henceforward we shall assume everywhere that the pi are irreducible and cuspidal.

2. THEOREM 1. The representation m = i(p,, . . ., pr) has finite length not exceed-
ing r!.

THEOREM 2. Let 7 = i(py, « . ., pr) and ' = i(p}, . . ., ps) be representations of
the group Gn. Then the following conditions are equivalent:

{(I) © and 7' have a common subfactor-representation;
(II) the sets of composition factors of 7 and 7' coincide;
(IIT) Howm(a. a)==0;

(IV) r = s, and the sets (p1 . + ., pr) and (P1, . . ., Ps) may be obtained one from
the other by some permutation.

Let p and p' be representations of the groups Gy and Gn', respectively. They are said
to be v-connected if m = m' and either p=~w' or p' =vp, where v is a character of the group

Gm, defined by the formula v(g) = |det g| (here | | is the standard norm in the field F).
THEOREM 3 (Irreducibility Criterion). The representation i{(p,, . . ., pr) is irre-
ducible if and only if no two of the representations p,, . . ., Pr are v-connected.

3. We would like to describe the structure of subrepresentations of 7 = L(ps, . . .,
pr). We shall give a complete description in the case when all the pji are distinct. 1In
this case the set Q of composition factors of n is single. Therefore, by setting a corre-

spondence between each subrepresentation t Zx and the set of its composition factors Q(x) C
0 , we obtain an inclusion of the structure of the subrepresentations of 7 in the structure

of subsets of @ (i.e., QT+ =0 M UQE). QrT)=Q@ Q)

Let o = (4. ... ) be some ordering of the set {p;.....o'. Set a, =i, - Pa) o It
follows from Theorem 2 that 2 = Q(7y) does not depend on 0. Let A be the set of pairs of
v-connected representations amongst the p,, . . ., pr (clearly, |A|<r— ). TFor each or-
dering o define a function fg on A, with j, (5. vp}) =0 1if p precedes vp in the ordering o,
and j, (i». vo) =1 if vp precedes p.

Proposition 1. a) Each 7y contains a unique irreducible subrepresentation wg.

*Je shall consider only algebraic representations, i.e., those for which the stabilizer of
every vector is open.

tCuspidality is understood in the sense of [2, 3, and 4]; in [1] such representations are
called absolutely cuspidal.

Moscow State University. Translated from Funktsional'nyi Analiz i Ego Prilozheniya,
Vol. 10, No. 3, pp. 74-75, July-September, 1976. Original article submitted September 29,
1975.

This material is protected by copyright registered in the name of Plenum Publishing Corporatior.,, 227 West 1 7th Street, New York, N.Y,
10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this articie is
available from the publisher for §7.50.

225



b) The following conditions are equivalent:(l) x, = 7y, (II) 0, = 0y, (HI) f, = f,..

c) Let ¥(3) be the set of functions f: A - {0, 1}. Define a map a«: @ — P(A), such that
a(w)=f, . Then o is well-defined and gives a bijection between Q and $(A); in particular,
Q=2 g2 '

Proposition 2. Let o be some ordering. Then for each &= A there exists a subrepre-
sentation 1,,Ca, such that « (Q(, ) ==y )6 =/, . The subrepresentations T5,8
generate the structure of the subrepresentations in ng. ’

4. In the case when several of the representations p,, . . ., pr coincide, the struc-
ture of the subrepresentations of i(p,, . . ., pr) is considerably more complex. For ex-
ample, the representation i(1l, v, 1) of the group G, decomposes into the direct sum of two
distinct irreducible subrepresentations; but for the representation i{1, v, 1, v) of G,, the
structure of the subrepresentations is infinite.

5. In the formulation of further results we shall need several definitions. Denote
by Alg G the category of algebraic representations of the topological group G. Let G' and
U be closed subgroups of G, for which G' normalizes U and G’ N U = {e}; let 8 be a character
of the group U which normalizes G'. Define functors Iy,s and iy,e from Alg G' into Alg G.

Let p&Alg6’ act in the space V. Define Iy,g(p) (or explicitly Iy,q(G, G', p)) as a
representation of the group G by right translations in the space of functions f: G +» V,
satisfying the conditions:

1)  f(hug) = mod}? (h)-6 (w)-p (h) f(g) (here hEG ,uc U, geC, and mody(h) is the modulus of the
automorphism u » huh™' of the group U, see {5]).

2. There exists a neighborhood Nf of the identity in G such that f(gx) = £(g) for all
gE G, z& Ny.

Denote by ipy,e{p) the subrepresentation in Iy,(p), which acts on the subspace of func-
tions which are finite with respect to the modulus of the subgroup G'U.

