ALL REDUCTIVE p-ADIC GROUPS ARE TAME

I. N. Bernshtein

In this paper we prove the following theorem.

THEOREM 1. Let G be a reductive group over the locally compact nondiscrete non-Archimedean
field ¥ (more precisely, a group of its F-points), considered as a locally compact group, and let K be an
open compact subgroup in G. Then there exists an N = N(G, K) such that for any irreducible unitary repre-
sentation 7 of G on the Hilbert space V, the dimension of the space VK of K-invariant vectors does not ex-
ceed N.

It follows from this theorem that G is a tame group (a group of type I). For the case G = GLy(F),
this theorem was proved in a recently appearing preprint of R. Howe, which uses a subtler method (and ob-
tains a stronger result). Our proof is completely elementary (modulo the results of {1]).

The assertion of Theorem 1 was stated as a hypothesis in {1]. There, it was shown that for its proof
it is sufficient to consider only square-integrable representations .

We denote by 3k the convolution algebra of finite functions on G which are two-sided invariant with
respect to K. Theorem 1 is equivalent to the assertion that for the algebra #x, the dimensions of all uni-
tary irreducible representanons are finite and bounded (see [1]). Since for square-integrable representa-
tions the space vK' is finite-dimensional for all open subgroups K' (see [1}), it is sufficient to prove that
there are arbitrarily small compact open subgroups K in G for which the following assertion is valid:

Assertion (A) All finite-dimensional irreducible representations of the algebra #x have bounded
dimension.

We will prove Assertion (A) under the following assumptions on G and K.
I. G is a loeally compact group, and K an open compact subgroup in G.

II. There are given in G subgroups Z, Ky, T, and T', elements ay, ay, + .., af, and a finite set Q
such that:

a) Z lies in the center of G;

b) ay, ... a; commute among themselves; we denote by A% the semigroup with unit which they gen-
erate;

¢} K is a compact subgroup, and G = K,ATQZK, (the Cartan decomposition);
d) Kc Kjand K, normalizes K;
e) '~cK, r*cK,and K=T7"T%
f) ¢l ai ' cT7, a; 'TTai r* for all i.

Let G be a reductive group over ¥, Z its center, A a maximal split torus, P a minimal parabolic
subgroup containing A, U a unipotent subgroup complementary to P and normalizing the group A. Let A be
the set of roots of G with respect to A, and A, be the set of positive roots corresponding to P. We put

= {a€A| |ala)| =1 for all @ €A} (we regard ¢ as a homomorphism a: A—»F*) As shown by Brunat
and Tit-s (see [1]), there exist in G an open compact subgroup K, and a finite set ¢ such that G = K0A+QK0.
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It is easi.y verified that it is possible to find in A elements ay, ..., g; and a compact set C such that AT
A¥c (ZN A), where AT is the semigroup generated by ay, ».., «. Choosing Q so that C‘QKO < QK,, we fulfill
condition ¢). If we now choose in K, a sufficiently small open normal divisor K, then the groups K, T~ =
KN T, r* = Kn P satisfy conditions d),e), f). (This is a result of Jacquet; see [2].)

Example;: G = GLy, (F). Q = {1}, K, = GL;, (0), Z is the center of G, K = K, = {z =G ||1 —
z) << |n P}, where v = 1 there O is the ring of integers of the field F, = is the generator of the maximal
ideal in O, and for the matrix z = (z;;), lz] =max |z ), I"= K N U. I'* = K 1 B, where B is the group
of upper triangular matrices and U is the group of lower triangular matrices with units on the diagonal.
Also, aj(j = 1, ..., J) is a diagonal matrix, (aj)ﬁ =1for ix<j, (@i =7 fori > j.

Our proof is based on the following facts from linear algebra.

PROPOSITION 1. Let £ be an algebra,* .4, & subalgebrasin ¥, 4,, ... 4, &4, X,,.... X, Y,
.Y, = %. Letus assume that Z lies in the center of the algebra £, £ C .4, .4 is the commutative
algebra generated by Ay, ..., Ayand Z, and that any element X & £ can be written in the form

X =2X.P,;Y; where Pj,= 4 (i=1,...,p; j=1,... ¢. Thenany irreducible finite-dimensional rep-

resentation of the algebra £ has dimension at most (pq)zl'l.

PROPOSITION 2. Let V be an n-dimensional space, and % C Enrd V the commutative subalgebra gen-
erated by the operators Ay, ..., A7 (and the identity). Then dim # <, (r), where f;(n) =n 2=t/ (21

Proposition 1 follows from Proposition 2. In fact, if p: £ — End V" is an irreducible representation,
then p (Z) = -1 by Schur's lemma), dimp (£) = n* (by Burnside's theorem), dim p (4) < /;(m) by Propo-
sition 2, and dim p (%) < pg dim p (A4) by virtue of the conditions, so that n? < pqfy(n), from which follows the
assertion of Proposition 1. We prove Proposition 2 af the end of the paper.

We now establish that for a pair G, K safisfying conditions I and 11, the algebra Hx satisfies the con-
ditions of Proposition 1. K g€ G, then by KgK we will denote the function in 7k with integral 1 con-
centrated on the double coset KgK.

