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i. We consider a complex crystallographic group W, i.e., a discrete group of affine 
transformations of a complex affine space V such that the quotient X = V/W is compact. We 
assume that W is generated by affine reflections (W is a err-group). A ccr-group W is 
called a Coxeter group (or cec-group) if the group dW of linear parts of W is a Coxeter group 
(i.e., can be expressed by real matrices in some basis). In what follows, we restrict our- 
selves to the case when the group W is irreducible (as an affine group). 

The purpose of this paper is to describe the structure of the analytic space X = V/W 
for a ccc-group W. It turns out that X is a rational variety (with singularities), or more 
precisely, a "weighted" projective space. This is an analog for ccc-groups of the classi- 
cal theory of Chevalley on invariants [i]. An analogous result is apparently true for any 
ccc-groups. 

2. A classification of ccr-groups is given in [3]. Let S be an affine system of roots 
on the real affine space V(R) (see [2]). We will assume that the finite root system of dS 
is irreducible and reduced, and the minimal constant function c in the lattice of functions 
generated by S is equal to 1 (see [2, See. 6]). Let • ~ C, Imt > 0, V the complexification 
of the space V(R). For each pair = ~ s, k ~ Z we consider in V the hyperplane ~(=,k)= {z ~ 
Flt~(z) = ~I the group of motions of V generated by the second-order reflections in the hyper- 
planes ~(~,~), =~S,~Z is denoted by W(S, T)~ As is shown in [3], W(S, T) is an irreduci- 
ble tee-group, and every (irreducible) ccc-group is isomorphic to some group W(S, T). 

We define the number p = p(S) as follows: p = 2 for systems of the type B[, C~, f[, 

p = 3 for ~, and p = 1 for the remaining systems (in particular, for all systems of type 
S(R)) (see [2, Sec. 5]). Let to(p) be a group of transformations of the upper halfplane Im 
• > 0 h a v i n g  t h e  f o r m  t ~ (at + b ) / ( c t  + d), w h e r e  a , b , c , d  ~ Z, ad --  bc = ~ and  c ~ pZ. Then  W ( S , ~ )  

~ W ( S , t ' ) ,  i f  t ~ t ' ( m o d P o ~ ) )  , and  W(S(R)V,~)~W(S(RV)V,~ ' ) ,  i f  t ' - - - i ~ t ( m o d r o ( p ) ) ;  t h i s  e x -  
h a u s t s  all the isomorphisms among the groups W(S, ~) (see [3]). 

3. Let W = W(S, ~) be a ccc-group acting in an ~-dimensional space V, and let the num- 
bers no, • .., n~ index the corresponding vertices of the Dynkin diagram of the system 8 v, 
dual to S (see [2, Application i]). 

THEOREM. The analytic space X = V/W is isomorphic to a "weighted" projective space of 
the type no, ., nZ, i.e., to the quotient space of ~÷~\{01 by the action of the group 

~l ~. .  g i v e n  by  t h e  f o r m u l a ( z o , . . . , z ~ ) ~ + ( t ~ z ~ , . . . , t  zO, t ~  

In the following paragraphs we present a scheme of proof of this theorem based on the 
theory of ~-functions and automorphic forms. 

It is possible to obtain the MacDonald identies [2] and certain similar identities by 
analogous methods. At the final stage (see Sec. 9) we limit ourselves for economy of space 
to the case S = S(R). We remark that this case is treated (from another point of view) in 
[4]. However, the proof given there rests on the erroneous assertion that all elliptic 
curves are isomorphic as real algebraic varieties (see [4, p. 29]). 

4. Let C be the Weyl chamber of the system S with vertices Xo, • ., x~ (Xo is a 

special point for ~v),%,..,,~g the corresponding basis of S, and let oi be the reflection 
corresponding to the root ~i (see [2]). It is easy to construct quadratic functions Uo, 

., U~ on V such that 

a l (u,) = u~ + 8 ,~ i  (j = o . . . . .  O, r4 (~o) = o. 
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Let A be the additive semigroup generated by the functions U i, P = U0 q- • • . -? ~ ~ A. For each 

function U ~ A we put 

M(U) = m i n  U ( x ) , x ~  V(R),and N(U) = ~ / ~ 0 ~ Z ,  

where ~ is the quadratic part of the function U. We put 

~ i = N ( U i ) ,  g = N ( P ) =  n 0 + . . . + m .  

