MODULES CVER A RING OF DIFFERENTIAL
OPERATORS. STUDY OCF THE FUNDAMENTAL
SOLUTIONS OF EQUATIONS WITH CONSTANT
COEFFICIENTS

I. N. Bernshtein

In this paper we study modules over the ring D of differential operators with polynomial coefficients
on the space RN,

An example of such a module is the space S' of generalized functions on RN,

To eachD-module M with a finite number of generators there corresponds .its carrier A(M) which is
an algebraic submanifold in CN x CN*. In particular, to each generalized function € ¢S’ there corres-
ponds the manifold A(D(¢)), where D(#) is the submodule of S' generated by the function & .

The first chapter is devoted to the study of the space S; < S', which consists of generalized funcﬁons
¢ , for which dim (A(D(&))) < N.

The main result of this chapter is the proof of the following theorem.

THEOREM A, Let £6S,. We set A’ = A(D(&)\C" x 0 and denote by A and AR the projections of the
sets A'and A' N RN x RN* onto CN, Then

a) dimgaA < dimgAR < N.

b) € is a real analytic function of the set AR.

c) The function & has a continuation as a multivalued analytic function to the region CN\Z.
d) The distinct branches of the function & generate a finite~dimensional linear space.

The proof of Theorem A is based on the construction over the set CN\ A of a certain algebraic bundle
with an integrable connection, while the function & is a coordinate of its flat section.

In the first chapter it is also shown that the space S, is a D-module and is invariant under Fourier
transform.

In the second chapter the following theorem is proved.

" THEOREM B. Let fbea generalized function on the line lying in the space S',and let P be a poly~
nomial on RN with real coefficients., Then the generalized function f(P) €S, on RN,

In §7 of Chapter 2 we use Theorem B to study the fundamental solutions of equations with constant
coefficients. In particular, we prove the following theorem.

THEOREM C. Any linear differential operator L with constant coefficients has a fundamental solu-
tion &, lying in S;.

COROLLARY. Assertions a), b), ¢), and d) of Theorem A hold for the function &, .
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CHAPTER 1
Modules Over the Ring of Differential Operators and the Spaces Si'

1. The Carrier of a Module Over a Noncommutative Ring. The ring of differential operators with
polynomial coefficients is naturally considered as an example of a noncommutative filtered algebra. We
begin by studying a certain class of such algebras.

Let D be an algebra with identity over the field C and let 0 = D”ic p’e ,, & pnc ., .. be its fil-
tration by subspaces with the following conditions satisfied:

A0. | D" =D,

n=9g
Al. DM .phc pm+n,
A2. [D™M, pnjc pmHt
A3. 1 €D,

For De¢D we set degED min{n|De Dy , deg 0 = —o, We introduce the notation 2(n) = pn/p-1 apd
P DD B = @ IO,

n=0"

In Z a graded ring structure is introduced in a natural way (see {10]); Z is then a commutative ring
with identity.

We will assume that the following conditions are satisfied:
A4. Z is a ring without zero divisors.
A5. Z is a finitely generated algebra over C.

Definition 1.1. 1. If 2¢D thenby o(®) we denote the element in 2(0) (where n = deg @), which is
the image of 9 under the mapping Dt — 2(n); @(0) =

2. If L is a linear subspace of D, then by ¢ (1) we denote the linear subspace of Z, generated by the
elements o(Z) , where PelL.

Elements of the ring D we call operators; if Z¢D, then the element o(D)e¢ = we will call the sym-
bol of the operator 2.

It is easy to verify the following lemma.
LEMMA 1.1. 1.If 9, 9,6D, then
6 (D, Dy) = ¢(D,) - 0(Dy)and deg (T, D,) = deg D, + deg D,
2. If L is a left ideal in D, then 0 (L) is an ideal in Z.
3. If L is a finite-dimensional subspace of D, then dim L = dim o(L).

Definition 1.2. We denote by W the affine variety correspondmg to the ring 2 (see [6]). As a set,
W coincides with the set of maximal ideals of the ring Z.

Example. Let V be a linear space over C, Dy the ring of differential operators with polynomial co-
efficients on V, D{} the space of operators of degree not greater than n. It is easy to verify that the ring
Dy satisfies conditions A0-A5, while 2 is canonically isomorphic to the ring of polynomial-functions on
W =V X V*, and 0 is the usual symbol of the operator.
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Definition 1.3. 1. If M is a D-module,* ey, . . ., €s € M, then by D(ey, . . ., €g) we denote the D-sub~
module of M generated by ey, . . ., eg, and by Di(ey, . . ., €g) the linear subspace of M (over C), generated by
the elements 7¢; , where Z¢D".

2. The D-filtration {MD}in the D-module M we call that filtration of M by subspaces 0 = M~ 1< M'c

...@MRC ..., for which DI « MDC MM+Nand || M" = M.
=0
3. Two D-filtrations {Mn} ahdiﬁn} of the D-module M will be called equivalent if there exists a
number k, such that MR < MB*K and M2 < MK for all n.t

LEMMA 1.2, Ifeq, ..., eq and fy, . . .,f s are two systems of generators of the D-module M, then
the D-filtrations {Mn} = {Dn(e,, . . ., eq)} and {Mn} = {Dn(fy, . . ..fs)} are equivalent.

. Proof. We choose k such that ey, . . ., eq € Mk and fy, . . ., fs € MK. It is clear that MD< Mn+k and
Mt MoK for all n.

