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Abstract. We describe a new method to estimate the trilinear period on automorphic
representations of PGL2(R). Such a period gives rise to a special value of the triple
L-function. We prove a bound for the triple period which amounts to a subconvexity
bound for the corresponding special value of the triple L-function. Our method is based
on the study of the analytic structure of the corresponding unique trilinear functional
on unitary representations of PGL2(R).

1. Introduction

1.1. Maass forms. Let H denote the upper half plane equipped with the standard Rie-
mannian metric of constant curvature −1. We denote by dv the associated volume element
and by ∆ the corresponding Laplace-Beltrami operator on H.

Fix a discrete group Γ of motions of H and consider the Riemann surface Y = Γ\H.
For simplicity we assume that Y is compact (the case of Y of finite volume is discussed
at the end of the introduction). According to the uniformization theorem, any compact
Riemann surface Y with the metric of constant curvature −1 is a special case of this
construction.

Consider the spectral decomposition of the operator ∆ in the space L2(Y, dv) of functions
on Y . It is known that the operator ∆ is non-negative and has a purely discrete spectrum;
we will denote the eigenvalues of ∆ by 0 = µ0 < µ1 ≤ µ2 ≤ ... .

For these eigenvalues, we always use a natural (from the representation-theoretic point of

view) parametrization µi =
1−λ2i

4
, where λi ∈ C. We denote by φi = φλi the corresponding

eigenfunctions (normalized to have L2-norm one).

In the theory of automorphic forms, the functions φλi are called automorphic functions
or Maass forms (after H. Maass, [M]). The study of Maass forms plays an important
role in analytic number theory, analysis and geometry. We are interested in their analytic
properties and will present a new method of bounding some important quantities arising
from functions φi.

Date: February 25, 2010.
2000 Mathematics Subject Classification. Primary 11F67, 22E45; Secondary 11F70, 11M26.
Key words and phrases. Representation theory, Periods, Automorphic L-functions, Subconvexity.

1



2 JOSEPH BERNSTEIN AND ANDRE REZNIKOV

A specific problem that we are going to address in this paper belongs to an active
area of research in the theory of automorphic functions that studies an interplay between
periods, special values of automorphic L-functions and representation theory. One of the
central features of this interplay is the uniqueness of invariant functionals associated to
corresponding periods. The discovery of this interplay goes back to classical works of E.
Hecke and H. Maass.

It is well-known that uniqueness plays a central role in the modern theory of automorphic
functions (see [PS]). The impact that uniqueness has on the analytic behavior of periods
and L-functions is yet another manifestation of this principle.

1.2. Triple products. For any three Maass forms φi, φj, φk, we define the following
triple product or triple period:

cijk =

∫
Y

φiφjφkdv .

We would like to estimate the coefficient cijk as a function of parameters λi, λj, λk. In
particular, we would like to find bounds for these coefficients as one or more of the indices
i, j, k tend to infinity.

The bounds on the coefficient cijk are related to bounds on automorphic L-functions as
can be seen from the following beautiful formula of T. Watson (see [Wa], [Ic]):∣∣∣∣∫

Y

φiφjφkdv

∣∣∣∣2 =
Λ(1/2, φi ⊗ φj ⊗ φk)

Λ(1, φi, Ad)Λ(1, φj, Ad)Λ(1, φk, Ad)
. (1.1)

Here the φt are the so-called cuspidal Hecke-Maass functions of norm one on the Riemann
surface Y = Γ \ H arising from the full modular group Γ = SL2(Z) or from the group
of units of a quaternion algebra. The functions Λ(s, φi ⊗ φj ⊗ φk) and Λ(s, φ, Ad) are
appropriate completed automorphic L-functions.

It was first discovered by R. Rankin [Ra] and A. Selberg [Se] that the special case
of above mentioned triple product gives rise to an automorphic L-function (namely, they
considered the case where one of the Maass forms is replaced by an Eisenstein series). That
allowed them to obtain analytic continuation and effective bounds for these L-functions
and, as an application, to obtain one of the first non-trivial bounds for Fourier coefficients
of cusp forms towards Ramanujan’s conjecture. The relation (1.1) can be viewed as a
far reaching generalization of the original Rankin-Selberg formula. The relation (1.1) was
motivated by the work of M. Harris and S. Kudla ([HK]) on a conjecture of H. Jacquet.

1.3. Results. In this paper we consider the following problem. We fix two Maass forms
φ = φτ and φ′ = φτ ′ as above and consider the coefficients defined by the triple period:

ci =

∫
Y

φφ′φidv (1.2)

as the φi run over an orthonormal basis of Maass forms.
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Thus we see from (1.1) that the estimates of the coefficients ci are essentially equivalent
to the estimates of the corresponding L-functions. One would like to have a general
method of estimating the coefficients ci and similar quantities. This problem was raised
by Selberg in his celebrated paper [Se].

