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Models of Representations of
Lie Groups*

1. N. Bernstein, 1. M. Gelfand, and 8. 1. Gelfand

Starting with the classical works of E. Cartan and H. Weyl, representations
of compact Lie groups have been studied in sufficient detail. Yet although
the characters of the irreducible representations have been described with
exhaustive thoroughness and lucidity, the construction of the representa-
tions themselves is in a less satisfactory state. Just about the only general
construction, inspired by the theory of infinite-dimensional representations
of groups, is as follows. Let U be a compact Lie group. Consider the
so-called principal affine space N\G, where G is the complex Lie group
corresponding to U and N is a2 maximal unipotent subgroup of G, Then one
can realize the irreducible representations of the group U in the space of
homogeneous analytic functions on the principal affine space (in other
words, in the space of analytic sections of some one-dimensional fiber
space over the quotient space of the group U/ by a maximal torus).

We are dealing here with a model of the representations; namely one
can introduce a scalar product on the space of analytic functions on the
principal affine space so that in the decomposition of the resulting unitary
representation of U into irreducible factors, all the irreducible representa-
tions of U occur with multiplicity one (see [1, 4]). Granted the naturainess
of this approach, just about the only shortcoming of this construction is
that in this model we require the functions to be analytic.

Let us consider an example to clarify this. Let U = SO, be the group of
rotations of 3-space. Then the model associated with the principal affine
space is as follows. Consider the space of even analytic functions f(z,,z,) in
two complex variables with the scalar product

S, g>=ffge_lz'lz_i”hdzlcE,dzszZ.

*Originally published in Proceedings of the I. G. Petrovsky Seminar on Differential
Equations and Mathematical Problems of Physics, Moscow University, 2 (1976), 3-21.
Translated by Mikhail Katz.
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Decomposing the functions in this space into homogeneous functions, we
get every irreducible representation of SO, exactly once. However, long
before this construction one knew how to construct the representations of
S0, in the space of all (not just analytic} square-integrable functions on the
2-sphere. This also gives a model of the representations of $0,; i.e., every
irreducible representation of S0, occurs once.

In this article a similar model of its representations is constructed for
every semisimple compact Lie group U; ie, a homogeneous space is
described, such that every irreducible representation of U is contained
exactly once in the space of all (not just analytic) suitably chosen square-
integrable vector functions on the homogeneous space. For the group SO,
this realization coincides with the one described above.

In our realization the homogeneous space is the compact symmetric
space X corresponding to the group U (see [5]). Let Kj be the stationary
subgroup of some point of x, € X. We will construct a representation 7 of
the group Ky such that the induced representation of U contains every
irreducible representation of U exactly once. For a simply connected group
U we have dims = 2/, where / is the rank. (The space L*(X) contains one
2/th part of all the irreducible representations of U, the representations with
even highest weight.)

In this article the necessary representations of the stationary subgroup
Ky are constructed separately for each of the simple Lie groups. This
method has its advantages, because the resulting spaces and representations
of Ky are of independent interest.

As an example, let us show what our models look like for the classical
Lie groups. The representations given here differ in appearance from those
constructed in Section 4, because simply connected simple groups will be
considered there. For this reason we have had to use the apparatus of
Clifford algebras in Section 4. Recall that we are considering the represen-
tation of the group U induced by the representation 7 of the stationary
subgroup Kg:

1. U=U, Kg= 0, 7 is the natural representation of O, in the space

®7_, A'(R").

2. U=0,,,, Kg=0,,,%X0,, 7 is the representation of Ky in the

space B"J A'(R"*"), trivial on the second factor.

3, U= USp,, Kg=U, 7 is the natural representation of Kg in

BT_  A(CY.
4, U= 0,, Kg= 0, X 0, 7 is the representation of K in the space
&"_, A'(R"), trivial on the second factor.

This paper is an introduction to the study, from a unified viewpoint, of
the representations of noncompact real Lie groups and of semisimple
algebraic groups over various fields (see [2]).
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1. Statement of the main results

I. Let G be a connected algebraic reductive group over the field of
complex numbers. Fix a Cartan subgroup H of G. Denote by Ry, the lattice
of weights of the group H, consisting of the algebraic homomorphisms
H—C*. Let AC Ry be the root system of the group G relative to H; for
every root y, denote by N, the one-parameter unipotent subgroup of G
which corresponds to the oot y. Fix a system of positive roots A, C A.

Let & be a fixed Cartan involution of the group G, i.e., an algebraic
antiautomorphism such that #? = id and #(4) = & for all k € H (it is easy
to check that any two such involutions are conjugate by an inner automor-
phism corresponding to some element of H). Clearly, #(N,) = N_, for all
y €A

The group K= {g € G{#(g) =g~ '} will be called an involutory sub-
group of G. For example, if G = GL,(C), and H is the subgroup of diagonal
matrices, then # can be taken to be the map g— g’" (transposition); in this
case K = O (C).

Let i be an antilinear automorphism of the group G that maps H to itself
and preserves the lattice of weights Ry, (i.e., x(i(h)) =x(h) for all x € R,,,
h€ H). Then i(N,)= N, for all yEA, so that the subgroup G =
{gEGli(g)=g) is a split real form of the group G. Assume that i
commutes with # or, equivalently, §(Gg) = Gx. Then the subgroup U=
{g € G|i(B(g) = g~'} is compact; it is the compact form of the group G.
The compact subgroup Kz = U N Gg = {u € U|6{u) = u~ "'} will play an
important role. Let us call it the involutory subgroup of the group U.

The group S= K N H={he€ H|h*=1} is also essential here. Since
every element 4 € H is determined by the numbers x(h), x € Ry, it follows
that i(s)= s for all s € §, so that § C K. From the definition it follows
that § is a finite commutative group and card § = 2% %, where 1k G is the
rank of G. '

Example. G = GL,(C), H is the diagonal subgroup, # is the transposition
of matrices, i is the passage to the complex conjugate matrix. Then

K= 0,(C) Gg = GL, (R}, Kp=0,
and § consists of diagonal matrices with + 1 on the diagonal.