Definition 1.4. If ey, . . ., eg is any system of generators of the D-module M, then the D-filtration
{Mmn} = {Dn(e,, . . ., eg)} will be called standard. It follows from Lemma 1.2 that all standard filtrations
are equivalent.

PROPOSITION 1.3. Let M be a finitely generated D-module, and let L be a D-submodule of M. Then

1) L is a finitely generated D-module.

2) If {MD} is the standard filtration of M, then the D-filtration {L.0} = {L N M1} is equivalent to the
standard filtration {L0},

COROLLARY. D is a Noetherian ring (see [10]).

Proof of the Proposition. We first consider the case in which M is a free module with basis ey, . . ., eg.

We put MB = D0 (ey, . . ,, €g) and consider the Z-module My - & MY, where M(z“) =M/M™ !, We define

=0
the mapping 0: M — My in analogy with Definition 1.1, The space 0(L) is a Z-module. Since the ring
is Noetherian, it follows that (L) contains a finite mumber of generators vi, which can be assumed to be
homogeneous elements. Let vi =0d(uj), uj € L.

We will show that any element e ¢ M2 N L belongs to D™(uj). Suppose that this has been proved for
alle € M*™ 1N L. We write 6(e) in the form o(¢) = D, , where the ci are homogeneous elements of Z of
degrees n—deg vi = n. Let Z;€D be such that a(Z;) =c. . Then D;6¢D", e—2Du, e M (L , and by
hypothesis e— 3, Zuw; ¢ D" (w); hence ¢€D"(«;) . The assertion of the lemma has now been proved for a
free module M, since DR (u;) © MO+K N L, where k is the maximal degree of the elements u;.

We now consider an arbitrary D-module M and a system of generators ey, . . ., eg. We denote by
M the free D-module with generators f 4o « » «»Jg and by T the mapping 7: M - M, given by the formula
T(fi) =ej. Let L. =771 (L) © M, let uj be the generators of T, chosen in the manner indicated above, and
let uj = T(uj). Thenuj are the generators of L, and L N MR = 7(f N M) € 7(LM) = LB, Since uj € MX for
some k, it follows that Lnc 1, N Mn*K, This completes the proof of the proposition.

Definition 1.5. Given a set of elements ey, . . ., eg in the D~module M, we denote by Ann(ey, . . ., eg)
the left ideal in D consisting of those operators 7, such that Pe;=0 for alli.

PROPOSITION 1.4. Let the D-module M be generated by the elements e, . . ., eg, and let ¢ be a
homogeneous element in Z. Then the following conditions are equivalent.

1. ¢ €rado(Ann(ey, . . ., e5)). 1

2. If D€D is an operator such that o(Z)=c and {MD} is the standard filtration of the module M,
then for all n Z*M" ¢ M****2~9®  where q(k) grows unboundedly together with k.

*By a D-module we mean a left unitary D-module. ‘
TThis concept is an equivalence relation in the set of D-filtrations of the module M.
1I1f J is an ideal in Z, then rad J = {c € Z[for some n cn € J}.
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Proof. Since condition 2 does not depend on the choice of standard filtration, we will assume that
mn =-‘Dn(e1, .o ey es).

Condition 2 is equivalent to the statement that for some k Z*M* —M"**¥#¢Z-1 for all n. Therefore,
condition 2 depends only on ¢(%).

1= 2. Letc €rado{Annley, ..., eg)).
It is sufficient to verify condition 2 for the element ¢P for some p. We choose p such that cP £ o{Ann
{eg, + - oy €g)), 1., cP = o(D), where DeAmn(e, ... -8
Let e — 2T, where T,6¢D". Then
De = SPDie; = S1D, Dije; ¢ MPHEED1,

Thus, DM*C M'T®EDY o, b satisfies condition 2.

2 =1, Let c satisfy condition 2. We will show that for each element f € M it is possible to construct
an operator 2;¢D, such thata) &y -f =03 b) o(Z;) is the degree of the element c.

Indeed, let £¢D be an element such that o(Z)=c , and let Lf = D(f). Since the filtration {L}}
{Lr N MP} is equivalent to the standard one, it follows that 2% ¢D**¥2~Yp) for some k; i.e., T = T},
where deg D' < k-degD. It is clear that the operator 7% — 9 satisfies conditions a) and b).

We now consider the operators
@1 = @gu @2 = @g[‘lez N @h R gDs == %(zs—xgs) N st—l-

Then Z,¢Ann(e, ... ,e), and o(Ts) is the degree of the element ¢. Therefore,c €rad 0(Ann (ey, .. .,
egl}.

Definition 1.6, 1. For any ideal J in the ring Z we denote by Z(J) © W the set of zeros of the ideal J
(i.e., the set of all maximal ideals in Z, which contain J).

2. Let M be a finitely generated D-module. We put J(M) = rad 0(Amn (eq, . . ., €g)) and A(M) =
(o{Annley, . . ., eg))) = Z(J), where ey, . . ., €5 is any system of generators of the module M.

It follows from Proposition 1.4 that J(M) and hence A(M) are independent of the choice of system of
generators. Indeed, J(M) can be defined as the ideal in & generated by homogeneous elements satisfying
condition 2 of Proposition 1.4.

LEMMA 15, 1f0 -M; —M — M, — 0 is an exact sequence of finitely generated D-modules, then
A(M) = AMy U A(My) and J(M) = J(My N J(M,).

