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Introduction

Let D=D(C") be the Weyl algebra, i.e., algebra of polynomial differential opera-
tors on C". Until 1983 it was widely believed (for reasons which in retrospect
are difficult to understand) that any irreducible D-module is automatically holo-
nomic. In 1983-1984 J.T. Stafford constructed a counterexample (see [St]).
Namely, he exhibited a concrete operator de D and by direct, rather involved,
computations showed that d generates a maximal left ideal I=D-d<D. This
shows that D-module F=D/I is irreducible. On the other hand, it is clear that
dim Ch(F)=2n—1, i.e,, for n>1, dim Ch(F)>n and F is not holonomic.

In this paper we want to show that “most” of irreducible D-modules are
not holonomic. More precisely, we will show for n=2 that “almost each” opera-
tor de D generates a maximal left ideal.

We deduce this result from the fact that a certain system of first order
differential equations does not have algebraic solutions — a fact which is interest-
ing in itself.

1.

0 .

The algebra D is generated by operators {u,», 6i=5—|i= L..., n}. We will con-

U;

sider a filtration on D, D= () D¥ where D* consists of polynomials in {u;, d;}
k=0

of degree <k. This filtration has the advantage that all spaces D* are finite-

dimensional. Let X = @ X* be the associated graded algebra,

oy: D¥— X*=D¥/D*!

* Supported by a grant from the National Science Foundation
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be the symbol map. It is well known that X is isomorphic to the polynomial
algebra C[x,, ..., x,,], where x;=0(4;), x;,,=0(9) fori=1, ..., n.
Our main result is

Theorem A. Suppose n=2, i.e., D=D(C?), and k= 4. Let Pe X* be a generic polyno-
mial. Then each operator deD* with symbol ¢,(d)=P generates a maximal left
ideal in D.

Conjecture A. An analogous statement is true for any n>2, k> 3.

Remarks. 1. Here the term “generic” is used in its naive sense. This means
that the set N = Z* of polynomials P for which the conclusion of the theorem
holds satisfies the following condition:

Its complement Z¥\ N can be covered by a countable number of hypersurfaces
(see discussion in § 5).

2. We also prove a slightly more general result: if d is an operator in Theo-
rem A, then any left ideal J < D, satisfying Jd < J, is generated by a polynomial
in d (see § 3, Thm. 3.4).

2.

Our proof is based on the study of symplectic geometry of characteristic varieties
of D-modules.

Namely, 2 has a natural interpretation as the algebra of polynomial functions
on a 2n-dimensional symplectic vector space X and to each finitely generated
D-module F corresponds its characteristic variety Ch(F), which is a homoge-
neous subvariety of X. The basic geometric fact about such varieties is that
they are always involutive; in particular, all their components have dimension
=n. We will use the abbreviation “i.h.-variety” for an involutive homogeneous
subvariety of X.

In the case when F is holonomic, i.e., dim Ch(F)=n, each irreducible compo-
nent of Ch(F) is a minimal i.h.-variety, i.e., it does not have proper i.h.-subvari-
eties. In fact, this is the property which is used in proving most of the nice
facts about holonomic D-modules. Our main new observation is that there exist
higher-dimensional minimal i.h.-varieties — and there are a lot of them.

Conjecture A’. Let n=2, k=3. Then for a generic polynomial PeX* the variety
Y=V (P)< X of its zeroes is a minimal i.h.-variety.

We can prove only a particular case of this conjecture.
Theorem A’. The conjecture holds for n=2, k= 4.

Let us show how this geometric conjecture A’ implies Conjecture A (and
Theorem A’ implies Theorem A). Let de D* be an operator with the symbol
0,(d)=P. Suppose the ideal I=Dd < D is not maximal, i.e., there exists an ideal
J such that D22J21. Then 2 24a(J)R20(I).

Since 6(I)=X-P and P is irreducible, this implies that 0%V (c(J)SE
V(e (I))=V(P). But V(6(J))=Ch(D/J) is an ih.-variety, which contradicts Con-
jecture A’. This contradiction proves that the ideal I =Dd is maximal.



On non-holonomic irreducible D-modules 225
3.

Let us examine the geometry behind Conjecture A’. Each function feX defines
a Hamiltonian vector field ¢, on X. If Zc X is an involutive subvariety and
flz=0, then &, is tangent to Z, i.e., at each point zeZ, £ (z)e T, Z.

In particular, let PeX* be a generic polynomial, Y=V (P)c X. Then each
i.h.-variety Z < Y should be tangent to the field £p. It means that Z is a solution
of some “generic” differential equation. But it is intuitively clear, that generic
differential equation should not have algebraic solutions.

In order to make this precise let us pass to projectivization. Let X ~xP2""1,
Y, Z be projectivizations of X, Y, and Z. The vector field ¢, induces a direction
field pp on X (for generic P it has finite number of singular points).

The direction field pp defines a differential equation on Y and Z is its solution
in the sense that pp is tangent to Z.

Conjecture A”. Let n=>2, k>3. Let PeX* be a generic polynomial, Y=V (P)c X,
pp the direction field on Y, corresponding to &p. Then there are no algebraic
subvarieties Z < Y, with dim Z >0, which are tangent to pp.

As was explained above, this conjecture, which looks quite plausible, implies
Conjectures A’ and A. In case n=2 we will see that it is equivalent to Conjecture
A’. In this case dimZ=1, i, Z is a solution of the differential equation pp
in a standard sense. We will prove Conjecture A” for n=2, k=4 using the
fact that any algebraic curve Z< Y can be given by one equation Q =0, where
Qel.

4.

The examples of operators deD which we described are quite different from
the original Stafford’s example. He considered (for n=2) a first order operator
d=0,+(1+Au uy) 0, +u,.

Using methods described above it is not difficult to show that for n=2
a generic first order operator with coefficients of degree =2 generates a maximal
left ideal in D.

In §4 we will prove the following

Proposition 1. Let ¢ be a polynomial vector field on C?. For each singular point
s of & (i.e., a point seC? such that (s)=0), denote by A(¢, s) the endomorphism
of T,C?, given by 1-jet of & and by A(E,s) the subgroup of C, generated by
eigenvalues of A(&, s). Suppose & satisfies the following conditions.
(*) (i) There are no algebraic curves in C2, which are tangent to &

(ii) & has at least one singular point in C>.

Choose a polynomial function f on C* such that

(**) for each points seC? singular for &, f(s)¢ A (&, s).