The first non-trivial observation is that the coefficients ci have exponential decay in |λi|
as i→∞. Namely, as we have shown in [BR2], it is natural to introduce the normalized
coefficients

di = γ(λi)|ci|2 . (1.3)

Here γ(λ) is given by an explicit rational expression in terms of the standard Euler
Γ-function (see [BR2]) and, for purely imaginary λ, |λ| → ∞, it has an asymptotic
γ(λ) ∼ β|λ|2 exp(π

2
|λ|) with some explicit β > 0. It turns out that the normalized

coefficients di have at most polynomial growth in |λi|, and hence the coefficients ci decay
exponentially. This is consistent with (1.1) and general experience from the analytic
theory of automorphic L-functions (see [BR2], [Wa]). In Section 5 we explain a more
conceptual way to introduce the coefficients di which is based on considerations from
representation theory.

In [BR2] we proved the following mean value bound

∑
|λi|≤T

di ≤ AT 2 , (1.4)

for arbitrary T > 1 and some effectively computable constant A.

The constant A depends on the geometry of Γ and on parameters τ , τ ′ of eigenfunctions
φ, φ′.

According to Weyl’s law for the spectrum of the Laplace-Beltrami operator ∆ on Y , the
number of terms in this sum is of order CT 2. So this formula says that on average the
coefficients di are bounded by some constant.

More precisely, let us fix an interval I ⊂ R centered at the point T and consider the
finite set of all Maass forms φi with parameter |λi| inside this interval. Then the average
value of coefficients di in this set is bounded by a constant provided the interval I is long
enough (i.e., of size ≈ T ).

Note that the best individual bound which we can get from this formula is di ≤ A|λi|2.
For Hecke-Maass forms this bound corresponds to the convexity bound for the corre-
sponding L-function via Watson formula (1.1).

The central result of this paper is the bound for the sum of the coefficients di over a
shorter interval. Namely, we prove the following
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Theorem. There exist effectively computable constants B, b > 0 such that, for an
arbitrary T > 1, we have the following bound∑

|λi|∈IT

di ≤ BT
5
3 , (1.5)

where IT is the interval of size bT 1/3 centered at T .

The exponent 5/3 above appears for the reason similar to the appearance of the exponent
1/3 in the asymptotic of the Airy integral (namely, a degenerate critical point in the phase
of an oscillatory integral; see Remark 2.7.2).

The constant B depends on the geometry of X and on parameters τ , τ ′ (see Remark 6.6).
The constant b depends on parameters τ , τ ′ only.

Note that the theorem gives an individual bound di ≤ B|λi|
5
3 (for |λi| > 1). Thanks to

the Watson formula (1.1) and a lower bound of H. Iwaniec |L(1, φλi , Ad)| � |λi|−ε (see
[I]), this leads to the following subconvexity bound for the triple L-function (for more on
the relation between triple period and special values of L-functions, see [Wa], [Ic]).

Corollary. Let φ and φ′ be fixed Hecke-Maass cusp forms. For any ε > 0, there exists
Cε > 0 such that the bound

L( 1
2
, φ⊗ φ′ ⊗ φλi) ≤ Cε|λi|

5
3

+ε (1.6)

holds for any Hecke-Maass form φλi.

The convexity bound for the triple L-function corresponds to (1.6) with the exponent
5/3 replaced by 2. We refer to [IS] for a discussion of the subconvexity problem which
is at the core of modern analytic number theory. We note that the above bound is the
first subconvexity bound for an L-function of degree 8 which does not split in a product
of smaller degree L-functions. All previous subconvexity results were obtained for L-
functions of degree at most 4.

In [V] A. Venkatesh obtained a subconvexity bound for the triple L-function in the
level aspect (i.e., with respect to a tower of congruence subgroups Γ(N) as N → ∞).
His method is quite different from the method we present in this paper and is based on
ergodic theory.

We formulate a natural

Conjecture. For any ε > 0 we have di � |λi|ε .

For Hecke-Maass forms on congruence subgroups, this conjecture is consistent with the
Lindelöf conjecture for the triple L-functions (for more details, see [BR2] and [Wa]).

1.3.1. Remarks. 1. Our results can be extended to the case of a general finite co-volume
lattice Γ ⊂ G (see Remark 7.2.2 for more detail).

2. First results on the exact exponential decay of triple products for a general lat-
tice Γ and holomorphic forms were obtained by A. Good [Go] using Poincaré series. P.
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Sarnak [Sa] discovered ingenious analytic continuation of Maass forms to the complex-
ification of the Riemann surface Y to obtain somewhat weaker results for Maass forms
(for representation-theoretic approach to this method and generalizations, see [BR1] and
[KS]). Our present method seems to be completely different and avoids analytic continu-
ation.

3. We would like to stress that the bound for the triple product in Theorem 1.3 is
valid for a general lattice Γ, including non-arithmetic lattices. In fact, in our method we
do not use Fourier coefficients or Hecke eigenvalues through which one usually accesses
values of L-functions for congruence subgroups. Our method gives estimates for periods of
automorphic functions directly and L-functions appear only through the Watson formula
(1.1) (the same is true for the method of Venkatesh [V]).