Proof. 1t is sufficient to show that J(M) = (M) N J(My. Let ¢ be a homogeneous element of . We
choose a system of generators ey, . . ., g in M and let fy, . . .,fg be their images in M,. We introduce
the standard filtrations {M}, {M}}, and {MJ}. It follows immediately from Propositions 1.3 and 1.4 that
JM) € J(My) O I(M,).

We now prove the reverse inclusion. Let ¢ € J(My N J(My. There exist a number p and an operator
~DeAnn(f,, ... ,f), such that o(D)=c? . Then D(e)e M, , and since o(P)eJ(M,) , it follows that T ()

 MpdeeZ—ah) — M”de”’f ~¢'® where q'(k) grows unboundedly, together with k. Therefore, o(Z) = c7eJ (M)
This means that ¢ €J (M)

§2. Beginning in this section, the ring D will be a ring of differential operators with polynomial co-
efficients on an N-dimensional complex linear space V (see the example of §1).

We fix a system of coordinates x4, . . ., XN in V and a dual system of coordinates yy, . . ., YN in V*.

We denote by R the ring of polynomial functions on V and by Z the ring of polynomial functions on
VXV¥R=CIXgyy o0 0 XNLZ= C IRy 0 2 s XN» ¥ys = » s YND-

Each operator €D canbe written in 2 unique way in the form P = ang (D) x= ( 53_);; where
X
@ = (igy e 0 0 iN), B = (Jgs o + s IN), Cg €C, XX = xli e XN , (3/8x)F = 8/8x1)h s (8/0xN)IN,
and each element ¢ € Z can be written uniquely in the form ¢ = > cas(c) x°yP, where yB = y{‘ . I\?I .

a8
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In the ring D we introduce the filtration {DB}, by putting D" = {2 € D|cys (D) =0 for |B|> n}.* The ac-
companying graded ring relative to this filtration is isomorphic to Z. The mapping 0: D — Z is given by

the formula ces(0(2)) = cos (D) - 6{?;5‘@, where 6 is the Kronecker delta.

The affine manifold W, corresponding to the ring Z,is isomorphic to V x V*, We denote by 7 the natu-
ral projection m: W —V. '

We will consider V as the complexification of the real linear space Vg. The coordinates xj will be
assumed to be real.

We denote by S the space of rapidly decreasing, infinitely differentiable differential forms of degree
N on VR and by S' the dual space of slowly increasing generalized functions (see [1]). We consider S' as a
D-module (see [1]).

Definition 2.1. S; = {(£¢S'|dimA(D (&)< N +i}.
PROPOSITION 2.1. S is a D-submodule of S'.
Proof. Let &, &,¢€S;, D, D,6Dand § = 7,8, -D,&,.

It follows from Lemma 1.5 that

AD@E)CTADELENTADE)DD(E)) =AD& U ADE)).
Therefore, dimA(D(£)< N -~i, i.e., €€S,.

We proceed to the study of functions ¢ ¢Sy’ . Each such function & satisfies a system of equations
I(&)==0, where I is some ideal in D such that dim Z(o ()) = N. We fix such an ideal I and introduce the
notation

A=Z©@N)=AD/), de=ANVaxVr), A=x(A\(V x0), Ag=a(Ax\(V x0)).

We note that dim A = N—1, since the manifold A is given in W by equations homogeneous in {yi}.

THEOREM 2.2. Any solution & ¢S’ of the system of equations /(&) =0 is analyfcic in the region
VR\AR.

Proof. Let ¢y, ...,k €0(I) be a choice of homogeneous elements which are simultaneously zero
nowhere except on A. By raising them to the appropriate power it can be assumed that ¢y, . . ., ¢ have
the same degree of homogeneity n. Let %, ... , $.¢/ be elements such that ¢(Z;) = c;.

We consider the operator % =%%,%; (here %; is obtained from %; by replacing all the coeffi-
cients by their complex conjugates). £ has order 2n, and ¢(2) =0 (F)) (D)= ccr On the set VR X

* ~

VR\AR this symbol is nonzero. Therefore, the operator & is elliptic off the set AR (see [7]). Since
D) =0, it follows from Theorem 7.5.1 of [7] that & is an analytic function off AR. This completes the
proof of the theorem.

We now study the analytic continuation of the function ¢ . We denote by @ a connected component of
the set VR\AR.

THEOREM 2.3. 1. Any solution & of the system /(&)=0 can be continued analytically from the
set Q to the set V\A as a multivalued analytic function.

2. In a neighborhood of any point x € V\.Z all the analytic solutions of the system /(&)=0 from a
finite-dimensional space.

COROLLARY. The multivalued function obtained as the analytic continuation of ¢ is finitely de-
pendent, i.e., all its branches are linear combinations of a finite number of branches.

Proof of the Theorem., We consider the module M = D/T as an R-module. Let U be an arbitrary
open affine subset of V\A, (see [6]), and let Ry be the ring of regular functions on U. We study the be-
havior of the function & in the region U.

*[Bl =4y +. .. +iN-
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LEMMA 2.4. For each such set U the module M, =Ry C>§;M has a finite number of generators as an
Ry-module.

Proof. We consider elements ey, €5, . . ., € M, which are images of operators (a/ax)ﬁ under the map-
ping D — M. They generate M as an R-module. We consider the set ¥"{U) & V X V* and the ideal oy(D)
in the ring of regular functions on it generated by ¢(I). Since Z(oy(I) < U X 0, it follows from Hilbert's
Nullstellensatz * that there exists a number m such that yB coyy(l) for IB[ > m. This implies that the Ry~
module My is generated by the images of the operators (8/0x)P with |B| =m.