2. Let us state the main results of this work. Let 7 be a finite-
dimensional representation of the group Ky. For every irreducible represen-
tation = of the group U, we are interested in the multiplicity with which the
representation # occurs in the representation Indﬁ‘(-r), i.e., the number

dim Homu(w, Indg_('r)).

Proposition 1. Let m € Ry, be the highest weight of the irreducible represen-
tation w and m| ¢ the restriction of m to S, the corresponding one-dimensional
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representation of S. Then
dim Hom (m, Ind} (7)) < dim Homg(m|s,7/5)- Q)

We say that a representation of a compact group is multiplicity-free if it
can be decomposed into the sum of pairwise inequivalent irreducible
representations.

Corollary 1. If 7| is multiplicity-free then so is Indg (7).

It turns out that for “almost all” irreducible represeniations of the group
U, strict equality holds in formula (1).

More precisely, let C € Ry, be the collection of highest weights of all
irreducible representations of the group U (i.e., the Weyl chamber in Ry
relative to the ordering given by the system A ).

Proposition 2. Let 7 be a fixed representation of the group Ky. Then there
exists a weight | € C such that for all weights m € C + I one has

dim HomU(-rr, Ind{ (7)) = dim Homg(mg,7|s), (2)

where mg = m|g and = is the irreducible representation of U with highest
weight m.

Corollary 2. Let 7 be a representation of the group Kg such that 1|s is the
regular representation of the group S. Then for any irreducible representation
7 of the group U, dimHomy(m, Ind¥ (1)) < 1, and there exists a weight
! € C such that dim Hom (=, Ind% (7)) = 1 for all irreducible representations
w with highest weight m< C + 1

We want to find the representations = such that equality (2) holds for ali
irreducible representations of the group U. It is easy to point out one such
example.

Proposition 3. If 7=1 is the trivial representation of the group Ky, an
irreducible representation = of group U occurs in Indy (1) if and only if
m|g =1, i.e., m is an even weight (m E2Ry).

Propositions 1-3 are proved in Section 2.

Definition. A representation of a compact group is called a model if any
irreducible representation occurs in it exactly once.

One could say that if 7 is any representation of the group Ky such that
7| is a regular representation of S, then lndﬁl('r) is “almost a model.” An
important result of our work is the construction of a representation 7 of the
group Ky for every group G such that Ind}c’n(-r) is a model for the group U.
Namely, we have:

Theorem 1 (on models). There exists a representation 7 of the group Kg
stch that the representation Ind}’;l (7) is a model; i.e., every irreducible
representation of U occurs exactly once in the decomposition.
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This theorem is proved in Sections 3 and 4. In Section 3 we state a
condition on the representation r under which IndEl('r) is a model
(Theorem 1), and reduce the problem to the case of simple groups. In
Section 4 we construct the representation r for each simple group sepa-
rately.

2. Proof of Propositions 1-3

1. The proof of the propositions formulated above is based on an
analysis of the dimensions

dim Hom (7, Ind¥ (7)) = dim Hom (7|, 7) and dimHomg(m|s,7s)-
First of all, by Frobenius’ duality
dim Hom (1L, IndY,(r}) = dim Hom, (TT{ ., 7).

Further, every finite-dimensional representation of the group U can be
extended to an algebraic representation of the group G; we thus get a
one-to-one correspondence between the representations of the groups U
and G (in the following we will consider only the algebraic representations
of G). Since Ky is a compact form of the group X, a similar assertion also
holds for the groups Ky and K. Thus our problem is reduced to comparing
the numbers dim Hom (7| 5, 7) with the numbers dim Homg(m| g, 7|) in &
purely algebraic setting. In the following we will only be concerned with
algebraic groups and representations.

2. We introduce some additional notation. Let N =[], c,, N, be the
maximal unipotent subgroup, N~ =]],ea, N_, the opposite subgroup,
B = HN the Borel subgroup, and let B~ = HN ~. Clearly, #(B)=B",
B(N)=N".

Lemma 1. B N K =S, and KB is an open dense subset of G.

Proof. Clearly, BN K={g€ B|#(g)=g '} Since #(B)=B~ and
BNB~-=H, we have BN K= H n K= 5. Considering the tangent
spaces at the identity, it is easy to convince oneself that KB is an open and
{because G is connected) dense subset of G.

Suppose we are given a representation 7 of the group X on the space L.
We will say that the rational function f on the group G with values in L is
r-equivariant if f(kg) = r(k)f(g) forallkE K, g€ G.

Suppose m is a weight of the group . Extend it to a character of the
group B, setting m(N) = 1; we say that the function fon G has weight m if
fgb)=m(b)f(g)forallbE B, g€ G.

Since KB is dense in G, every T-equivariant rational function f of weight
m is regular on KB.

3. The following lemma reduces the study of the multiplicities we are
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interested in to the study of the dimensions of certain spaces of algebraic
functions on G.

Lemma 2.

a. Let 7 be a representation of the group K in the space L and m € Ry,
Then the space Homg(m|g,7|s) is isomorphic to the space of rational
T-equivariant functions of weight m.

b. Let m be the highest weight of an irreducible representation w of the
group G. Then the space Hom (| ., 7) is isomorphic to the space of
regular T-equivariant functions of weight m.

Proof .

a. Let L be the space of the representation 7, and ¢:C—>L be a

homomorphism from Homg(m| 5, 7| 5). Define a regular function fon
K x B by the formula f(k by = m(b}- v(K)p(1).
Clearly, f{ks, b) = f(k,sb); i.c., f depends only on the product kb;
therefore, f(k b) = f(kb), where f is a certain regular r-equivariant
function of weight m on KB. f can be viewed as a rational function
on G. Conversely, for every such function one constructs a homo-
morphism ¢ € Hom (m| ¢, ] 5) by the formula g(1) = f(1).

b. Let ¥ be the space of the representation 7, and let v* be the highest
weight vector in V. For every ¢ € Hom,(r|,,r) one constructs a
regular r-equivariant function of weight m on G by

f(g)=w(z(g)v").