L e t  WS b e  t h e  a f f i n e  Weyl  g r o u p  f o r  t h e  s y s t e m  S, T C  W t h e  s u b g r o u p  o f  t r a n s l a t i o n s  
i n  t h e  d i r e c t i o n  x-iV (R). Then  W = W S x T.  

5 .  A 1 - c o c y c l e  ? = {?~} o f  W w i t h  v a l u e s  i n  t h e  g r o u p  @* (v) o f  i n v e r t i b l e  h o l o m o r p h i c  
f u n c t i o n s  on  V i s  s a i d  t o  b e  e v e n  i f  f o r  e v e r y  r e f l e c t i o n  ~ W ? o ( z ) =  ! i f  o ( z )  = z .  L e t  
/ f i (W,  $* (V)) b e  t h e  s u b g r o u p  o f  c l a s s e s  o f  e v e n  c o c y c l e s .  

P r o p o s i t i o n . :  The g r o u p  ~ ( W , $ * ( V ) ) = Z .  A g e n e r a t o r  i s  g i v e n  b y  t h e  c l a s s  o f  t h e  c o -  
c y c l e  ? : 7 ~ = i  f o r  w ~  T , ~ = e x p [ ~ ( U 0 : w ( g 0 ) ) ]  f o r  w ~ W  s ( h e r e  a n d  b e l o w ,  ~ = 2 n i ~ ) .  

F o r  k>~0 we c o n s i d e r  t h e  c o c y c l e s  ?~=(~ )~  and  ~=(de tm)~ ,  ~+~.~ ( h e r e  d e t  w = d e t ( d w )  = 
+ 1 ) .  We d e n o t e  b y  Ak and  Bk t h e  c o r r e s p o n d i n g  s p a c e s  o f  0 - f u n c t i o n s  (A~ = { f ~ @ ( V )  l w ] =  (?~)k 

f o r  a l l  w~W} a n d  s i m i l a r l y  f o r  B k ) .  The t h e o r e m  f o l l o w s  i n  t h e  s t a n d a r d  way f r o m  t h e  n e x t  
l emma.  

LE~4A. T h e r e  e x i s t  f a n c t i o n s  f~ ~ A~,  s u c h  t h a t  t h e  r i n g  A = @ A~ i s  i s o m o r p N i c  t o  
c [/0 . . . . .  /~1. 

6. To each function U~A we associate the 0-function E v ~B~(~), defined by ~he ser- 
ies 

Z g - - e x p [ - v ( N ( U ~ - p )  U 0 ~ - M ( U ~ - P ) ) ] ~ ( d e t  w) exp [vw(U~- P)] 

( t h e  sum i s  o v e r  w ~ Ws). 

~ e  i n t r o d u c e  t h e  S i e g e l  i n n e r  p r o d u c t  i n  t h e  s p a c e  Bk by  p u t t i n g  

il ! I] ~ = ~ l f (z) exp (kvU0 (× (z))) p d~ (z), 

w h e r e  ~: V ~  V(R) i s  t h e  p r o j e c t i o n  a l o n g  ~-~V(R), t h e  i n t e g r a l  i s  o v e r  V/W, and  ~ i s  L e b e s g u e  
m e a s u r e  n o r m a l i z e d  b y  t h e  c o n d i t i o n  ~(V/W) = 1 .  J u s t  a s  i n  t h e  c l a s s i c a l  t h e o r y  ( s e e  [ 5 ,  
Chap .  I I I ] ) ,  i t  i s  p r o v e d  t h a t  t h e  f u n c t i o n s  ~ w i t h  N(U) = k f o r m  an  o r t h o g o n a l  b a s i s  ±n 

B k ,  a n d  II ~. r; l[ ~ = const (Ira ~)z/~. 

We n o t e  t h a t  t h e  map {}~ ~0.0 d e f i n e s  an  i s o m o r p h i s m  b e t w e e n  A k and  Bk; i n  p a r t i c u l a r ,  
Bo = C*Eo. 

7. Consider the derivation D~: A~-~@ (V), where for i = i, . ., ~ D i is the derivative 

along the vedtor ~-I grad ai, and Do(f) = kf for all ! ~ A~. If ~ ~ An~, then we denote the 

determinant of the matrix Dif j by J(fo, ., f~). It is easy to see that Jff0,..., ~)~B~. 
We prove that J(f0~...,f0~0 for some choice of fi; it follows that the functions ~ ~A are 

algebraically independent. Then a simple calculation of the dimensions of Ak (see Sec. 6) 
shows that A =CU0,...,fd. 