We choose a system of generators ey = 1, ey, . . ., €k of the Ry-module My. Then for any i and j

k
4]
5‘,__(31') = 2 Az”jel, where Alng Ry.

ot =1

Now let & be an analytic solution of the system I((e) = 0 in (an analytic) neighborhood of the point
x €U. We consider the vector-valued function {&;} = (¢ (&)}, j=1,2, ... , k. Tt satisfies the system of
equations

k
(&) = D Al (1<), 1<k, 1<), (*)

=1

The next lemma is proved by standard methods from the theory of ordinary differential equations.
LEMMA 2.5. Ina simply connected region V, of the complex linear space V with coordinates x,,

+ « «» XN let there be given the system of equations (*), where the A%j are analytic functions in V. Then:

1. If the system (*) haé an analytic solution & = (&, ... , &) in a neighborhood of the point x € Vo
then this solution can be continued analytically to the entire region V.

2. Each analytic solution & of the system (*) in the region V, is defined by its value at the point x
(in particular, the dimension of the space of such solutions does not exceed k).

Each point x € V\z is contained in an affine neighborhood Ux & V\A. Therefore, Theorem 2.3 is
easily deduced from Lemmas 2.4 and 2.5.

$3. In this section we shall give a certain method of computing dim A(M) for the D-module M.
In the ring D we introduce the filtration {D]}, by putting
D ={D€D|caa(D) =0 for |a|+|B|>n)
If PeD,then ¢,(D)€X2, and
| Cap (01 (D)) = a5 (D) - B

Similarly, we define in 2 the filtration Z} and the symbol by putting ¢,: 3 —2: »

T = {c€3|cap(@) =0 for o]+ |B|>n)  cas (@ () = cas (€) - Sii¥iei -
The filtrations {D}} and {Z]} are convenient, since all the spaces D} and 2} are finite dimensional.

Definition 3.1, 1. Let M be a D-module (or a Z-module), and let ey, . . ., eg be its system of gener-
ators. We put df (M) = dim Di¥ey, . . ., eg) (respectively dim Z](e,, . . ., eg)).

2. If L is a subspace of D (or of 2}, then we set L] = L N D} (respectively L N .
It is easy to verify that if I is an ideal in D and M = D/I, then d{{M) =dim D}'—dim 1.t
THEOREM 3.1. Let M be a finitely generated D-module. Then the following conditions are equiv-

alent:

*We present the formulation of Hilbert's theorem. Let A be a finitely generated algebra over C, and let it
be the corresponding affine variety. Let Jy, J, be ideals in A with Z(J; & Z(J,). Then for some n Ji < J,.
tWe assume that in the module M = D/I a generator is fixed which is the-image of the identity under the
mapping D — M.
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1. dim A(M) = m (A(M) is constructed with the filtration DI},

2. dj(M) = O(m™).*

1t follows from Lemma 1.5 that it is sufficient to consider the case M = D/I.
For the proof of Theorem 3.1 we need an analogous result for the ring 2.

PROPOSITION 3.2 (see Theorems 41 and 42 of [2]). If J is an ideal in 2, then d?(ZI/J? is a polynom-
ial in n for large n. The degree of this polynomial is equal to dim Z(J).

We proceed to the proof of Theorem 3.1.

2 = 1. It is easy to verify that o(I) < o(D]. Therefore, dim ¢(D} = dim ¢ (IP) = dim 1}, whence
dNZ/e () =d}MD/D = Om). It follows from Proposition 3.2 that dim A(M) = m.

1=2. In order to prove this implication, we introduce in the ring D a countable number of filtra-

tions {DE} such that dim Df < « and for large k the filtrations {Dﬁ} approximate the filtration {Dn}.
Namely, we set

Df = {(DeDjcus(T) =0 for |a| = k|3[>n}

and define the mapping 0k: D — Z by the formula ¢y (6:(7)) = cas (T) - 6{1(2%1;,2 . Similarly, we define filtra-

tions L§ of the ring 2. If I(J) are ideals in D (in Z) then we define di(D/D [respectively dﬁ(Z/J)] in analogy
with Definition 3.1.

We note that the assertions {d(D/D) = c(n™} and {d}D/D =0(m™M} are equivalent for any k. In-
deed, Df = D}'c DY, whence dfi(D/1) =d}D/D = dkn(D/D.

A similar argument shows that d(Z/0k(D)) = d{(Z/0x(D). Since dfE /o (M) = dR(D/D), for the proof
of the implication 1 = 2 it is sufficient to verify that d}Z/0x(D) = C(n™)} for some k.

1t follows from Proposition 3.2 that d}2/0(D) = O(m™). This means that d?(z/g;tf m =dMZ/om) =
o(n™),

Thus, for the proof of the implication 1 = 2 it is sufficient to show that o(D) = '510'(1) for some k.

Let 7¢I be operators such that the elements o,0(%;) generate the ideal '510’ (I). We take k = max
deg; (Z:) . It is then easy to verify that 6,0(D) =0x(Z) , i.e., Ok(D) D 60 (). Therefore, d}(Z/oxD =d}
(£/6\@(D) = O(n™), This completes the proof of Theorem 3.1.

COROLLARY 3.3. Let there be given an automorphism @ of the algebra D, D-modules My and M,,
and a linear (over C) isomorphism F: My — M, such that F@=u(7)F for any operator Z€D. Then for
any element e € M dim A(D(e)) =dim A (D(Fe)).