To construct the inverse mapping, consider the representation 7* on the
space F'* that is dual to 7. Define the mapping ¢ from the space V* to the
space of complex regular functions of weight m on G by the formula
Y(o*) g} = (v*,7(g)v* ). The mapping y is an isomorphism (7, 9].

Now let f be a regular t-equivariant function of weight m. Then to every
vector /* € L* there corresponds a regular function of weight m u,.(g) =
(I*, f(g)) and therefore the element y ~'(u.) € ¥*, In this way we have
obtained a mapping ¢*:L*—> F* and the dual mapping ¢: V—> L.
Clearly, p € Hom (7|, ,7). The mappings just constructed define an iso-
morphism between the space of regular r-equivariant functions of weight m
and the space Hom (7|, 7). The lemma is proved.

Proposition | immediately follows from Lemma 2.

4. Proof of Proposition 3. It follows from Lemma 2 that if a represen-
tation 7 with highest weight m occurs in Ind(1), then mjg = I; i.e., m is an
even weight. Conversely, suppose that m is an even weight; i.e., m =2/
where / € C. We have to prove that there exists a nonzero regular function
q,.(g) such that g, (kgh) = m(b)g, (g)forall ke K,gE G, b& B.

Let p be an irreducible representation of the group U7 with highest weight
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I, V the space of the representation p, ¥* the dual space, v* a vector of
highest weight in ¥, v*~ a vector of lowest weight in V*. Set ¢;(g) =
(v* ", p(g)v™). Then

a,(8(5))gb;) = I(bibr)a( g)-
Indeed,
a,(8(by)ghs) = (v* . p(8(b1))a(g)p(b) ™)
= (p*(8(5)) " 'v* . p(H)(br)e ™)
= (b)) (b)(v* ", p(g)v" ) = I(B\br)ar(8)-

cIi\h:)w set g,,(g) = a(8(g)g). Then ¢, (kg) = gy(g forall kK, g€ G
an

42 (85) = a(0(b)gb) = [} (8) = m(BY(8):
as required.

5. Proof of Proposition 2. Let 1 be a representation of the group K. By
Lemma 2 it suffices to prove that there exists a weight /, € C such that
every T-equivariant rational function of weight m € [, + C is regular. In
Section 2.4 we constructed, for every even weight m €2Ry,, a regular
function ¢,, on G satisfying g,,(kgb) = m{(b)q,(g). Clearly, the mapping
f—>g..f establishes an isomorphism between the space of r-equivariant
functions of weight ! and the space of T-equivariant functions of weight
I+ m.

Note that R, /2R, is a finite set, and the space of T-equivariant rational
functions of any given weight is finite-dimensional. Since any T-equivariant
weight function f is regular on KB, Proposition 2 follows from the following
lemma.

Lemma 3. There exists a weight m € 2Ry, such that g, (g)=0 for all
gEG, g& KB.

Proof. We first prove that g € KB if and only {f HggEB B=
N~ HN. Indeed, if g= kb€ KB, then 8(g)g = 8(b)d(k)kb=8(b)b €
B~ B. Conversely, let

g1=0(g)g and g =u hu u"€EN-, heH, ucN. (3)

Clearly, 8(g)) = g,; ie, g, = 8(u)#(h)8(u"). Since uw)eN—, 0(h)=nh
€ H,8(u") € N, and the decomposition (3} is unique, we have 8(3) = u~.
Since the group G is connected, there exists an element k) € H such that
W2=h. Set b=hu and k=gb~'. Then it is clear that 8(b)b =g, and
#(k)k = 1; i.e,, k € K. Therefore, g = kb € KB.

To complete the proof we use the formula g,,( g) = 2,(8(g)g), where g, is
the function introduced in Section 2.4.

Let / be an arbitrary regular highest weight, i.e., wl % [ for any element w
of the Wey! group W of the group G. Then it is known (see, for example,
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{7]) that a,(g)=0 when g & N~ HN. Therefore, g,,(g) = a(#(g)g)=90
when g ¢ KB.

3. Shallow representations

This section and Section 4 are devoted to proving the theorem on models.
Here we present a method that allows us to determine when a representa-
tion 7 of the group Ky is a model (Theorem 1). In Section 4 we will turn to
the construction of models using this method.

1. We first reduce the problem of constructing a model to the case of a
simply connected group G. Let p: G, — G be the universal cover; #, #, and
i, i agree with p. Then pU, = U, pK g C K3. Suppose 7, defines a model
for K, (ie, Indﬁ:,‘(-rl) is a model for U)) and 7 C r, is the largest
subrepresentation which is trivial on Ker p N K. Then 7' can be viewed as
a representation of pK,z C Kg. Now it is easy to show that 7 = Indf,;m(r')
defines a model for K.

2. By Propositions 1 and 2 and Lemma 2 the representation 7 of the
group K defines a model if and only if the following two properties hold:
1. 7| is a regular representation of S.
2. Suppose that m € C and f is a 7-equivariant rational function on G
of weight m, then f is a regular function.

In this section we will find a condition on the representation 7 that
guarantees condition 2.

It is convenient for us to consider the simplest case first—G = SL,(C).
Let i be complex conjugation, i(g) = g, and # transposition. Then

U= SU, K=S04(C), Kg=SU,NSLR)=S0, S={=e},

P (P )]

The subgroups H and K are isomorphic to the multiplicative group C*.
Hence their one-dimensional (algebraic) representations are given by an
integer, the degree n of the representation t— t”.

Lemma 4. If g = 8(g), then g = #(g\)g, for some g, € G = SL,(C).
The proof is by direct verification.

Lemma 5. Let v be a one-dimensional representation of K of degree j=
0, +1, or —1; and let m be the highest weight of B, m(g 7.} = 1", n > 0. Let
[ be a rational ~-eguivariant function on G. Then f is a regular function.

Proof. Since KB is dense in G, f(e) # 0. Now, setting b=k = —e, g=¢

in
fkgb) = 1(k)m(b)f(8), 4

we see that the weight m must beevenif i=0and odd if i = = 1.
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In the space of all regular functions on G that satisfy f( gb) = m(d)f( g),
left translations realize the (n# + 1)-dimensional representation of the group
G = SL,(C) (n is the degree of weight m). But the (n + 1)}-dimensional
representation of SL,(C) contains all the weights of H of degrees between
— n and » whose parity coincides with that of n. Therefore, the existence of
a nonzero regular function f satisfying the condition follows from the fact
that the groups K and H are conjugate in SL,(C). The lemma now follows
from the fact that a rational function f is determined uniquely up to a
factor by (4).