Then the operator d =& +f generates a maximal left ideal in D.
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The proof uses the same methods as before but applied to the standard
filtration in D by the order of an operator, instead of filtration by degree in
u; and 0;.

It is clear that condition (**) on function f is generic. Condition (*) (ii)
is generic and not really important for the proof. The important condition is
(*) (i). This condition for & can be either checked directly (e.g., in Stafford’s
example), or one can use the following general result, which we prove in the
Appendix.

Statement. Generic direction field p on P? does not have algebraic solutions.

5.

The paper is arranged as follows.

§ 1 recalls basic notions, connected with the Involutivity Theorem.

In § 2 we prove geometric theorems A’ and A”".

In § 3 we discuss some elementary corollaries for the theory of 2-modules
of the fact that there are many minimal i.h.-varieties. In particular, we prove
Theorem A and some related results.

§ 4 contains the proof of Proposition 0.4 which describes first order operators,
generating maximal ideals.

§ 5 contains some miscellaneous remarks.

In the Appendix we discuss properties of algebraic solutions of direction
fields on P2

1. Involutivity theorem

1.1

We denote by D the algebra of polynomial differential operators on C”. It is
generated by operators {ui,a,:b%
= 6 D¥, where D*={polynomials in u;,d; of degree <k}. Put X*=D*/D*"!
an’:izc(i)enote by o,: D* — Z* the corresponding symbol map. The associated graded

li=1, ..., n}. We introduce a filtration D

algebra 2= (—BZ" is isomorphic, as a graded algebra, to C[x,, ..., x,,], where
k=0
x;=0,(u;), X;4n=0,(0;) for i=1, ..., n. We will interpret X as the algebra of
polynomial functions on a linear space X with coordinates {x;|i=1, ..., 2n}.
The commutator [,] on D induces an operation {,}: 2 x 2 — X, which is
called the Poisson bracket, such that o,,,_,([d,d])={0.(d),0,(d")}. This is a
skew symmetric operation, satisfying the Leibnitz rule { f, gh} ={f, g} h+g{f, h}.
This implies that there exists a 2-coform w?*, i.c., a skew symmetric form on
the cotangent bundle T* X, such that {f, g}(x)=w}(df,dg). In fact, it is easy
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to see that this coform w* is nondegenerate and the corresponding form w
n

on the tangent bundle is equal to w= ) dx;dx;,,.
i=1

The form w defines an isomorphism between spaces of 1-forms and vector
fields on X. Namely, to a vector field ¢ corresponds 1-form i(¢) w, where i
is the interior product. Conversely, a 1-form a corresponds to a vector field
¢, such that w(&,, n)=a(n).

In particular, each function fe X defines a Hamiltonian vector field £, corre-
sponding to the form df. It is characterized by the property &,(h)={f, h}.

1.2

Let L< X be a linear subspace of dimension I, L* = X its orthogonal complement.
It is clear that rk(w|;)=I[—dim(Ln L*). Since dim L* =2n—1, we have rk(w|;)
>21—2n, and the equality holds iff ' = L, i.e., I* is isotropic. If L* is isotropic,
we call L an involutive subspace of X. In this case [=n.

Lemma 1. Let Z< X be an algebraic subvariety. Then the following conditions
are equivalent.

(i) Theideal I,={feZXZ|f|,=0} is closed under Poisson bracket.

(i) Foreach point ze Z the tangent space T,Z < T,X = X is involutive.

(iii) For almost each point ze Z the tangent space T,Z < X is involutive.

(iv) For each fel,the vector field & is tangent to Z.

The proof follows from the formula {f, h} =w*(df, dh) and the fact that the
orthogonal complement (T, Z)* = X* is spanned by differentials {df | fel,}.

The subvarieties Z c X, satisfying these conditions we call involutive. Irreduc-
ible components of involutive variety are involutive and have dimension >n.

13

Let F be a finitely generated D-module, {F*} be a good filtration on F, Fy

=@F*/F*~! the corresponding X-module. The support in X of X-module F;

is denoted by Ch(F) (see [Gin, § 1]). In particular, if F=D/I for some left ideal

I=D and o(I)=) 0,(D*N1I) the corresponding symbol ideal in X, then Ch(F)
k

= V(a(I)) — the set of common zeroes of functions in o (I).

Involutivity theorem (see [Gab, § 3, Th. I;]). For each finitely generated D-module
F, the subvariety Ch(F)< X is an involutive homogeneous variety (i.h.-variety ).

2. Proof of theorems A’, A”
2.1

Fix n>2, k>3. A homogeneous polynomial PeZX* is called nondegenerate if
dP does not vanish on X\0, or, equivalently, &, does not vanish on X\0.
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In this case, P is irreducible and the variety Yp=V(P)c X is nonsingular
outside of 0. In particular, its projectivization Y X =P(X) is a nonsingular
irreducible variety.

Non degenerate polynomials form a Zariski open subset X%, = Z*. This subset
is not empty, since it contains P=Xx¥. In particular, a generic polynomial
is nondegenerate.

2.2

2n
LetE=) x; I be the Euler vector field on X. We will often use the following
i=1 i
identity
w(¢p, Ey=dP(E)=EP=k-P. (%)

Put Sp={xeX\0|&p(x) is proportional to E(x)} and denote by S, the corre-

sponding subvariety in X =P(X).

Lemma 2. (i) Spc Yp
(i) If P is nondegenerate, then dim Sp=1, i.e., Sp is a finite set.

Proof. By (*) w(&p(x), E(x))=0 iff xe Yp, which implies (i).

Put Sp={xeX\0|&p(x)=E(x)}. Since &p and E are homogeneous of different
degrees and do not vanish on X\0, we have S, =C*-S}.
Let (p=20Q; ai Then Q; are homogeneous functions of degree k— 1, which
X

1

do not have common zeroes on X\0. Hence for some constant C>0 we have
ZIQ:x)P 2 C(Zx P
The variety Sp is defined by a system of equations {Q;(x)=x;|i=1, ..., 2n}.

1
Since k> 2, S} lies inside the ball X|x;|> < C*~2. This implies that S5, and hence
S,, are finite sets.

23

Let us fix a nondegenerate polynomial PeX* and consider the variety Yp
=V (P)c X. The vector field £, is tangent to Y, and hence gives a vector field
on Yp. Since £p is homogeneous, it induces a direction field pp on the projectiviza-
tion Yp. This direction field is well defined outside of the finite set Sp.