Proof. There exists a k such th?t Djc w(n?} and w(D}) © Dif. Then D} € m(DI,m) andw(DP S Di,m foralin.
Therefore, F(D{(e)) < len(Fe) c F(le " (e)), i.e., di(D(e) = dlim (D(Fe)) = dlf N (D(e)). 1t follows from
Theorem 3.1 that dim A{D(e}) = dim A(D(Fe)).

Example 1. Let @ be an invertible polynomial mapping V ~V, with w(Vg) =VR. We put My =M, =§'
and denote by w and F the automorphisms of D and §' induced by the mapping @. Covrollary 3.3 shows that
F(8{) =8;.

Example 2. We put My =M, = §'. Let F be Fourier transformation with respect to the variables
Xgs + » «» Xk (kK = N) and let @ be given by the formulas

o(x)=—I ..a_, ® (Jz_) = —ixjfor j<k; ox)=xj, m(_‘l_) = a_a— for j>k‘ .
i ] i

9x; dx; ax; / X

It is easy to verify (see [1]) that the conditions of Corollary 3.3 are satisfied. Thus, we obtain

COROLLARY 3.4, If F: 8' - §' is Fourier transformation with respect to part of the variables,
then F(S;) = §{ for all i.

*It can be shown that d}(M) is a polynomial in n for large n.
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CHAPTER 2
The Functions f(P)

§4. We fix a polynomial P with real coefficients on VR. Let f be a generalized function on the line.
We wish to study a system of equations which the function f(P) satisfies on VR‘

We first define what we mean by the functionf(P). We introduce the notation: T is-the line, tis the
coordinate on T; RT =C [t]; Dy is the ring of differential operators with polynomial coefficients on T
with the filtration {D } with respect to the degree of the operators. The derivatives (3P/8xi) we denote by
Pi.

We set sing P = {x € V| Pj(x) = 0 for all i}. As is known, P(sing P) = T is a finite set.

We fix an open region ® © VR such that P(d®) is a finite set (9@ is the boundary of the region 0},
We set 2 = P(®)\P(88)\P(sing PN ©). Q is the closure of ©, 30 = Q\&.

Definition 4.1. We denote by C the space of continuous functions on £ and consider the mapping 7:
S — C defined as follows: if ¢ €8S, t; € Q, then we set

@)= Y o

P-ULINO

where w is the differential form of degree N—1 on the manifold P!t N @, such that w A dP = ¢ (see [1],
Ch. 3, §4).

PROPOSITION 4.1. If ¢ ¢8, then (@) is an infinitely differentiable function on @, which is rapidly
decreasing at infinity. In a neighborhood of each point h € 92 9(¢} admits a representation of the form
1(9) =29:(2) - f:(z), Where ®i €C® (T), and {fi} is a fixed (independent of @) finite set of functions of the

form fi = (In |z )Ki}jz|Ti, 0 =kj = N—1, ri €Q. (Such an expansion is possible separately in a right and
left neighborhood of the point h; z is a local parameter in this neighborhood.)

The proof does not differ essentially from arguments given in [3] and {4]; we therefore only sketch
the proof.

The definition of 5{®) is first generalized to the case in which X is a nonsingular algebraic manifold,
P is a rational function on X, and ¢ is an infinitely smooth complex-valued measure on X. Since V is im~
bedded in a projective space X of dimension N, the original problem reduces to the analogous problem for
a compact manifold X, Using the theorem of Hironaka on the resolution of singularities (as is done in {3}
and {4]) and then localizing the problem by means of a partition of unity, the problem can be reduced to the
following case: X = RN, p=uxij. ...x", ® = {x ¢ RN|x; > 0 for all i}, ¢ is an infinitely differentiable form
with compact support (the numbers ik € Z are not necessarily positive). In this case (¥} can be described
directly (see [1], Ch. 3, §4).

Definition 4.2. 1. We denote by CK the space of k times continuously differentiable functions f on

Q such that fD(h) =0 forh €99,i=0,1,...,k and vk(})msup((l 1th - (E 119 l))‘(oo (here f(i) =
(a/3vif). -

The norm ¥ defines a Banach space structure in CK,
2. Weset £=u(S) and £ =¢n C'(k=0,1,...).
Corollary of Proposition 4.1. dim (£/%%)< .

Definition 4.3. 1. We put Cj = (CK)* and Ze=(2+CY k =0,1,.... (Z-+C* we provide with the
norm induced by the norm ¥k on CK, Since (£ -+ C%/C* = /2 is finite dimensional this can be done uniquely
up to equivalence.)

2. Weput C,, =U Cpand & = |J &,k =0,1,.... The spaces C, and ¥ we provide with the in--
ductive limit topologies.

3. We denote by « the natural projection x: %;—C, and put % — Kerx (= (£/2%") and 7 — U %
k=0,1,....
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Remark 1. The spaces %, are finite dimensional.

Remark 2. The space Co is a space of generalized functions on € which do not grow rapidly near
the boundary.

LEMMA 4.2. 1. The sequence 0—>2->Z%->C.—0 is exact.
2. Eachelement u¢ £ is defined by its values on £..

Proof. Assertion 1 follows from the definitions. We prove assertion 2. From the definition of 7 it
follows easily that £ DCZ(Q); therefore, £ is dense in any of the spaces £ --C*. Therefore, any ele-
ment u¢ £, is defined by its values on £ .

Definition 4.4. 1. We denote by 7n": £’— S’ the mapping which is the transpose of the mapping
n: S— £ . (It is easy to verify that it is defined and continuous.)