Corollary. Let 7 be a representation of K which is a direct sum of representa-
tions of degrees 0, +1, and — 1, and f a rational t-equivariant function on G
of weight > O with respect to B. Then f is a regular function.

3. Let us return to the general case. For every simple root a of the
group G consider the corresponding homomorphism g, : SL,(C)— G which
agrees with the choice of / and #. Since the group G is simply connected, ¢,
is an embedding [7]. Set

G, = @,(SLy(C)) and K, = ,(SOC))C K.

A representation 7 of the group X is called shallow if for any simple root «
the restriction of 7 to K, = SO,(C) contains only one-dimensional represen-
tations of K, of degrees 0, +1, and —1.

Theorem 2. Let 7 be a shallow representation of the group K, m € C, and f
a t-equivariant rational function on G of weight m. Then [ is a regular
Junction.

Proof. Since KB is dense in G, the function f is regular on KB. Further,
G, N KB is dense in G,, and therefore the function f can be restricted to
G,. By the corollary to Lemma 5, f|; is a regular function on G,.
Therefore, the function f is regular on the set P = U _KG,B. Therefore,
Theorem 1 follows from the following lemma:

Lemuna 6. dim(G\P) < dimG — 2.

Proof. Let G, = (g€ G|g=0(g)). Consider the mapping r: G—> G,
given by r(g) = 0(g)g. The inverse image of any point x € G, is either
empty or homeomorphic to K. Since dim G = dim K + dim C,, to prove the
lemma it suffices to show that dim(G,\r(P)) < dim G; — 2. To this end we
use the Bruhat decomposition of the group G. Let WH C G be the
normalizer of H in G, and for each w € W pick a representative x,, € wH.
Define the subgroups

Nr=N*nwN*w™, NI=N*nwN"w

N =N"nwN"w, N =N"nw 'N*w,
sothat N~ = NN, N, N N, = {e)}. The Bruhat decomposition asserts
that every element g € G can be uniquely represented as g = u hx u*,




130  BERNSTEIN, GELFAND AND GELFAND

where wE W, u* €N, hEH, u" €N". Set G*=N"Hx,N}; now
consider G N G, for each w.

a. If n € wH for some w, then #(n)€ w™'H. Since &N " )=N",
(N*)=N", we have #(G*)= G* . Therefore, G* N G, # O only if
wEw!

b. Letw=w"'.Then (N} )=N,,B8(N})=N].

Let
gEG"NG, and g=u i mu*
be its Bruhat decomposition. We have
B(g)=8(u")B(mB(iE" )0 (u"),
and the equality g = #(g) is equivalent to the following set of equalities:
B(my=n; BT )=ut; B )=n"'d"n.
Therefore
dimG* N G, = d} + dY,
where
dy =dim(G, N wH) < dimH, df =dim{@~ €N, (" y=n""7"n)

(one can prove that 4} depends only on w, not on n € wh), Let us estimate
d|' and dy separately.

¢. Let n, be a fixed element of G, N wH and » = hny € G, N wH. Then
hng=n=08(n)= 8(n)8(k) = whw='- n,, ie., h=whw='. Therefore, d}’
= dim A {multiplicity of the eigenvalue +1 of the element w}. It is well
known [7] that if w # w, for some root y, then w is not a reflection in a
hyperplane, and hence d|' € dim & — 2. Therefore,

dm(G*" N Gy) < dimH +dim N~ -2 =dimG, ~ 2

where
wFE W, wFe,

d. Let w=w, for some positive root y. Then 4" = dim H — 1. Let us
estimate d;'. Fix h & wH N G,. Then d equals the dxmenslon of the space
X; of fixed points of the map f(#) = n~'8(i)n of the subgroup N, into
1tse1f Slnce for every root subgroup Ny of G, B(N,;)- N_4 we have

f(Ng)= N__ 5. Among the negative roots B there is exactly one for which
-wfB= ,B namely 8= —v, it is clear that N_ € N, . For all the other
negative roots we have —w 8 = 8. Since whenever - B # B the compo-

nent of the element &4 € X, in N _, is determined by the component of & in
N, it follows that d;me— 1/2(dlmN +1). fw=w and v is not a
simple root, then dim N, > 3; therefore d' < dimN,” ~ 1. Hence in this
case too, one has dim(G" N G,) < dim Gy —~ 2.

¢. To prove the lemma it remains to show that G* N G, C »(F) and
that for any simple root &, G* N G, C r(P).
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First, suppose that g € G° N Gy. Then
g=u"hut, v €N, h€H, v*EN* and O(u*)=u".
Since H is a connected torus, there exists an element b, € H such that
h = k= h8(h,). Then
g=u"hlu* =r(hu*)er(P),
because hu* € B.

f. Now suppose that w=w,, and a is a simple root. Any element
X € G* can be represented as x = u"hg u*, where u~ € U, ,u* € U},
h € ZJ(HG,) (connected component), g, € G,. Here u™, u~, and kg, are
uniquely defined. If x = #(x), then u, = f(u,) and #(hg,) = hg,. But 8(hg,)
= @(g,)h = h¥(g,) and therefore g, = #(g,). Since G, = SL,C), g,
= §( g,)g, for some g, € G, (Lemma 4). Further, Z;;(HG,) is a connected
torus; therefore, there exists an k, € Z3(HG,) such that A7 = k. Then

x=r(gihu’) Er(P),
because g hu* € G, B.

Corollary 3. Let 1 be a shallow representation of the group K that is regular
when restricted to S. Then Ind (7) is a model.

4, Constructing models

1. Using Theorem 1 for every semisimple group G we construct a
model representation of the corresponding subgroup K. Clearly, it suffices
to construct such a representation for a simple, simply connected group G.
We cannot yet offer a general construction for such a representation, so we
will have to consider each case separately.