We will consider pp as a differential equation on Y,. By definition, a solution
of this equation is a subvariety Z < Yp, dim Z >0, tangent to pp. In affine terms
a solution is a homogeneous subvariety Z < Yp, dim Z > 1, tangent to &p.

For the rest of this section we assume n=2. Then we have dim Y,=3, so
the only interesting case is when dim Z =2, i.e., dim Z=1.

Let us consider the 1-form a=i(E) w, corresponding to E.
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Lemma 3. Suppose n=2. Let Z < Y be a 2-dimensional homogeneous subvariety.
Then the following conditions are equivalent.

(i) Z istangent to &p,

(i) «a|=0,

(iil) Z is involutive.

Proof. Since dim Sp=1, Z\Sp is dense in Z. Let zeZ\S, be a nonsingular point
of Z, L=T,ZcX. Then L3E(z) since Z is homogeneous, dP|, =0 since
Z c Yp, E(z) and £p(z) are linearly independent, a and d P are linearly independent
and w(ép, E)y=a(ép)=d P(E)=w*(a, d P)=0.

(i)=>(ii). &p(z)eL=>L=span(E, {p)=>a|,=0.

(ii)=>(iii). o, =0=>L*=span(«, d P)=-L is involutive.

(iii)=>(i). L is involutive=>a vector &p, corresponding to the form d Pe L,
lies in L

Remark. This lemma shows that for n=2 conjectures A’ and A" are equivalent.

2.4

Theorem 1. Let n=2, k=4. Then for a generic polynomial P the differential equa-
tion given by the direction field pp does not have (one-dimensional) algebraic
solutions on the surface Yp.

Proof. Let P be a nondegenerate polynomial. We assume that there exists an
irreducible homogeneous subvariety Z = Y, such that dim Z =2 and Z is tangent
to ¢p and deduce a contradiction, making additional assumptions about P.
Then we check that these assumptions hold for generic P. Our crucial assumption
is

Ass. 1. Any curve Cc Y is defined (as a scheme) by a homogeneous function
Qon X.

We apply it to C=Zc Y. It implies that C is defined by some function
Qe ie., the ideal I, X is generated by P and Q.

Denote by Z° the nonsingular part of Z. Since the ideal I, is generated
by P and Q at each point ze Z° the space (T, Z)* (T, X)* is generated by linearly
independent vectors d P and d Q. In particular, since «|, =0, «(z) can be uniquely
written as

a(z)=f(z) dP(2) +h(z) dQ(2). ()

Since a,dP and dQ have homogeneous degrees 2, k and [, respectively, the
functions f and h on Z° have homogeneous degrees 2—k and 2—1.

Let us denote (i) the restriction of the sheaf (¢(i) on X to C (see [Hart],
p. 117). Then f and h can be interpreted as sections of sheaves Oco(2—k) and
@co(z—l) on C°=2Z°

Let us first consider the case when C is nonsingular, ie., C=CP° Note that
the sheaf ()¢(1) on C has positive degree, since it has sections with zeroes. This
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implies that sheaves (-(i) do not have nonzero global sections for i<0. In
particular, f(z)=0. Since «(z)#0, we have h(z)#0, which implies that 2—1>0.
Thus we have proved the following

Statement. Q is either linear or quadratic form and at each point zeZ 1-forms
« and dQ are proportional, i.c., vectors ¢, and E are proportional.

2.5

Now let us use the following simple lemma from linear algebra.

Lemma 4. Let Q=0 be a quadratic form. Put Sy={xeX|y(x) is proportional
to E(x)}. Then S, lies in a union of a finite number of hyperplanes.

Proof. To each linear operator AeEnd X corresponds a vector field £, given
by £4(x)=Ax. Clearly E=¢;y,Eo=¢, for some operator A. Thus S, is the
set of eigenvectors of the operator A. Since {,(Q)=0 and E(Q)=2Q #0, we
see that A is not a scalar operator. Hence S, is a union of proper linear subspaces,
corresponding to different eigenvalues of 4. Q.E.D.

Since Z is irreducible and Z< Sy, it lies in a hyperplane, ie., there exists
a linear form ¢ on X such that ¢|,=0. Since Z is involutive, it is tangent
to the constant vector field £ =¢£,,. Choose a vector ne Z which is not proportion-
al to £eX. Since Z is homogeneous and tangent to &, it contains the plane
L=span(&, n). Being irreducible Z coincides with L. But then C=Z=L~P'
is a curve of degree 1 in X. On the other hand, since C is a complete intersection,
given by P and Q, its degree equals kl. This contradiction proves that Z cannot
exist.

2.6

Now let us consider the general case, when C can be singular. We need to
make an additional assumption.

Ass. 2. Let peY and C<Y be a local or formal solution of the equation pp,
which contains p. Then at p, C is a divisor with normal crossings. In other
words, there exists a formal coordinate system (y,,y,) at p on Y such that
Y1'}’2|c5;0- -

Let C and Z be normalizations of C and Z\0, respectively.

Proposition 2. Functions f and h, defined by formula 2.4 () on nonsingular part
Z°< Z\0, can be extended to regular functions on Z.

Assuming this proposition, we see that f and h define global sections of
invertible sheaves O¢(2—k) and Oz(2—1) on the nonsingiular complete curve
C. Since the sheaf 0¢(1) on C has positive degree, the same arguments as before
show that f=0, [=1 or 2, ie., prove the statement in 2.4 for arbitrary C. The
arguments in 2.5 then finish the proof of Theorem 2.4.
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Proof of proposition. Let us recall the situation. We have a subvariety Zc X
and 2 functions P, Q which generate the ideal I,. We also have a 1-form a
on X, which restricts to Z as 0 (as a 1-form on Z). We consider a,dP and
dQ as sections of the sheaf Q' X. Denote by & the restriction of this sheaf
to Z and consider o, d P,d(Q as sections of # on Z. On nonsingular part Z°c Z
we can uniquely write a=fd P +hdQ and we have to show that f and h extend
to regular functions on Z.

Clearly, it is enough to check this statement in a formal neighbourhood
of a singular point ze Z\0. By assumption 2 we can choose a formal coordinate
system {y;,i=1,...,4} on X at z, such that y;=P and Z is given by equations
{y1-y2,=0=y;}. Then Q=¢P+dy, y,, where ¢ and & are some power series
and ¢ is invertible. The equation (t) a=fdP+hdQ becomes a=(f+he)dP

+hdd(y,y,). Therefore we may assume that =y, y,.
4

Let o= Y a;dy;. Then equation (1) reads

i=1

4
(&3} Y a;dy;=fdys+hy,dy,+hy,dy, (assectionsof %).

i=1

We see that o], =0 and a5, =f, which proves that f extends to Z.