2. If f € Cq, then we put f(P) = 4*(»~Xf)) €S', where »~1(f) is any pre-image of f.

We note that the function f(P) €8S’ is not defined uniquely, but rather only up to elements of #* .
If f € CL, then this nonuniqueness can be reduced by choosing »—'(f)¢ £. Thus, f(P) is defined up to ele-
ments of the finite dimensional space n* (%,).

If the function f is continuous on {, then it is possible to choose for f(P) €S' the following regular
function on VR: f[P] = (0 for x ¢ ®, f(P(x) for x € ®).

We now proceed to study the differential equations which the functions f(P) satisfy.

THEOREM 4.3. If f €C_, and satisfies a nontrivial equation # (f) — 0, where 7 ¢ Dr, then the func-
tion f(F) lies in S,.

Example. The function eiP ¢ S(;. In particular, its Fourier transform is analytic everywhere except
for a certain semialgebraic set.

Theorem 4.3 follows easily from the following two theorems, the proofs of which form the content of
§85, 6.

THEOREM 4.3'. Letf€Cep and 9f =0 , where Z€Dr, 90 . We denote by f(P) the image of the
function f(P) in the D-module S$'/D(n*(£€)) . Then dim A(D{f(P))) = N.

THEOREM 43". If u¢Z , then n*(u) €8p).
§ 5. Proof of Theorem 4.3°'.
PROPOSITION 5.1. Let f € Coo. Then

[;\T (FPy—P; (g_t[ (P))]ED(n' (@)). *)

Proof. We note that the assertion (*) does not depend on the choice of the functions f(P) and @f/8t)
(P). Let f€Cg. Itis clear that the assertion is local in t, and it may therefore be assumed that f is con-
centrated in a neighborhood of the point t, = 0.

Let A €C and ReA =0, We set f =f - [tI* ¢ CL. This is an analytic function of \. When Re 1 is
large, we define analytic functions of A, uf, and vf with values in %, by the formulas uf¥) =f (tI* ¢) and
vi¥) = =f(It|* (8/8t) ¥), where ¢ £ . 1t is clear that w(uf(€)}= f) and w(vf(N) =(8/8t) f2. We will prove
that (3/3xi) n* (ur) = Pj * n*(vf).

Indeed, let fp, be a sequence of functions in C! which converges to f in Cp. Then for each A uf, —uf
and vf, — vf in the space %e+1 . It is therefore sufficient to show that (8/3xp)n* (uf,) = Pi * 1 *vfy). Butin
this case

a
W) 0 = FalPl ) () = (5 ) P

where fya = fn * [tlA € Cl. Therefore, the equation (8/8xi)n* (uf) = Pin*(vfy) is simply the formula for
the derivative of a composite function.

We have thus shown that (8/3xi) % (uf) = Pin s (V).
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Since the kernel Zru, of the mapping x: $;+1 —Cg:, is finite-dimensional, it is possible to find
functions u(A and v(2) with values in %,,,, defined for Re lz 0, such that w((X) = fa and »(v)() =
(df »/3t). When Re 1A is large, it follows that u(A)— u; (M) ¢ Zxys and v(h)—v; (M) € Zriy ; therefore,

[i n" (@ (A) — Pm" (v (A))] €2 (0" (Frsa) - P (@)
axi aXi
Since the space on the right is finite-dimensional, and the left side depends analytically on A, this inclusion
is true also for A = 0, which completes the proof of Proposition 5.1.
Proposition 5.1 enables us to formulate Theorem 4.3' in purely algebraic terms.

Definition 5.1, 1. Let M be a Dp-module. We construct a D-module Mp as follows. As an R~
module, Mp is equal to R @M (R is considered as an Ry algebra relative to the imbedding #: RT — R,
Rr

p(t) = P). The action of the operators (3/8xi) is given by the formulas ~i(r ®e)= —aai e -+-Pir ®50?e, where
0.\‘i .\‘i
TER, e ¢ M.
2. Iff €M, then we put fp = 19 f ¢ MP, Mp(f) =D(P), Ip(f) =Anmn (fp) < D.

It is easy to verify that Definition 5.1 is good. The mapping M — Mp gives a functor from the cate-
gory of Dr-modules to the category of D-modules.

We note that even if M is finitely generated, the module Mp may not be finitely generated.

It follows from Proposition 5.1 that it is possible to construct a mapping of D-modules 7" (Colp —
S'/D (n" (%)) such that %1 ® f) =f(P)mod D(y(¥)) for any f € Cl,. Therefore, Theorem 4.3' follows from
the following purely algebraic theorem.

THEOREM 5.2. Let M be a Dp-module, f € M. If dim A(M) = 1, then dim A{(Mp(f)) = N.

roof, 1.We first consider the case in which the principal part of the polynomial P, which we de-
note by P, is nondegenerate, i.e., sing P = {0}. In this case the set sing P is compact and hence finite.

Our aim is to construct sufficiently many elements in the ideal Ip(f). We note first of all that for
any i and j the operators ¥ ;; = P‘E‘L—P, aiED belong to IP(f).
,\'j Xi
. P k
Let Z,(f)-=0, where %,¢Dr. We write 7, in the form ¥, = Q(t) (—6—) -4, where I'eDy.
LEMMA 53. Let s =k(k—1)/2. Then for any indices i, j(1 =i,j = N) there exists an operator

uf/utlp(f) such that o{ZDij) = Q(P)P\l,/f
Proof. Ife €M, r €R,B = (g « «  iN)» then

F 5\ B AN .
(0%) r®e) =r -P°® (;) el-e',where PP = Pj*. ... f\;\ ue'¢RODY (o).
From this it follows easily that P{ Dl,;"i(f) cpfl (1@ ).