We first list the simple groups G and the corresponding subgroups
K C G (see [8]). (For the exceptional types, G is taken to be the simple,
stmply connected group of the type given. See text for the precise descrip-
tion of the subgroup Z,):

A, :G = SL,(C), K= S0,(C);
B, : G =8pin,,, , K= (SPinnu X Spinn)/zz;
C, : G = 8p,;,(C), K= GL,(C);
D, : G = Spin,, , K = (Spin, X Spin,)/Z,;
Eg: K =8py(C)/Zy; Eq : K= SL(C)/Ly; Eq : K = Spinyg/Zy;
Fy: K= (SLy(C) X Sp(C))/Zy; Gy : K = (SL(C) X SLYC))/Z,.
2. We will use Clifford algebras in constructing the representations that

define a model. We recall the essential facts about these algebras [6].
Let E be an n-dimensional complex space, e, ..., &, a basis for E.
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Consider the form Zx? on E, and let O(E) and SO(E) be the orthogonal
and the special orthogonal groups with respect to this form. Denote by

C, = C(E) the algebra with generators e,, .. ., e, and relations ¢’ = — 1,
e =—ee, i,j=1,...,n i#j The group O(E) acts on the algebra
C(E) by changing coordinates in the space generated by e,,... , e,

We list the basic properties of Clifford algebras.

a. The elements ¢ -+ - e, where | <{ <<+ <i<nforma

basis for C,; in particular dim C, = 2.

b. If n =2k, then C, is isomorphic to the matrix algebra of order 2*
and the center C, consists of scalars.

If n =2k + 1, then C, is isomorphic to the direct sum of two matrix
algebras of order 2% its center consists of elements x + ye where e
=ee,g;x,yeEC

c. Let C,* and C; be the subspaces of C, generated by the monomials
with an even or an odd number of factors, respectively. Then

Cct-Ct=C"-C"=C*, C*-C =C - C*=C".

' _1—> C, defined on the generators by
e,(e)=¢ e, (i=1,...,n—1). This mapping defines an isomorphism of
C,.,onto C,”.

d. Consider the mapping ¢, : C,

e. Let »:C,-> C, be the antiautomorphism which is the identity on
the generators ¢ = ¢, Then
(e, ) =g, g (TN
If x =Zxe, then x-x = —=x?; in particular, if Ex? =1, then x is
invertible in C,. For each vector x = Zx,¢; € E such that =x? = 1, denote
by @(x) the transformation of the space E given by g(x)y = xyx*; this is
the reflection in the plane orthogonal to x. In particular, ¢(x) & O(E).
Denote by pin,, the subgroup of the multiplicative group of the algebra C,
generated by all the elements x € E for which x - x = —1, and extend the
mapping ¢ o a homomorphism ¢ : pin, - O(E). Then set

Spin, = {# € pin, |uu* = 1}.
It is easy to check that
Spin, = {4 € C,"|luu* = 1, uEu* = E }.
f. The homomorphism ¢ = ¢, maps Spin, to SO(E)= S0,(C). The
kernet of the mapping ¢ is {*1). The group Spin, is connected, and for
n > 2 it is also simply connected.

Every element u € Spin, defines an automorphism of the algebra
C,(x— uxu~") which coincides with the action of the element g(u) € SO,.
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g. Denote by 8,, the standard action of the algebra C,, on the space of
dimension 2*.

If n=2k+1, then the mapping &,_,p, ' defines a 2*-dimensional
representation of the algebra C,* and therefore a 2*.dimensional represen-
tation of the group Spin,, called the spinor representation; it is an irreduc-
ible representation.

If n = 2k, then 8, defines a 2*-dimensional representation of the group
Spin,, which is also called a spinor representation. This representation is
reducible: it can be decomposed as the direct sum of two irreducible
2%~ 1.dimensional representations (which correspond to the different eigen-
values of the operator 8,(e,, - - . , ¢,). These representations are called the
half-spinor representations.

3. Type A,. Let G=SL(C); let H be the diagonal subgroup of G;
and @ transposition, Then K = §0,(C), and S is the group of diagonal
matrices (of determinant 1) with +1 on the diagonal.

Let E be an n-dimensional space on which the group G acts; e, . .., €,
a basis of it. Let e = ¢, - - - , € C(E). Then &> = (— 1"~V = ¢,

We split up the space C(E) into the direct sum of the subspaces C, and
C_, annihilated by left multiplication bye —eand e + € respectively. Since
k(ey=-e for all k€ K= SO,(E) and k'(e)= —¢ for all ¥ € O(E) -
SO(E), it follows that the subspaces C, and C_, are invariant under
SO(E) and are interchanged by the elements of O(ENSO(E).

Let us take T to be the representation of the group SO(E) in the space C,
and prove that it defines a model.

a. Let S, be the subgroup of all diagonal matrices with +1 on the
diagonal. Then card(S,/5) = 2, and all the elements of §, - § interchange
C, and C_,. To prove that | is a regular representation it then suffices to
check that the representation 1’ of the entire group S, in C(E)=C, @ C_,
is regular. This is verified directly.

b. It suffices to prove that 7’ is a shallow representation of SO,. But
C(E) can be naturally identified with A*(E), and the action of SO(E} on
C(E) = A*(E) can be extended to an action of the whole group G. It
remains to check that for all y € A the representation in the space A*(E) is
shallow with respect to H,. This is also easy to verify directly.

4. TypeB,_.G=Spin,,,,. Letusrealize the group G as a subgroup of
the multiplicative group of the algebra C,,, = C(E); let e, .. ., €2,44 be
a basis for E.

For every pair of indices i, i+ n (i=1,..., n) set

H; = {a+ﬁefei+m o+ f1= l};

H, is a commutative subgroup of G, and H = [[{_ H, is a Cartan subgroup
of G.

v
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Seté=e¢, - , and define an antiautomorphism & of the group G by
#(g) = (égé~ ‘)' = (é‘gé“ 'y~!; since 8}, = id, @ is a Cartan involution.
The subgroup K corresponding to # has the form

K={geGléggt =g}

In particular, ¢ : G— SO, maps K to the operators on £ thai commute
with p(e), i.e., preserve the subspaces £’ and E” generated by the vectors
(es...,e,) and (e,, s - ...y, ) respectively. Since Kerg lies in the
center of G, it follows that @(K) = {connected component of the group
SO(E) X SO(E")}. Therefore, K is generated by the groups Spin, and
Spin, ,, corresponding to £’ and E”; ie, K =(K,; X K;)/{1,p}, where
K, =Spin,, K,=Spin,,,, p=(p;,py)» and p, € K| and p, € K, are the
nontrivial elements of the kernel of the map Spin— SO.