Let Z=Z,0UZ,, where Z; is given by equations {y;=y;=0}, i=1,2. We
have to prove that h extends to Z=disjoint union of Z, and Z,. According
to () the function h on Z9=2Z°nZ, equals a,/y,. Since a restricts to Z, as
0, the coefficient a, lies in the ideal (y,,y;), which shows that h extends to
a regular function on Z,. Similarly it extends to a regular function on Z,.

This finishes the proof of Theorem 2.4 for polynomials P satisfying assump-
tions 1, 2.

2.7. Verification of assumptions for generic polynomials P

Ass 1 for generic P is Noether’s theorem (see [Del]). This is the place in our
proof when we use that k>4.

In order to check assumption 2 we introduce an invariant of a direction
field. Let (M, m) be a germ of a nonsingular surface, p a germ of a direction
field on M, defined outside of m. The field p can be given by a vector field
0, which does not vanish outside of m. The field 0 is defined up to multiplication
by a function f which is invertible on M\m and hence invertible on M. We
say that m is a regular point of p if 8(m)=+0.

Suppose m is a singular point of p. Then the 1-jet at m of the vector field
0 is an endomorphism A4,: T,,M — T,,M. Up to a constant A, depends only
on p, so we denote it A(p, m). We say that m is nondegenerate point of p if
det A(p, m)+0.

For nondegenerate point m let us introduce an invariant A(p, m) which is
the ratio of 2 eigenvalues of A(p,m). A point m is called a Poincaré point
of p if it is nondegenerate and A(p, m)¢Q.
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Proposition 3. Let p be a germ of a direction field on (M,m), C a germ of a
solution of p, containing m.

(i) If p is regular at m, then C is nonsingular at m.

(it) If m is a Poincaré point of p, then C is a divisor with normal crossings
at m.

Proof. We can assume that (M, m) is a formal germ, i.e., it is given by an algebra
R=~C|[[y;,y.]]- The direction field p is given by a vector field 0, i.e., a derivation
of R. The solution C is given by a principal radical ideal J <R, which is 0
invariant. In the case of regular 6, we can choose coordinates (y,,y,) such

that 0=6—6—. In this case it is easy to see that J=Ry,.
Y1
Let m be a Poincaré point of p. By Poincaré’s theorem (see [Poin] or [Arn]),

we can choose coczrdinates (y1,y,) such that 0=4,y, ai;l+112y2 a—i;, where
A1, 4,€C, A(p, m)=1—:~¢Q.

Each feR is a sum of monomials, =Y f;, fz=az)*, azeC, B=(p,q), y*
=¥2)3. ’
Lemma 5. If feJ then all monomials f; lie in J.

Indeed, since monomials are eigenvectors of 6 with distinct eigenvalues, for
a given f and each NeZ* we can find a polynomial Q, such that Q,(0) fz=f;,
and Qg(0) f,=0 for all y=p, |[y|<N. This implies that f;=0Q,(0) f(mod m"),
where m is the maximal ideal of R. Since 6 preserves J, fzeJ+m". But by
Artin-Rees lemma (see [AM]), J is closed in R in m-adic topology, which proves
that fzeJ.

Now, let us apply the lemma to the case when f is a generator of J and
fs*0 be a monomial of f of minimal degree. Then by the lemma, fzeJ, ie.,
fs=hf. Comparing monomials of minimal degree we see that h(0)3=0. This
implies that h is invertible and J is generated by the monomial f;. Since J
is radical, the only possibilities for g are (0,0), (0, 1), (1,0) and (1,1). In all
cases C=V(J) is a divisor with normal crossings. This finishes the proof of
the proposition.

2.8

Let PeX* be a nondegenerate polynomial, Y=V (P), and let p be the direction
field on Y, corresponding to the vector field &p. Proposition 2.7 shows that
Ass 2 follows from the following.

Ass. 2’. Each point pe Yis either regular or Poincaré point of p.
Let us check that Ass 2’ holds for a generic polynomial P if k=3. Denote
by Z¥,. < ¥ the subset of nondegenerate polynomials and put

={(P,s)|PeZ¥,, seSp},
—{(P,3)|PeZX,, 5€5p).

) M
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Note that = is irreducible since the projection = — X\0, (P, s)+—s is a fibration
and each fiber is an open subset of a linear space. Since the projection £ — X%,
(P, 5)— P has finite fibers, it is enough to prove that for generic point (P, s)e =, §
is a Poincaré point of the direction field p=pp on Y=Y,. Let A(P, s)=A(pp, 3)
be the Poincaré’s invariant. It is an algebraic function on Z, so it is enough
to check that it is not constant.

One can compute the invariant by direct computations, but they are a little
bit messy. We will use another method, based on the description of p as the
kernel of a 1-form.

Let « be a 1-form on (M, m), whose kernel is p. It can be constructed in
the following way: choose a nondegenerate volume form v on the surface M,
which we consider as a map v: TM » T*M, and put a=v(f), where 0 is a
vector field, generating p. Conversely, given a we can define 0=0v"'(x). We
can assume that a(m)=0 and o does not vanish outside of m. Since a(m)=0
its 1-jet at m is a morphism B: T,,M — T, M. Since A(p,m) is a 1-jet of 0,
we have A(p, m)=v,, ' o B, where v,,: T,,M — T,;* M is the value of v at m.

Let (P, s)e E. Without loss of generality we can assume s=(1, 0, 0,0)e X. Near
s we will identify X with a hyperplane H={(l,x,, x3,x,)}. Then Y is given
by the equation P=0 and the direction field p on Y is given by the 1-form
a=i(E)wo=x,dx3—x3dx; +X,dx,—X4dx,=dx3+Xx,dx, —x,dXx,.

Since seSp, d P(s) is proportional to a(s)=d x5;. Hence we can choose coordi-
nates (y,, y4) on Y such that x,=y,, x,=y4, x3=f(y,, y4) and df (0,0)=0. In
these coordinates a=df +(y,dy,—y4dy,). Choosing form v=2dy,dy, on Y,
we see that the matrix A(p, s) is given by

A(p,s)=v~"-Hess f+ 17y

where Hess f is the Hessian of f.

It is easy to check that by choosing appropriate P we can make Hess f
an arbitrary symmetric matrix Q (for instance, put P=x%"2(x, x3— Q(x3, X4)/2).
This shows that Poincaré’s invariant A(P, s) can be made arbitrary, which proves
that assumptions 2’ and 2 hold for generic P.