8. Consider the space of multilinear forms Bn0 × B~, × ... × Bn~-~C with inner product 
induced by the Siegel inner product on the spaces B k. We define the form L by the formula 
L(b0,..., bz)= J(b0/E0,...,bz/Eo)/Eo and put f(~)= IIL[P. We need to prove that f(¢)~0 for all ~, 
i.e., L~0. 

9. Let S be a system of type S(R). Consider the function H (~)=F (x)(Imp) ~7= X[~(¢)-~[~, 
where ~ is the Dedekind function (see [2]). Using the invariance of the Siegel inner prod- 
uct under the isomorphisms W (S, ~)~ W (S, x') and properties of the functions 7. U (see Para. 
6), it can be shown that the function H(r) is invariant under the group Fo (i), is a sum of 
squares of the moduli of analytic functions, and admits the estimate H(~)lexp(~/3)]~-~0 as 
Ira • ~ - ~  ¢o. These properties imply that H(~) does not vanish anywhere, for H (~) ~ 0. 

We remark that the estimate for H(~) is derived separately for each root system. This 
is a very crude estimate; for example, for the systems A~ and C~, H(~) = const. 
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PRODUCT FORMULAS FOR THE NILSEN NUMBERS OF BUNDLE MAPS 

E. C. Giessmann UDC 513.836 

Two fixed points x,, x2 of a continuous map g: X ÷ X are said to be Nilsen equivalent 
if there exists a path r between them which is homotopic rel x,, x2 to the image g(y). The 
Nilsen number N(g) of a continuous map g of a compact connected CW complex is the number of 
those classes of Nilsen-equivalent fixed points whose mapping index is nonzero. Thus the 
Nilsen number is a lower bound, and in many cases turns out to be a precise lower bound, 
for the number of geometrically distinct fixed points of mappings homotopic to g. 

Like the Lefschetz number L(g), the number N(g) has a whole series of useful properties. 
As is known from [i, 2, 8], the Lefschetz numbers of bundle maps have the multiplicative 
property. However, this is not in general true for the Nilsen numbers. Nevertheless, in 
certain special cases (see [1-4]), the Nilsen numbers also have the multiplicative property; 
in proving the corresponding formulas, one assumes homological conditions of orientability 
of the bundle or the Yang conditions, which are purely homotopic in character. We hold to 
the point of view that the conditions under which the product formula holds for the homo- 
topically defined number N(g) must also be homotopic. 

Theorem 1 gives a counterexample which shows that the second part of the Brown--Fadell 
theorem [3], and in addition some propositions of Fadell [6], are incorrect without the ad- 
ditional assumption that the bundle is orientable. Theorem 2 states conditions under which 
there is a general product formula for the Nilsen numbers. 

Let ~ = (F, E,B,p) be a locally trivial bundle of compact CW spaces, g: E ÷ E and g': 
B ÷ B continuous maps such that g,o p = p o g. Each path T from the point bl to a point b2 
in the base space B induces a homotopy equivalence 

~: Fb, ~ Fb, 

of the fibers Fb, = p-*(b~ and Fb, = p-*(bz). If a path Y is given from the point g'(b) to the 
point b in the base space of the bundle then it is possible to define a map gb of the fiber 
F b into itself by the formula gb~og~F~:F~F~. 

LEMMA i. The Nilsen number N(gb) is relatively independent of the choice of the point 
b, i.e., the set of numbers N(gb) for all classes of homotopic paths between the points 
g'(b) and b coincides with the set of numbers N(gb') , where 5' ~B. 

If the product formula is valid for the Nilsen numbers, i.e., if N(g) = N(g') N(gb), 
and if N (g')=~0, then the Nilsen number N(gb) is also independent of the choice of the homo- 
topy class of the path T. The same thing holds if the generalized product formula 

p(~r ,  g ) ~  (g~)N (g') = q ( ~ ,  & N (~ 

i s  v a l i d ,  w h e r e  t h e  n o n z e r o  n u m b e r s  P and  Q d e p e n d  o n l y  on  t h e  h o m o t o p y  t y p e  o f  t h e  b u n d l e  
~r a n d  map g .  

THEOREM 1 .  L e t  F and  h :  F ÷ F b e  a CW c o m p l e x  and  a h o m o t o p y  e q u i v a l e n c e  s u c h  t h a t  

i) the map hn(n > 0) is homotopic to the identity map id F; 

2)  N (h) =~ N (id g). 
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