The group § consists of the clements of the form

e, 8 € €6 + n,

where k is even; ord § = 2",

Let us construct the representation 7. Denote by 7} the 2"~ '-dimensional
representation of the group SO, on the space C, ; and by 7, the representa-
tion of the group X obtained from 7| by means of the projection K — §0,.

Let p be the spinor representation of the group Spin,,, , , in the space ¥,
dim F=2".Let z=e,---¢, foreven n, and let z=¢,,, - - - &5, for
odd n. Then z € Spin,, , |, z centralizes X, and z% = €* is a scalar. Therefore
V' can be written as the sum V, & V__ of K-invariant subspaces, where

V, = Ker(p(z) — ¢), V_.=Ker(p(z) + ¢€).
Set 7, = pj, and then 7 = 7, & r,. We prove that 7 generates a model.

a. Clearly, §={i,»)- 8', where v = —1 and §' is the subgroup of §
consisting of the monomials e, - - - e,¢; ., - €, taken with the plus
sign. We have r(#) =1, r)(r) = — 1 Therefore, to prove that 7| ¢ is regular
we must check that 7| ;- and 7,| ;. are regular representations of §’.

For the representation 7, this has already been proved in Section 4.3.
Consider ,. Let

So={€, " €. €snwhere 0< i <H < - - < < n}.
Then S’ is a subgroup of §; of index 2, and for all elements s € S\ S, we
have - sz = zs. Therefore, all the elements of S;\ 8’ interchange the spaces
V, and ¥ _,, and it suffices to prove that all the characters of §; occur in
the restriction of p to §;. This follows from the fact that elements of §;
generate in End V' = C;}, | a subspace of dimension card S5 =2".

b. Since 7, occurs in the representation p|_, it suffices to check that the
representation p is shallow with respect to all the subgroups H, C Spiny, ,,
but this follows immediately from the description of its highest weight [3].
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Consider the representation 7,. We can consider a larger representation
r}; this is a representation in the space of all forms in n-space.

Let G' = Spin,; be the subgroup of G generated by the linear combina-
tions of ¢, e, , and e,,, . The short root « of the group G is realized in
G’. Since G’ N K C K,, it follows that 1'1|K =1

Consider the space E with basis &, &, &, &, and the corresponding
group G = Spin,. Embed G in G by the map &,>e,, &, e, &> ey,

4~ €,,,. Then the group K = K(G) is isomorphic to (K, x K)/(1,p),
where K = K, = Spin,.

Since G contains the long root a, it suffices to prove that 7|¢ is a
shallow representation. But the restriction of 7, to G is proportional to the
four-dimensional representation ¢ obtained in the following way. Consider
the standard representation of the group SO, on the two-dimensional space
E, and consider the corresponding representation in A*E from which o is
obtained by means of the projection K, X K,—> S0, (where X, —> SO, is
the natural projection and K, is mapped to I); here we are using the fact
that

A¥E, 8 E,)) = A*(£)) ® AYEY)).

One has to prove that the weights of o restricted to K, equal 0, + 1.

Let K be a two-sheeted covering of the group X,. Then the embedding
of K, into K can be lifted to a mapping from_ K, 10 K, X K,; letk and I be
the degrees of the respective projections of K to K; and to K,. Note that
neither k& nor [ is zero, since the dimension of the centralizer of K, is 4
{because Spin, = SL,(C) X SL,(C)) but the centralizers of K, and K,
coincide with K. .

Consider the spinor representation p of the group G. It can be decom-
posed into the sum of two half-spinor representations p; and p,. Under the
isomorphism G = SL, X SL,, p, and p, become the standard representa-
tions of the two components of the group G. In particular, in the represen-
tation p the weights of the group K, coincide with the weights of the group
H, and equal 0,0, +1, —1, andthewe}ghtsosza.reO 0, +2.

On the other hand, the weights of groups X, and X, are { +1, £1}; ie,
the weights of K, are + k = /. Hence |k| = || = 1. Since K, has weights 0,
0, +2 in the representation o, it follows that K, has weights 0, 0, +2, and
K, has weights 0, 0, * 1, as required.

5. Type C,. Let us realize the group G = Spin,, as the group of trans-
formations of a 2n-dimensional space E, which preserve the form

01
-1 0 01
-1 0

—
o et

£
:




ie., glg* = I. Pick H to be the subgroup of diagonal elements in G:
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Set #(g) = g*. In this case

K={g€GL,|g=¢""glg”'=1)={geSp,lg=g*"")}.

The operator / has eigenvalues +i and —i; denote by E, and E_ the
corresponding n-dimensional spaces. Clearly, £, and E_ are invariant
under K. To every element k of K we associate the corresponding transfor-
mation 7'(k) on the space E, (this gives an isomorphism K - GL(E D
Denote by 7 the resulting representation of the group X on the space
A¥(E). We prove that it defines a model,

a. Clearly, S is the subset of matrices in H whose weights A, are +1.
Choose a basis e;", ..., ¢} for E,, where ¢’ = ey, + iey; then, in this
basis, § is identified with the set of diagonal matrices with = 1s on the
diagonal. Therefore 7| is a regular representation.

b. Let a be a long root. Then it is realized in the group Sp, = SL,,
embedded in Sp,,. Since E, = E', ®E/,, where E’, is generated by e}t
and £} by e), ..., g", it follows that AME, )= AMEY®AEY); ie.,
it is a multiple of A*(E", ). In the space generated by ¢, and e,, K, can be

written as
(-5 )

Therefore X, has weight 1 in the one-dimensional space E’, and weights 0
and 1 in A%(E’).