3. Applications to D-modules, D= D(C")
3.1

Let F be a finitely generated D-module, W< X an irreducible subvariety. We
define the number my (F)eZ* U oo as follows. Consider a good filtration F*
on F, and corresponding X-module F;. Consider the algebra Xy — localization
of ¥ at W — and Xp-module Fy =X, ®;F;. Then by definition

my, (F)=length of X,,-module Fy, .
It is easy to see that
§) my (F)=0if WdCh(F)
my (F)= oo if W is a proper subset of an irreducible component of Ch(F).
my, (F)=multiplicity of F at W if W is an irreducible component of Ch(F).
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Standard arguments (see [Gin], § 1, Cor. 1.3) show that my, (F) is well defined
(does not depend on a good filtration) and additive, i.e., for an exact sequence
0— F'— F - F" -0 one has my, (F)=my (F')+ my (F").

Put m(F)=Y my (F), where the sum is over all minimal i.h.-varieties W< X.

w

Proposition 4. For each finitely generated D-module F
length (F) < m(F).

Proof. Since the function m is additive, it is enough to check that for F =0,
m(F)>0. Let W’ be an irreducible component of Ch(F). By the involutivity
theorem it is an ih.-variety. Choose a minimal i.h.-subvariety W< W’. Then

by ) my(F)>0  and hence m(F)>0.

3.2

Let us call a finitely generated D-module F singular if m(F)<co. From (%) it
is clear that F is singular iff all components of Ch(F) are minimal i.h.-varieties.
The category #s(D) of singular D-modules is a full subcategory of category
4 (D) of all D-modules, closed with respect to subquotients an extensions. The
above proposition shows that its properties are similar to properties of category
Hol(D) = # 4(D) of holonomic D-modules.

Another similarity can be seen in the following result.

Let .#¢(D) be the subcategory of singular D-modules F such that all compo-
nents of Ch(F) have codimension d (i.e., #§(D)=Hol(D)). For each D-module
F and i=>0 denote by EL(F) the right D-module E.(F)=Exty,(F, D) and by E'(F)
the corrsponding left D-module (see [Bor], Ch. VI, §3).

Proposition 5. Suppose F e #¢(D). Then E'(F)=0 for i+d. The contravariant func-
tor E*: ME(D)— ME(D) is a duality; in particular, E*(E*F)=F.

Proof. It is known that for any F, Ch(E'(F))= Ch(F), codim Ch(E'(F))=i and
E!(F)=0 if codim Ch(F)>i (see [Ehl]). This implies that E(F)=0 for i<d.
For i>d, Ch(E'(F))< Ch(F) has dimension strictly less than dim Ch(F). Since
Ch(F) consists of minimal i.h.-varieties, Ch(E'(F))=9, i.e., E{(F)=0. The rest
is proved in the same way as in ([Bor], Ch. VI, Thm. 3.7).

Our definition of a singular D-module has an obvious fault — it depends
on the choice of a filtration in D. One can give analogous definitions for other
choices of filtration, e.g., for the filtration by degree of operator. It is not clear
how these different notions are connected with each other.

3.3
Let PeX*. Consider the following properties of P.
Prop. 1. P is irreducible and Y,=V(P) is a minimal i.h.-variety.

Prop. 2. P is irreducible and Y, does not have proper homogeneous subvarieties
of dimension > 1 tangent to &p.
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By Lemma 1.2, Prop. 2 implies Prop. 1. Conjectures A’ and A” (which we
proved for n=2, k=4) claim that Prop. 1 and Prop. 2 hold for a generic polyno-
mial Pifn>2, k=3.

Theorem 2. Let deD* be an operator whose symbol P=a,(d) satisfies Prop. 1.
Then the left ideal | = Dd < D is maximal.

Proof. Suppose there exists an ideal J such that D2J221. Then o(D)=220(J)2
o(I)=2-P. Since P is irreducible this implies that @+ V(o (J)) S Yp. But V(a(J))
=Ch(D/J) is an i.h.-variety, which contradicts Prop. 1.
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Theorem 3. Let deD* be an operator whose symbol P=o,(d) satisfies Prop. 2.
Let J <D be a left ideal such that Jd=J. Then J=D-d', where d' is a polynomial
ind,ie.,deC[d].

Proof. Put ¢=a(J), Z=V(¥#)=Ch(D/J). The condition [d,J]<J implies
{P’j}cj’ i'e" éP(j)Cf

Step 1. £=¢p is tangent to Z, ie., £(I)<1;. Let us choose fel, and show
that &fel,. By Nullstellensatz fPe ¢ for large p. Since ¢ ¢ < ¢ we have
EP(fP)e . For each point ze Z, EP(fP)(z)=p! (£ f)(z))". Since EP(fP)e # we have
EP(fP)(z)=0, i.e., £(f)(z)=0. This proves that £ fel,.

Step 2. Let Z be an i.h.-variety tangent to ¢p. Then Z=0 or Z=Y or Z=X.
Indeed, suppose not. Then, replacing Z by one of its irreducible components
we can assume that Z is a nonempty irreducible i.h.-variety tangent to &, and
Z3DY

Put Z'=Z Y Then Z’'+Y is homogeneous and tangent to &p. The property
Prop. 2 implies that dim Z'<1. On the other hand, since Z and Y are homoge-
neous and codim Y=1, we have dim Z'>dim Z—1, i.e., dim Z<2. Since Z is
involutive, dim Z >n, which shows that dim Z=n=2. This implies that Z is
Lagrangian. Since vector fields £, and E are tangent to Z, we have w(p, E)|;=0,
ie., k P|;=0 (see 2.2 (x)). In other words, this shows that Z < Yp, which contradicts
Prop. 2.

Step3. If Z=X or Z=0, then J=0=D-0 or J=D=D-1, respectively. So let
us consider the only possible case Z=Y. Let m=my(D/J) be the multiplicity
of D-module F=D/J at component Y. The Proposition 3.1 implies that
length(F)<m.

Consider the operator de End,(F) given by d(a)=a-d, where aeD; it is well
defined since Jd<J. Since length(F)<m by Shur’s lemma (see [Dix], Lem-
ma 2.6.4) there exists a polynomial R(t)e C[t] of degree r <m, such that R(d)=0.
Put d'=R(d)eD. Then R(d)=0 implies that d’'eJ.