. _ AN AT . a Dit k
Since D,(f) = (Q ) (5) 1D )f —0, it follows that Q(z) (52) () - Therefore, Q(P) (3/3x;)
(1®f) €R® Dl.i,'l(f), and hence Q(P) * PiS (a/axj)ku @) =D(1®f), where deg D < k— 1.1t is thus possible
B
toset Dy=Q(P) xPi(;L) - .
\ox,
Thus, in ¢ (IP(f)) there are elements o(#;) = Piyj— Pjyi and 6(Dj;) = Pis « Q(P) * yk
Therefore, A (Mp(f)) is contained in the union of the following sets: sing P X V* and
. A ={{(x,y) €V X V" Pi(x)==0, Q(P) (x) =0, y; = y; - Pi(x)/P:(x)}.
All these sets have dimension no greater than N; therefore dim A(MP(f)) = N.

2. We will now prove Theorem 5.2 for an arbitrary polynomial P ¢ R. We wish to show that

d1(DNp(f)) =0(n¥) (see Theorem 3.1). For the case in which D is nondegenerate, we have already proved
this.
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We denote the degree of the polynomial by g(g >0) and consider a family of polynomials of degree q
depending on the parameter T €,

Po—=P . (I—1)- (- 2T
Since the set of polynomials of degree g with nondegenerate principal part is open in the Zariski

topolog‘yNand P, is contained in this set, it follows for all T € C, except for a finite number, that the poly-
nomial Py is nondegenerate.

: LEMMA 5.4. For any natural number n the inequality dim Ip-(F)} =dim Ip(f)] is satisfied for all
T € C, except a countable number.

Proof. This follows from the fact that the space Ip;(f )1 is singled out in D1 by linear equations
whose coefficients are rational functions of 7. We described this in more detail. We set B Rf\ M and

define mappings ﬂr' D1 —~Band ¥7: B~ B:
a 3

M':(X 56—5“)‘“«5}"((59,““@”))

iy ip

where (3/8xj) (r ® e) =(3r/0x;) ® e +r(P;); ® (8/3t) e (we assume that each element 7 ¢p is written
in the form 2 Y ¢, (Z)xs (a%f);
virSe) =Pr@e—rie
It is easy to verify that ¥, is an imbedding.
We deduce Lemma 5.4 from the fact that Ip, (f)] = (,u.,-) Lyr (B). We set Bk = Dk{I) ® Dk (f }. Then
V1 (Bk) ©Byk and u‘Tl(D?) C By for large k, and dim IpT(f = hm dun(u" Tt vr(Bg).

Therefore, Lemma 5.4 follows from the following assertion, the proof of which we omit: if ur:
C —~3Band vr: X =B are 11near mappings of finite~dimensional spaces involving T as a polynomial and
Yy is an imbedding, then dim p7lvr (&) = dim pgwy(&) for all T except a finite number.

Lemma 5.4 implies the existence of a point T € C, such that dim Ip+(f)} = dim Ip(f)] for all n
and the polynomial Pr is nondegenerate. For this point the following inequalities are satisfied:
di (D/1p (1) < di (Dilp, () =0 @)
Therefore, dim A (Mp(f)) =N.
This terminates the proof of Theorem 5.2, and hence also Theorem 4.37.

§6. Proof of Theorem 4.3", We must show that if « ¢ %, thendim A (D(n*u) = N. It may be as-
sumed without loss of generality that 0 €39 and ueZ, , where £, consists of functionals v € % , for
which v(¢) is defined by the behavior of the function ¢ in a small right neighborhood of zero Z).
Moreover, we will assume that P(d @) = {0}.

Definition 6.1. Let A ¢C, ReA> 0. We denote by t" the continuous function on T which is equal to
0 for t < 0 and equal to tA for t > 0. We consider the funchon t}. as an element of Z'.

LEMMA 6.1. 1. The function 1:2\k depends analytically on A for Re A > 0 and can be continued as a
meromorphic function with values in ¥’ to the entire plane of the variable A.

2. We write the expansion of tZ‘L in a Laurent series in a neighborhood of the point Ay:
£y () (=A™ g () -
Then the coefficients a_x(xy), .. .,a-; (A) € Z,.
3. The coefficients @-j(}) for all possible i > 0 and A; € C form an algebraic basis in Z,.

The proof follows immediately from the asymptotic expansion for functions ¢ ¢ £ obtained in Prop-
osition 4.1 {see [1], Ch. 1, 4).

We will study the equations satisfied by the functions t}r‘. For this we will have fo consider equa~
tions depending on A.
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Let D[A] be the ring of polynomials in the variable A with coefficients in D. In it we introduce the
filtrations {DR[A]} and {DP[A]}. The associated ring with respect to the filtration {DR[A]} is isomorphic to
Z[A]l, and the corresponding affine variety is equal to W XA (A is the complex line).

If Ay € C, then by s), we denote the evaluation mapping D[A] — D and Z[A} — Z, obtained by replacing
A —2ge

LEMMA 6.2, We setej =ti € DT =0, 1, . .5, ef =(p/at)"1 €Dp(i =—1,—2,...). Then each ele-
ment P ¢€Dr can be uniquely described in the form % = i e - Qi (t a—at-), where the Q; are polynomials of
a single variable. = '

The proof of the lemma follows immediately by induction on the degree of %',

We consider the DT[A]-module M = D7 [Al/ DT[] [t(d/8t) —A] and denote its generator by f. Lemma
6.2 implies that the elements ej form a base for the C[{A]-module M. In analogy with Definition 5.1, we
construct the D[Aj-module Mp(f) and the ideal IP(f) in D[A].