Example. Let G = Gpn, B = (n;, . . ., nr) the decomposition of the number n, P, 6
the corresponding parabolic subgroup, U the unipotent radical of Pg, and G' = Gp, X. . . X
Gn, the Levi subgroup. Then if p; € Alg G o i Py oo =i & 8= (D Qe

6. Let P=P, G, be the subgroup of matrices whose last line is of the form (0, O,
.« « +» 0, 1), Our aim is to study the restriction of the representation i(p,, . . ., pr)
to P. Let U be the group of unipotent upper triangular matrices, m c ¢ the unipotent radi-
cal of P and 6 a character of U defined by the formula 0 ((ui)) = ¥ (2u;;,,) , where ¢ is a non-
trivial additive character of the field F. Define functors @+: Alg P,_1—-AlgP, and ¥+*:AlgG,., —
Algp, , setting ®* =iy, ¥*=iy,. Note that these functors take irreducible representations
into irreducible representations.

The following theorem describes the composition factors of the restriction of i(p,,
« « «y pr) to'P. It is useful in the computation of zeros and poles of the Gel'fand—Kazh-
dan I'-function (see [3]).

THEOREM 4. For each subset J of the set of indices {1, . . ., r}, set 1;= (@)1 ¥+
(wilisJ)eAlgP(here m=2Zn;, j<=J). Then for i(p,, . . ., pr) there exists a filtration by
P-subrepresentations whose set of factors coincides with (v, |/ =&},

7. Set v=71,=1I;4(P, {e}, 1). The representation = & AlgP is called nonsingular if Hom (x
1)=0 (see [2]). If in these circumstances m coincides with 1, we say that 7 admits the
Kirillov model; it is easily shown that in this case all morphisms from m into t are pro-
portional.

THEOREM 5. The restriction of i(pyy « + «5 DOp) to P is nonsingular. It admits the
Kirillov model if and only if for any pair of indices i, j, where i</, pj = v-p;

COROLLARY. The restriction of a nonsingular irreducible representation of Gn to P ad-
mits the Kirillov model.

This proposition was stated in [3] as a hypothesis.

8. Notes. a) The statement of Theorem 1 without the estimate of length, and the im-~
plications (I) « (II}) « (1I1) = (IV) in Theorem 2, are not new.
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b) Theorem 3 gives an estimate of the width of the "critical interval" for comple-
mentary series of Gpn (see [4]).

¢) Our proof of Theorem 3 is based on Theorem 4; therefore, as distinct from the proofs
of Theorems 1 and 2, it does not relate to other groups.
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.THE PROBLEM OF INTEGRAL GEOMETRY ON THE GROUP Pp(k)
AND ITS APPLICATION TO THE THEORY OF REPRESENTATIONS

A. D. Gvishiani

Let k be a local non-Archimedean field, O the ring of integers of k, P, the principal
maximal prime ideal of this ring, and q = Card O0/Po. Denote by GL(n, k) the group of all
nonsingular matrices of order n with elements in k, by P = Pp(k) the subgroup of matrices
| ©;ifl = GL (r, & such that gn, = . . . = gg,n-1 = 0, by UC P the upper unipotent subgroup of
GL(n, k), and by Z the commutator group of U. Clearly, Z is the subgroup of matrices z=
l{ziill & U such that 2i,i+1 = 0 for 1 =1, . . ., n— 1. TIf H is a subgroup or factor space
in the group P, denote by S(H) the space of finite, locally constant complex-valued func-
tions on H. The functions j= §(H) are called Schwarz-Bruhart functions on H.

Define a linear map from the space S(P) into the space of functions on P x P by the
following formula:

¢ (g1, g2) = (!'(!."1_1:‘.’-1) dz, e S, (D

z

where dz is an invariant measure on Z, normalized by the condition Sdz:A and I, " Z
is the subgroup of integral matrices. It follows immediately from (1) that ¢ (z &1 2 £)
= 4 (g1, &) for any z, :, e 2z, and consequently ¢ may be considered as a function on Z\ P X Z\ 2.

In this article we shall obtain the converse of (1) and give an application of this
formula to the study of regular representations of GL(n, k).

1. Consider the generalized function [T (A on k (AeC() , where T (&) = — ¢
—q¢M.*% It follows from the results in [1] that the generalized function }|:*'\ I'(}), con-
sidered as an analytic function in ), is an entire function. In view of this,

Ry 2 t—q

JRIE I — L S L S =92
TG bmo =00 T o T T IR 2)

r— ——

*The function T'()) may also be defined from the equation [:*'=T () ]¢|?, where [:[*T is
the Fourier transform of the function |[:[*! (see [11]).
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