Consider an ideal J'=Dd'<J and put F'=D/J'. Clearly my(F')=r. Since
r<m and F is a quotient of F, we see that r=m and F=F, ie,
J=J'=Dd. Q.E.D.
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4. Proof of Proposition 0.4

4.1

Let D= ) D’ be the filtration of D=D(C") given by the order of an operator,
j=0

£ the associated graded algebra, &;; D/— 2% the symbol map. Then %

=Cluy, ..., Uy, Ny, ..., M), Where u;=6o(u;), n;=6,(0;). We consider 2 as the

algebra of polynomial function on the space X = T*C" — cotangent bundle to

C". The commutator in D defines the standard symplectic structure on cotangent

n
bundle X, given by the form w= Z du;dn;.
i=1

Note that the space X is the same as the space X before, but the geometry
is quite different, since now we consider homoteties which act only in # direction.
In particular, by i.h.-variety we now mean an involutive subvariety of X, invari-
ant with respect to homoteties in # direction. The involutivity theorem claims
that for each finitely generated D-module F its characteristic variety Ch(F) is
an i.h.-variety (see [Gab])).

4.2

In case of X an ih.-variety of dimension >n is rarely minimal. The reason
is that it usually contains i.h.-subvarieties of the following types

(i) C"<T*C"- the zero section

(i) T*C" for some points se C".
We will call such i.h.-varieties “trivial”. We say that an ih.-variety Yc X is
almost minimal if it does not have proper nontrivial irreducible i.h.-subvarieties.

Let é=XR;(u) 0; be a polynomial vector field on C", S.={seC"|¢(s)=0}
the set of its singular points. Consider the symbol &,(¢) and put Y,=V(d,(¢))
— the zero set of the symbol. By definition Y;={(u, n)e X|ueC", neé(u)* < T;*C").
In particular, Y, contains the zero section C" and spaces T;*C" for seS,.

Conjecture 1. Let ¢ be a generic vector field with coefficients {R;} of degree
k=2. Then Y is an almost minimal i.h.-variety.

4.3.

For n=2 the condition that Y, is an almost minimal i.h.-variety means that
¢ is not tangent to any algebraic curve. Indeed, in this case dim Y,=3, so any
proper i.h.-subvariety Z < Y, has dimension 2, i.e., is Lagrangian.

It is easy to check (see [Kash, Th. 5.1.6, Lemma 1]) that any irreducible
homogeneous Lagrangian subvariety Z< T*C" is the conormal bundle T C"
of an irreducible subvariety M cC" (by definition T3 C" is the closure of the
set {(u, n)|u is a nonsingular point of M, ne T, M+ < T,*C"}).
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In case n=2 an ih.-variety T;C? is trivial if dim M =0 or 2. So we are
left with the possibility Z=T;;C? for some curve M cC2 The condition
Ty C* < Y, means that for nonsingular points ue M, T, M* < &(u)', ie., E(w)e T,M,
which means that ¢ is tangent to M.

Thus for n=2 the conjecture follows from results in the appendix.
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Proposition 6. Let n=2 and & be a polynomial vector field on C". Suppose &
satisfies
(*) (i) Theih.-variety Y, is almost minimal.
(i) The set S, of singular points of ¢ is not empty.
Choose a polynomial function f on C" such that

(*%) For each point seS;, f(s)¢ A(&,s) — the subgroup of C generated by
eigenvalues of the operator A(&,s): T,C"— T,C", given by the 1-jet
of &.

Then the operator d= ¢ + f generates a maximal left ideal in D.
Proof. Note that (+) (i) implies that S, is finite and that &, (¢) is irreducible.

Step 1. Suppose that the ideal I=Dd is not maximal and choose a maximal
ideal J such that D2J 221 =Dd. Then X246 (J)26([)=2 -6, (£). Since the polyno-
mial &, (&) is irreducible, it implies

0+V(E )G Y.

Consider D-modules F=D/I, H=D/J; note that H is irreducible. Then
V(6(J))=Ch(H) is an ih.-variety. So by (%) (i) it is a union of some of the
trivial components C" and T;*C", seS,.

Step 2. Suppose Z=Ch(H) contains the zero section C". Consider H as Z-
module, i.e., a sheaf of 2-modules on C" (see [Bor], Ch. VI, § 1) and denote
by H’ its restriction to V=C"\S,. Then Ch(H')=V < T*V, which implies that
H'’ is O-coherent and hence locally free as ¢,,-module ([Bor], Ch. VI, Prop. 10.4,
Prop. 1.7). Denote by H” the direct image of H' from V to C". Since H' is
locally free as Oy-module, and codimc.(S:) =2, H” is O¢.-coherent (indeed, we
can imbed H’ in a free Op-module ¢, and then H” will be a submodule of
0., which is the direct image of (%). Again applying [Bor, Ch. VI, Prop. 1.7]
we see that H” is locally free as O¢.-module.

We have the natural morphism i: H— H"”, which is an isomorphism on
V. Since H" does not have quotients supported on S;, i: H— H" is an epimor-
phism. But H is irreducible, so H=H" is ()-coherent.

Step 3. Fix a point seS,. For each 9-module # define spectrum Sp; ((¥) to
be the set of all possible eigenvalues of ¢ in all finite-dimensional ¢-invariant
0-module subquotients of #, supported at s. In other words, we consider pairs
(&, %), where F o ¥ > L', £, ¥ are E-invariant finitely generated ¢-modules,
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dim /¥’ <o and £/&' is annihilated by some power of the maximal ideal
mg, and put Sp, (F)= | Sp(& L/&L’). Itis easy to check that for each subquo-

Nz
tient ' of #, Sp, (F')=Spe (F).

Step 4. Let us prove that Sp, (H)< A(¢, s). Indeed ¢ acts trivially on H/mH,
which easily implies that its eigenvalues on m* H/m**' H and hence on H/m‘H
lie in A(&, s) for each k. Since H is (-coherent, Artin-Rees lemma implies that
for each pair £ >.%’ the quotient £/¥’ is a subquotient of H/m*H for large
k,ie, Sp(&, L/ L)V A, s).

On the other hand, consider an element he H, which is the image of 1eD
and put =0-h, ¥ =mg-h. Since H=Dh, h+0 and since H is locally free
as (®-module, h is nonzero in £/¥". Since dh=0, we have Eh= —f(s) hin L/ &',
ie., f(s)eSpe s(H). This contradicts () (i) and (**).