THEOREM 6.3. The set AMP(f)) €W X A consists entirely of lines of the form w X A, w € W.

Proof. We set M' =DT[A]l/DT[A] (£(8/0t) —A—1), and let f' be the generator of M'. Since t(3/8t) (tf) =
(A + Dtf, it is possible to define a mapping of DT[A]-modules g: M' — M, by putting u(f") =tf. It follows
from Lemma 6.2 that ¢ is an imbedding. The mapping which it induces u p! Mi;(f ) - MP(f) (here pp
(1®f) =P® f)is also an imbedding. It follows from Lemma 1.5 that A(Mp(f ") & AMP(f)).

The ideal Ip(f") is obtained from the ideal IP(f) by replacing A —A + 1, and therefore A(MP(f ") =
Z(o(IP(f ")) is a translation of AMP(f)) along the line A by —1. If the point (w, Ay) € A(MP(f)), then the
points (w, Aj—1), ..., (W, 3y—n) ... € A(Mp(f)). Since A (Mp(Sf)) is a closed algebraic variety in W x A,
it follows that w XA = A(Mp(f)), which completes the proof of Theorem 6.3.

Definition 6.2. 1. We set Ap = fw €Wlw x AC A(Mp(f))}. 2. For any A € C we denote by Mj the
DT-module DT/Dr [t(8/8t) — A] withgenerator fand putIx = Ip(fA) &D. The ideal Ip(f) < D[A] we denote by I.

It follows from Theorem 6.3 that Ap = Z(s),(0())) for any A, € C.
PROPOSITION 6.4. dim Ap = N.

Proof. From Lemma 6.2 it is easy to derive the following Lemma 6.5.

LEMMA 6.5. The C[A]-submodule IY of Df‘[)\] is given by linear equations with coefficients in C{}].
If in these coefficients we make the replacement A — A, where Ay € C, then they go over into equations for
the subspaces {I)¥ in DJ.

We choose a point A, € C which is algebraically independent of all the numerical coefficients which
enter in the equations defining the ideal I.

It then follows from Lemma 6.5 that sma(ﬂ1 = I}{ 1 for all n. Therefore s;\o(o(l)) =0 (sxo(I)) i.e.,
Ap =A((Mp)p(f2ay), and by Theorem 5.2 dim Ap = N.

LEMMA 66. If 9¢/CD|M, then D (n'(t))=0 identically in A.

Proof. We set m=degd. It is easy to verify that for Re A > m the relation (3/3xj) n* ) =
Pin*(8u/ab) is satisfied for all u € DT“(tl) This implies that T (n*(t*)) =0 for Re A > m. The proof of
the lemma is complete.

,PROPOSITION 6.7. Let th =a_p(a=2)K +... +a; +a(A=2) +. .. + be the expansion of the func-
tion t7 in a Laurent series, aj ¢ £’ . Then A(D(n*(z;))) € Apy, for any i(i =—k,...,0,1,...).

Proof. Let D=L\ +(A—A)D, — ... -F(A—r)Dn€6l. We put é;=n"(g) . Applying Lemma 6.6, we
obtain the system of equations '

@ﬂg_k = .@og_k+1 -+ %15_* = ... = %0(%} + ...+ Ik.}.ié_g =0,

We set Mj=D(&_, ..., &) . It is evident from these equations that the generator &; .in the mod-

ule M;/M;_; satisfies the equation s) (D) (¢;) =0 for any D€/ . This means that A(Mj/ Mj-y) € Z(0 (s7,(D)
¢ Ap)
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Proposition 6.7 follows from Lemma 1.5.
Theorem 4.3" is a direct consequence of Lemma 6.1 and Propositions 6.4 and 8.7.

§7. Fundamental Solutions of Equations with Constant Coefficients

PROPOSITION 7.1." Let P be a polynomial with real coefficients on VR. Then the function [P|?, de-
fined for Re A > 0, can be continued analytically as a meromorphic function with values in S' to the entire
complex plane of the variable A. If P' is any coefficient of the Laurent series for the function [P[A at any
point A, then A(D(P%) < Ap (in particular, dim A(D(B")) = N, i.e., P' €8).

This proposition follows immediately from Proposition 6.7 and Lemma 6.1.

v We will now prove Theorem C of the introduction. We seek a solution of the equation L{—i(8/3xk)
() =6 inthe form &, — F(&) (F is Fourier transformation).

The function ¢ must satisfy the equation L(xy) + # =1 . We put P = L * L and take as & the zeroth
term of the Laurent series of the function L - P2 at the point A = —1. Then L.& =1, and, as follows from
Proposition 7.1, 7¢S.. Using Corollary 3.4, we deduce that the fundamental solution ¢, lies in S(;. This
completes the proof of Theorem C.

Hypothesis. AP {(x,y) €V x V*[(x,y) €0p, Px)} = 0, where Op = {(x,y) €V X V*|x ¢ sing P,
Pjyj = Pyyi for all i, it.

In the case in which L is a homogeneous polynomial this hypothesis enables us to find a cone contain-
ing the singularities of the fundamental solution of the operator L[—i(d/3xy)]. It evidently contains the cone
constructed by Hormander in [5], but it does not always coincide with it.
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