Now suppose that a is a short root. Then (just as before) everything can
be reduced to the case G = Sp,.

Let E* be the space generated by e, and e,, and E™ the space generated
by e, and e,. The form 7 defines a pairing of E” and E”. If g is any
unimodular transformation of £ and g*" is one of E*, then the resulting
transformation of E preserves the form /. We thus get an embedding

a2+ﬁ2= 1}.
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9, SL;—> G
a 0 b O
(a b)__> 0 d 0-—cf
¢ d ¢c 0 4 0
0-6 0 d
This embedding corresponds to the short root a, so that K, has the form
a 0 b 0
0 a 0 b|
-6 0 a 0
0-56 0 a

In the space E,, K, has weights = 1; ie., in A*(E,) it has weights 0,
+ 1, as required.

6. Type D,. Consider the natural embedding of the group G = Spin,,
into the group G = Spin,, ., of type B,. This mapping defines an isomor-
phism of Cartan subgroups. Therefore, the restriction of the representation
1 constructed for G in Section 4.4 is the required representation on G.

7. Type G,. Let G be a group of type G,. Then K = (K, X K,)/{1,p},
where K, and K, are isomorphic to SL,(C), p, and p, are the nontrivial
elements in the centers of X, and K,, and p=(p,,p,) (see Tits [8].
Consider the root decomposition of the group & with respect to a Cartan
subgroup H contained in K. Clearly, the roots corresponding to the
unipotent subgroups of K, and K, are orthogonal. Assume that the roots
= B correspond to K, ; and the roots (8 + 2a), 10 K.

Consider the representation of the group K| X K, of the form r=
1®1®D1® 7, where 7, is the three-dimensional representation of the
group K,. Let us prove that 7 defines a model.

a. Consider the root decomposition with respect to-the group H, and
construct the mapping ¢: G- G (where G= SL,(C) is mapped to the
subgroup generated by the long roots). It is easy to check that this is an
embedding that defines an isomorphism of Cartan subgroups; assume that
it agrees with the involution 4.

Therefore, g defines an isomorphism §— S, where § is the subgroup of
elements of order 2 in the Cartan subgroup of G.

Consider the involutory subgroup KinG K= PSL{C), and ¢ is an
embedding of K into K. Any such embedding is conjugate to the embed-
ding induced by the diagonal map

SL,(C)—> SLy(C) X SLAC).

As verified in Section 4.3, 7| is a regular representation,

B i

e BB
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b. We check that 7 is a shallow representation. The group Gz C q;(G),
and it easily follows from Section 4.3 that all the weights in 7 WIth respect
to Kare 0, £ 1.

Consider the group X,,. Let K_ be a two-sheeted covering of K, and let
v:K, > K, x K, be the mapping which corresponds to the embedding

K,»K=(K, X Ky)/{1p}.

If H and H, are Cartan subgroups of X, and K,, we can assume that
WK, ) C H, X H, and that the mapping y is determined by the two integers
k and /, the degrees of the mappings of K to i i and H,. Note that k and /
have the same parity, and they may be assumed to be nonnegative. Let us
find these numbers.

For this purpose we consider the weights of the adjoint action of the
group K on the Lie algebra g of the group G. On the one hand, X, is
conjugate to f,, so that the weights of K, in g are 0,0,0,0, =1, £1, +2,

%3, *3; on the other hand, those we1ghts are *k+1 k3l i2k
+2/,0, 0 (this can be seen from the computation of weights with respect to
the groups H,, H, C H). If one of the numbers k or / were zero, then K,
would be contained in one of the subgroups K, or K,; then the centralizer
of K, in K would have dimension 4. However, the centralizers of K, inX
and in G have different dimensions, since the centralizer of K, in G
contains the subgroup G, 5, 50 that k,/ > 0. Hence & =3, [ = 1. There-
fore, the weights of the group K in the representation 7 are 0, =2, so that
the weights of the group X, in th;s representation are 0, *+ 1.

8. Type F,. Let G be a group of type F,. Then K = (K, x Kz)/{l,p},
where K, = SL)(C), K, = Spy(C), p,,p, are the nontrivial elements in the
centers of X, and X, and P = {p1.p;) (see Tits {8]). Set 1= 1, & 7,. Here 7,
is trivial on K,; on K| it is the sum of the trivial and the 3-dlmen51onal
representations, and r, = & ® @,, where @,, P, are the standard represen-
tations of K, and X, on 2-dimensional and 6-dimensional spaces. We prove
that r generates a model.
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The root system of F, in 2 4-dimensional space with basis ¢ (i =
1,...,4) has the form ¢, ¢t ¢, J(T e * g+ ¢+ ¢) (see [3]). The
roots teg, gt generate a root system of type B,. This defines a
morphism ¢ : G- G, where G = Spin, is a group of type B,. Here H (a
Cartan subgroup of G) is mapped to H. Since the lattices of welghts for the
system of type F, and for the subsystem B, coincide [3), ¢ is an isomor-
phism between 7 and H and defines an embedding G— G. This mduces
an embedding of K= K(G) into X.

The group K equals (K, X Kz)/{l $), where K, = Spin,, K, = Spin,.
But Spin; = Spin,, Spin, = K, X K, , where K| 1 and K, are isomorphic to
SLZ Therefore K = (K] x Ky x K))/{1,5), where § = (p},57,5,) and §,
B7, § are the nontrivial elements of the centers of K|, K, and K;.

Consider the embedding K - K and lift it to a mapping

v K| x K x B> K, X K,.

Let ¢, ¥, be the projections of ¢ to K and X,. Then W (K)=1. Further, ¢
is nontrivial on one of the groups K| and K,", for instance, K, Then
P! K 1—> K is an isomorphism; since K | commutes with K, , it follows that
V(KDY= 1.

Therefore, Ker | ;. ¢, has at most two elements. But we then have an
embedding (since all the 6-dimensional representations of the group SL, X
Sp, can easily be enumerated). Since ,(K|) commutes with (K] % Ky, it
follows that xpz(K,) =1.