Step 5. We have shown that Z does not contain the zero section. Then
Zc |) T*C ie., as a 9-module H is supported in S,. Since H is irreducible,
seSz
it is supported at one point se S, and by Kashiwara’s theorem (see [ Bor], Ch. VI,
Thm 7.11) it is isomorphic to the standard module d,, supported at s.
It is easy to check directly that Sp, ((6,) = 4 (¢, s) and for each hedy, O-h¢mgh.
Now the same arguments as before lead to a contradiction with (x*). This ends
the proof of the proposition.

5. Miscellaneous remarks
5.1. Basic facts about generic points

Let K< C be a countable subfield, I'=Autg C the group of all field automor-
phisms of C over K. Let M be an affine algebraic variety defined over K and
M (C) be the set of its C-points. Clearly I" acts on M (C).

For simplicity we assume that M is irreducible over K, i.e., that the algebra
K[M] of regular K-functions on M does not have zero divisors. We denote
by K(M) its quotient field.

By definition, points xeM(C) correspond to K-algebra morphisms
v.: K[M]—-C. We call a point xe M (C) generic if v, is an imbedding, i.e., v,
extends to a morphism K (M) — C. The set of generic points we denote by M (C)*.

Proposition 7. Let N < M (C) be a I'-invariant subset. Then there are two mutually
exclusive possibilities.

I) N does not intersect M(C)* and then N can be covered by a countable
number of hypersurfaces in M (C).

II) N contains M(C)* and then N cannot be covered by a countable number
of hypersurfaces in M(C). Moreover, the intersection of N with any nonempty
subset U = M (C), open in usual topology, cannot be covered by a countable number
of hypersurfaces.
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Proof. The proposition follows from the following 3 facts:
F1. I" acts transitively on the set M(C)* =M org(K (M), C). This easily follows

from the fact that for each imbedding K(M)— C, C is an algebraic closure
of a transcendent extension of K (M) with continuum generators.

F2. Any nonempty subset U < M(C) open in usual topology cannot be covered
by a countable number of hypersurfaces. This is a consequence of Baire’s theo-
rem.

F3. M(C\M(C)* can be covered by a countable number of hypersurfaces.
Indeed, for each fe K [m]\O consider a hypersurface

H;={xeM(C)|f(x)=0} ={xeM(C)|v.(f)=0}.

By definition the union of countable number of hypersurfaces H,, fe K[M]\0,
is equal to M (C)\ M (C)*.

5.2. Case k=2 in Theorem A

Let us check that for n=2, k=2 the operator d never generates a maximal
ideal. Let P=0,(d)eX? For simplicity we assume that P is generic. P is a
quadratic form, i.e., a morphism P: X — X* We also can interpret the form
w on X as an antisymmetric morphism w: X — X*. Consider the operator 4
=w 'oP: X — X. It is easy to check that for generic P the operator A% has
all eigenvalues of multiplicity 2. Using eigenspaces decomposition for 4% we

can decompose X =@X ;» where dim X;=2 and all X; are orthogonal both
i=1
with respect to P and with respect to w.
It is known that the group G=Sp(2n)><X acts on the algebra D(C"), preserv-
ing the filtration {D*}. Using an automorphism from G we can transform P
to the polynomial

P= z 'li(xi2+xi2+n)’ iiec'

i=1

Using an additional transformation from the translation part of G we can kill
the first order terms in d, i.e., we can write d in the form

d= Z di, di=XWl+0})+r;, A,rieC.
i=1

This implies that the ideal I=Dd can be imbedded in a larger ideal J
=D(d1, dz, ceey dn)=|=D.
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Appendix: Algebraic solutions of a direction field on P2

Al. Let p be a direction field on P2, defined on a dense open subset. Choose
a differential 1-form f with rational coefficients, which vanishes on p and consid-
er its divisor Div(f). We define deg p = —deg Div(f).

Let p: C3\0—- P? be the standard projection. Choose a rational function
¢ on C* of homogeneous degree deg p such that Div(¢)= —Div(p* f) and put
a=¢-p*B. Then « is a rational 1-form on C* with Div(x)=0. This implies
that « is regular.

The form « has the following properties:

(*) o is homogeneous of degree k=degp and a(E)=0, where E is the Euler
vector field.
(**) The singular set S,={seC?|a(s)=0} has codimension > 1.

Clearly « is defined by p uniquely up to a scalar. Conversely, any 1-form
o, satisfying (), (**) defines a direction field p, by p*p=Kera. The set S,
=S, =P? of singular points of p is finite.

Denote by Q, the space of regular 1-forms on C* of homogeneous degree
k, and by €, the subspace of 1-form, orthogonal to E. As we saw, direction
fields of degree k are parametrized by an open subset of €;.

Let % be the space of homogeneous polynomials of degree k on C3.. Then
for k=0, dim % =(k+ 1)(k+ 2)/2. This implies

dim @, =3dim %#,_,=3k(k+1)/2 for k=0,
dim Q,=dim Q, —dim #=k>—1 (k>0), dimQ,=0.
Thus direction fields of degree k> 1 are parametrized by k* —2 parameters.

A2. An algebraic curve C<P?, tangent to p we call an algebraic solution of
p.

Proposition 8. Any algebraic solution C of p passes through one of the singular
points of p.

Proof. Suppose C does not intersect S,. Then C is nonsingular. Denote by
F the algebra of regular functions on C* and by I,=% the ideal of functions
which vanish on subvariety Z=p~ !(C)<C3. This ideal is generated by one
homogeneous function. We denote this function by Q and put I=deg Q. Also
denote by a=a, a 1-form of degree k=deg p on C3, which defines p.

For each point ze Z we have

a(z)+0  (since z¢S(p)),
dQ(z)#0 (since Z is nonsingular at z ),
a(z) and d Q(z) vanish on T,(Z).

This implies that there exists an invertible function f on Z such that a=fdQ.
Clearly f is homogeneous of degree k—I, ie., f is an invertible section of the
sheaf Oc(k—1)=0(k—I)|c. Since the sheaf Oc(1) on C has positive degree, this
implies that k=1 and f is constant.
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Let f=f,eC. Consider the form o' =a—f,dQ. For each zeZ, o/ (z)=0, so
o is divisible by Q, i.e., a'=Q7y, where y is a 1-form of homogeneous degree
0. Since there are no such forms, y=0, i.e., a=f,d Q.

However, this implies O=o(E)=f,dQ(E)=f,l-Q — a contradiction which
proves the proposition.