LEMMA. a) If g, h€ G and g or h normalizes K, then KgK.KhK = KghK. In particular, this is so if
g or h lies in Z.

b) Eg heA', then Kgk KK = Kghk.

Proof. Inboth cases it is necessary to prove that KgKhK = KghK. In case a) this is obvious, and in
case b), we have KgKhK == KgIT*hK = K (gT~gVgh (h"'T*h)K = KghK (since gT' g cT-, b 'Ir*h c1¥). The
lemma is proved.

We denote by £ and .4 the spaces of functions in #x concentrated on KZK and KAtzZK, respectively.
Then Z is a central subalgebra in #x, 4 is 2 commutative subalgebra, £ C .4 and 4 is generated by
Z and the elements 4, = Ka;K.

Case 1. We assume that all elements in @ normalize the group K (usually this is so, since usually
Q= {1}). Letx;, ¥j be sets of representatives of right (and thus, also double) cosets with respect to K in

K, and QK;, respectively. We put X; = Kz, K, Y;=KyK. It follows from the lemma that #x = XX AY
- so the conditions of Proposition 1 are satisfied.

General Case. Let us choose x; and y; so that | x;K = K and U y;K = KQKy. Let M be the space of
functions in #x. concentrated on KA*ZKQI%Q. It is clear that M is an” A -module with respect to left multi-

plication by 4 and #x = DX, M, where X, = Kz,K. Therefore, it is enough to prove that M is a finitely
generated 4-module.

For any p€ A™, we put r"p' = p‘ir"“p < r'. Just as in the lemma, we convince ourselves that

KPiK"szy}K = KPlPﬁr;: y;K and Kp,p.y;K = KP[Pﬁr;m yiK.

Therefore, if F yjK = rgz yiK, then Kp, K -KpyK = Kp,poy;K.

P1bg

* An algebra is everywhere understood to mean an associative algebra over C with unit.
1 This, in essence, was established in [3].
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For any subgroup I" < K, we put

IT]-- 2 (the number of cosets with respect to K in I'y;K).
3

Clearly, if ' < T, then ||T"'|| =< | T/, while the equality ||T''}]l = ||T || means that I'y;K = I'yK forallj.

We consider the integral quadrant D = {z = (z,, . . ., 2)) | z; = Z+*}, and for every z = (24, ..., Z}) €D,
we put p, = aile.. .~a%l_6 At and f(z) = ”sz"' We will say that z'< z if 2'» z and z—z'€ D. If z' < z, then
f(2') = f(2); if, in addition, f(z") = £(z), then rpzyjK = I‘pz,yjK for every j, so that the classes Kp.y;K lie
in the .{-module generated by the classes Xp.y,K. Since the classes Kp.y,K (z = D, j arbitrary) generate
M as a Z-module, we can choose as generators of M as an .£-module the elements Kp_y,K, which corre-
spond to singular points z, i.e., z such that for all z' < z we have the strict inequality £(z") > f(2).

We have arrived at a combinatorial problem: we are given on D a function f with values in z* and
need to show that the number of points singular for f is finite.

For the proof, we note that if z is a singular point, then f(z) < £(0), and using induction on £(0), we
can compute that in the quadrant z + D there are a finite number of singular points. Since the complement
D\ {z + D} can be covered by a finite number of quadrants of rank (/{—1}, using induction on /, we can com-
pute that because there are a finite number of singular points in each of these guadrants, there are also a
finite number in D.

Thus, the algebra #x satisfies the conditions of Proposition 1, whence follow Assertion (A) and
Theorem 1.

Proof of Proposition 2. (The proof is that of D. A. Kazhdan.} Since the algebra £ is commutative,
we can decompose the space V info the direct sum of #-invariant subspaces V; such that for every 2 = »
and every j, all eigenvalues of the operator P|vy. coincide. Clearly, we can restrict ourselves to the case
V= Vj, and subtracting suitable constants from’the operators Aj, we may assume that all the A; are nil-
potent. .

Let ¢,(n) be the maximum possible dimension of % for given / and n (we assume that all the Aj are
nilpotent). We prove that

am <o ([n—22)) + g *)

Since f;(n) > f,(In — f, (W)/n]) + fi-; (n), Proposition 2 follows from induction on { and n in (*).

Let I be the ideal in % generated by the operators Ay, Ka power of if, vE= %V, Thenv=v'>
Vi5 ...5 V2=0. Let L be a subspace in V complementary to V!, and m = dim L. It is clear that IKL
generates VK modulo VE+!, go that #L = V.

Hence it follows that any operator P & 4 is determined by its values on L, since P (2 Pili) =

ZPi (PL), so that dim £ < nm. We may assume that dim & = ¢, (r), whence m = ¢;(n)/n.

Let 2" be the subalgebra generated by A,, Ag, ..., Ay, and let B =4, #. Then £ = % + 2". Since
A carries V into VI, dim % does not exceed the dimension of the algebra obtained by restricting % to
Vi Le., dim # < 9, (dim VY) = ¢, (n — m) << ¢, ([r — g, (n)/n]). On the other hand, dim #&" < ¢, (n), which
implies the formula (*).
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