Thus, ¢ maps K; isomorphically to X,, and embeds Ky x K, =Sp, %
Sp, in a natural way into K, = Spe. Recall the structure of the representa-
tion  for the group K (see Section 4.4). It had the form 7 71 ® 7,, with 7, and
7, 8-dimensional representations, where 7, is trivial on K, and #,(3,) = — 1.
This immediately implies that 7, is the tensor product of the standard
representations of I(2 = 8p, and the standard representation of one of the
groups Kl and K. Since these groups are interchanged by an inner
automorphlsm of the group G corresponding to some element of H (any
element in_S,— § in_the notation of Section 4.4), we may assume that

=& €B¢11'2 where &, and &, are the standard representations of the
groups K, and &,.

It is easy to check that 7| = 7| © 73, where 7| is the sum of the trivial
representations and the 3-dimensional representation 7 of K ) and 7 H
= dl’ ® &7 where & and §7 are the standard representations of K] and Kz
(K; and K ;' may have to be interchanged here). In this way,

F= l@(T@1®I)®(¢;®(€D;’®l$1®¢2)).
i.e, T = f|g, as required.

9. Type E;. Let G be a group of type Eg. Then X is a group of type
Dyg; the kernel of the mapping Spin,— K has two elements and does not
coincide with the kernel of the spinor representation Spin,;,— SO, (see [8]).

e S o YT
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Consider the spinor representation p of the group Spin,, on the space V,
and denote by 7 the resulting representation of Spin,, in End V. Since 7 is
trivial on the center, it can be viewed as a representation of the group K.
We prove that it defines a model.

There exists an embedding of the root system A, into Eg, because the
extended Dynkin diagram of Ey, obtained by adjoining the lowest weight,
contains a subdiagram of type A4, It induces a mapping @: G-—> G, where
G= SL,, which maps the Cartan subgroup H of the group G onto the
Cartan subgroup H. Moreover, ¢ defines a mapping of K = K(GwK. It
suffices to check that 7], defines a model for A,.

Let us analize in greater detail the mapping of K= 50, to K. Let
¥ :Sping—>Spin,; be a lifting of it, and let y”:Spin,—> 50, be the
composition of ' and the projection Spin,,— SO,;. The mapping §"
defines a 16-dimensional representation of the group Spin,. Spin, has only
three representations of dimension no greater than 16: the trivial one 1, the
standard one ® of dimension 9, and the spinor one p of dimension 16.
Clearly 4" is nontrivial; nor can it be the sum of ® and trivial representa-
tions, because in such a case ' :Spiny—Spin, would be the natural
mapping, and the mapping " : Spin,— K would be nonirivial on the
kernel of the mapping Spin,— Spiny; i.e., it would not factor through the
mapping S50, — K.

Thus 1" is a spinor representation on the space V, and 7| is given by
the natural action of Sping in End V. The space End V can be identified
with C;" (by definition of the spinor representation). But C," is isomorphic
to the representation of the group S@, constructed in Section 42, as
required.

10. Type E,. Let G be a simply connected group of type E;. Then X
is isomorphic to the group SLy/{ =1} (see [8]).

Consider the standard representation © of the group SL; in the space E,
dim E = 8. Then the representation 7 = & ® (¢ @ &*) can be viewed as a
representation of the group K. We prove that it generates a model.

The root system of E, can be embedded in the root system of Eg. Let
@:G>G be the corresponding mapping of groups which agrees with 8,
and (H)C H, ¢(K)C K. The mapping ¢ defines a homomorphism
@: K~ K with discrete kernel, and its lifting to the universal covers,
¢’ : SLy— SO, Since all the representations of SL, except ®, ¢*, and the
trivial representation have dimension greater than 16, and there is no
invariant bilinear form on the representations @ ® and &* @ d*, it
follows that the 16-dimensional representation of the group S1; defined by
the mapping ¢ has the form ¢ & ®* and is defined on the space E & E*.
In this way, the representation of the group SL, on the space E & E* can
be extended to a representation of the group Spin . It follows, in particu-
lar, that ¢ : K— K is an embedding, so that the group § can be viewed as a
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subgroup of index 2 in § = KNH. Let 8 C SLg be the inverse image of
the group S under the projection SLg—> K, §” C Spin;g the inverse image of
§ under the projection Spin— K.

Since End(E ® E*)=(E® E)D(EQ@ END(E* @ E)D(E* @ E*),
and the representation of X in End (E ® E*) is shallow, the representation
7 is also shallow.

We prove that 7{ is a regular representation. Indeed, the representation
of the group §' on E @ E* is irreducible (since the space of invariants of
the group S’ in End(E @ E*) is 1-dimensional by the preceding section}.
Therefore, if §€ $\§’, then §(E) does not intersect E (since s§' U §’
= §’ and 7 € §"). Hence § interchanges the spaces E ® (E © E*) and
SE ®(E @ E*), whose sum gives us

(E ® E*)® (E © E*) = End(E & E*).

Since the representation of the group § in End(E @ E*) is regular, the
representation of § on E @ (E ® E*) is also regular, as required.

11. Type E;. Let G be the simply connected group of type Eg. Then
K =8Spg/{%1} (see [8]). Let & be the standard 8-dimensional representa-
tion of the group Sp; on the space E. The representation 7 = & ® @* in the
space End V can be viewed as a representation of the group K. Let us
prove that it defines a model.

Embed the root system E¢ into E,, and consider the corresponding
mapping ¢ : G—> G. Here ¢(H) C H and @(K) C K. The mapping K> K
can be lifted to a mapping Sps—> SLj that obviously coincides with the
standard representation. In particular, ¢: K— K is an embedding. By
means of this embedding we can identify § with a subgroup of S of index
2. Since the representation T of K in the space (E*® E)B(E*®@ E} is
shallow, it follows that it is also shallow with respect to K.

We now prove that 7|g is a regular representation. Indeed, since S isa
subgroup of § of index 2 and the representation 7|5 is regular, 7| is the
doubled regular representation. But ®|¢ = ®*|;., where S’ C Spy is the
inverse image of the group S under the projection Spy— K. Therefore, 74
is isomorphic to 7|5 ® 7| . It follows that 7| ¢ is a regular representation, as
required.
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