A 3. When a solution passes through a singular point, it is difficult to tell anything
about the solution, unless this point happened to be a Poincaré point (see 2.7).
So we will pay special attention to direction fields p for which all singular
points are Poincaré points (we call such a direction field and the corresponding
1-form o Poincare). It is easy to check that a generic 1-form o of degree =3
is Poincaré (compare with 2.8).

Theorem 4. Fix k>3. Then a generic direction field p on P? of degree k does
not have algebraic solutions. Moreover, there exists an open dense subset V<,
such that any Poincaré 1-form o€V corresponds to a direction field with no alge-
braic solution.

Proof. Step 1. Let aeQ; be a Poincaré 1-form, p corresponding direction field,
CcP? an irreducible algebraic solution of p, Z=p~'(C), Q% a generator
of the ideal I,, [=deg Q.

Let C and Z be normalizations of C and Z, respectively. In the same way
as in 2.8 and 2.6, one checks that C is a divisor with normal crossings and
there exists a regular function f on Z of homogeneous degree k—I such that
on a dense subset of Z, a=fdQ.

We can interpret f as a global section of the invertible sheaf Oz(k—1I) on
C. Since f #0, we have k=1.

Step 2. Fix I, 1<k and denote by =, a subset of forms ae; which satisfy
the following property.

(*) There exists an irreducible divisor C = P? w~ith normal crossings, given by
a polynomial Qe % and a regular function f on Z (where Z is the normalization
of Z=p~1(C)), such that on a dense subset of Z, a=fdQ.

Clearly Z, is a constructible subset of Q. We denote by V the complement
k

in @ of the closure of () Z,. Step 1 shows that each Poincaré 1-form aeV
=1

does not have algebraic solutions. Hence it is enough to check that V=0, ie.,

to check that for each [, dim =, <dim ;.

Step 3. Let us estimate dim Z,. Since Q€ %, it depends on dim & =(1+1)(I+2)/2
parameters. N
For a fixed Q, f is a section of I'(C, O¢(k—1)). Since the curve C is irreducible,

dim I'(C, Og(k—1)) £ 1+ deg Op(k—D=1+(k—1) deg Oc(1)=1+(k—1) ],

Le., f depends on 1+ (k—1I) | parameters.

For fixed Q and f, a is uniquely defined on Z by a=fdQ, so « is defined
up to addition of a form Qy, with yeQ;_,. This gives dim Q;_,=(k—1)*—1
additional parameters (zero if k=1I). Since transformation Q+—1Q, fi—1~'f does
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not change a, we see that

dim E,<(1+ 1)(+2)2+A + (k=D D+(k—)>—1)—1
=+ D) +2)/2+k(k—1)— 1 = ¢(]).

We should check that for 1 <1<k, ¢(l) <dim Q; =k*—1. Since ¢ is a convex
function, it is enough to check the inequality for /=1 and I=k.

o(1)=3+k>—k—1<k?®—1 since k>3
ok)=(k+1)(k+2)2—1<k*—1 for k>3.

Since for =k, dim €, _,=044(k—I)*> — 1, this case should be treated separate-
ly. In this case a=f,dQ on Z with f,eC and the same arguments as in A2
show that =0, i.e., 5, =0.

This proves Theorem A 3.

A4. Let ¥, be the space of vector fields ¢ on C? of the form ¢é=R,0,+R,0,,
where R,, R, are polynomials of degree <k —2 (we will see that they correspond
to direction fields on P2 of degree k).

Theorem 5. Fix k> 3. Then a generic field £€V, is not tangent to any algebraic
curve.

Proof. Let p be the direction field, defined by ¢. We imbed C? into P? and
consider p as a direction field on P2. Let us describe explicitly the corresponding
1-form o on C3. We imbed C? — C3 by u,,u, = 1, u,,u,. Let ty, t,, t, be coordi-
nates on C3. For each polynomial R in u,,u, of degree <k—2 we denote
by Re %, _, the homogeneous polynomial on C3, whose restriction to C? gives
R. The direction field p on C? is given by a 1-form «' =R,du, — R, du,, which
extends to a 1-form aeQ; given by

(%) a=(t,R, —t,R,)dty+t,R,dt, —to R, dt,.

Unfortunately, we cannot directly apply Theorem A3, since the morphism i:
Vi, — Q, defined by (%) is not onto. Namely, denote by Z, the hyperplane t,=0
in C? and consider a subspace Q) =, consisting of forms « such that «|Z,=0.

It is easy to see that i: V; > Q.

What we can do is just to repeat the proof of Theorem A3 with changing
€2 by Q". Let us sketch the proof.

Step 1. Generic form aeQ} is Poincaré. It is enough to find an example of
a form aeQ; and a point se Co=P(Z,) which is a Poincaré singular point for
«. The rest is like in 2.8. In other words, we should find some direction field
p of degree k, which has a solution Cx~P'cP? and has a Poincaré point s
on C. We can take p to be the direction field, corresponding to the vector
field é=(1+u,)* " 3(4,u;0,+A,u,0,)), C be the line u, =0 and s be the point
u;=u,=0.

Step 2. Now let us repeat steps 2 and 3 of the proof of Theorem A 3.
We denote by & the set of forms a such that
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(*) There exists a divisor C<=P? with normal crossings, such that C>C,
and C\C, is irreducible, given by a polynomial Qe %, and a regular function
f on Z (normalization of Z =p~!(C)), such that on a dense subset of Z, a=fd Q.

Let us estimate dim =} for 2<I<k (note that I=deg Q> 1, since Q=t,Q’).
Since Qety % -, it depends on dim %,_,=I[(l+1)/2 parameters. For a fixed
0, f depends on dim I'(C, O¢(k — 1)) parameters. Since C has 2 irreducible compo-
nents,

dim I'(C, Op(k—1) <2+ (k—1)-1.

For fixed Q, f the form o is defined up to Q- Q;_,, i€, has dim Q; _,=(k—1)?
—1 additional parameters. Hence

dim Z I+ D2+ (k=) 1+ 2)+(k—=D> =)= 1=1(I+ )2+ k(k—D=¢'(]).
It is enough to check the inequality

¢'(h<dim Q=k*—k for [=2 and I=k.
P Q)=3+k—2k=(k*—k)+(B—k)<k>*—k for k>3
@) =k(k+1)/2=(k2—k)—L(k2=3k)<k*—k for k>3.

This proves the Theorem A4.
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Oblatum 27-VIII-1987

Note added in proof
Conjecture A was proved for n>2, k=4 in paper “Algebraic varieties preserved by generic flows”
by V. Lunts
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