The paper is organized as follows. The next section is devoted to a detailed explanation
of ideas behind the method of the proof of Theorem 1.3. The main body of the paper
(Sections 3-10) is devoted to the proof. Two Appendices containing technical calculations
conclude the paper. The numbering in the paper is organized as follows. Each subsec-
tion has a unique Theorem, Proposition, Lemma etc., and these are numbered by the
corresponding section. Equations are numbered continuously within each section.

Acknowledgements. It is a pleasure to thank Peter Sarnak for stimulating discussions
and support of this work. We would like to thank Hervé Jacquet for a valuable comment,
Misha Sodin for analytic advice, and the referee for constructive comments.

The research was partially supported by a BSF grant, by a GIF grant, by the Excel-
lency Center “Application of Algebraic Geometry and Logic to Representation theory”
of the Israel Science Foundation and by the Emmy Noether Institute for Mathematics
(the Center of Minerva Foundation of Germany). The results of this paper were mostly
obtained during our visits to the Max-Planck Institute in Bonn and in Leipzig, to the
Courant Institute, and to Weizmann Institute. We would like to thank these institutions
for their excellent atmosphere.

2. Outline of the proof

We describe now the general ideas behind our proof. It is based on ideas from represen-
tation theory (for a detailed account of the corresponding setting, see [BR2] and Section 4
below). In what follows we sketch the method of the proof whose technical details appear
in the rest of the paper.

2.1. Automorphic representations. Let G denote the group of all motions of H. This
group is naturally isomorphic to PGL2(R) and as a G-space H is naturally isomorphic to
G/K, where K = PO(2) is the standard maximal compact subgroup of G.
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By definition, Γ is a subgroup of G. The space X = Γ\G with the natural right action
of G is called an automorphic space. We will identify the Riemann surface Y = Γ\H with
X/K = Γ \G/K.

We use the standard language of automorphic representations (see [G6] and Section 3
below). Let (π,G, V ) be an irreducible smooth representation of G. An automorphic
structure on V is a continuous G-morphism ν : V → C∞(X).

The pair (π, ν) consisting of an abstract representation (π, V ) and the automorphic
structure ν will be called an automorphic representation. This terminology is slightly
more precise then the standard one. We find it more convenient for our purposes.

We always assume that (π, V ) is unitary (i.e., V is equipped with a positive definite
G-invariant Hermitian form P ), and that the automorphic structure ν is compatible with
the invariant Hermitian form P .

We will usually present the abstract representation (π, V ) by an explicit model. We will
deal mostly with class one irreducible representations of G (i.e., those with a non-zero
K-fixed vector). If (π, V ) is a non-trivial class one representation we use for it the model
V = Vλ, where λ ∈ iR∪ (0, 1) and Vλ is the space of smooth even homogeneous functions
on R2 \ 0 of the homogeneous degree λ − 1 (see [G5], [BR2]). We denote by eλ ∈ Vλ
the function taking constant value 1 on S1 ⊂ R2 \ 0. This gives a K-invariant vector in
the representation Vλ which we call the standard K-fixed vector in Vλ. We normalize the
invariant Hermitian form P on Vλ by the condition P (eλ) = 1.

The theorem of Gelfand and Fomin states that all Maass forms (or more generally au-
tomorphic functions) could be obtained as special vectors in appropriate automorphic
representations (see [G6]). Namely, a Maass form φ = ν(eλ) corresponding to an auto-

morphic structure ν on a representation with a model Vλ has the eigenvalue µ = 1−λ2
4

.

We translate various questions about Maass forms into corresponding questions about
associated automorphic representations. This allows us to employ powerful methods of
representation theory.

2.2. Let us fix two (nontrivial) automorphic representations (π, ν) and (π′, ν ′). We assume
that both are representations of class one (i.e., V ' Vτ and V ′ ' Vτ ′ , τ, τ

′ ∈ iR ∪ (0, 1)).
These give rise to Maass forms φ = ν(eτ ) and φ′ = ν ′(eτ ′). Let (πi, Vi, νi) be a third
automorphic representation (which we a going to vary) with the parameter λi (i.e., Vi '
Vλi).

The triple product ci =
∫
Y
φφ′φidv extends to a G-equivariant trilinear functional on

the corresponding automorphic representations lauti : V ⊗ V ′ ⊗ Vi → C.

Next we use a general result from representation theory that such a G-equivariant tri-
linear functional is unique up to a scalar, i.e., that dim MorG(V ⊗ V ′ ⊗ V ′′,C) ≤ 1 for
any smooth irreducible representations V, V ′, V ′′ of G (see [O], [P], [Lo] and the dis-
cussion in [BR2]). This implies that the automorphic functional lauti is proportional to
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some explicit model functional lmodλi
. In [BR2] we gave a description of such a model func-

tional lmodλ : V ⊗ V ′ ⊗ Vλ → C for any λ using explicit realizations of representations V ,
V ′ and Vλ of the group G in spaces of homogeneous functions; it is important that the
model functional knows nothing about the automorphic picture and carries no arithmetic
information.

Thus we can write lauti = ai · lmodλi
for some constant ai, and hence

ci = lauti (eτ ⊗ eτ ′ ⊗ eλi) = ai · lmodλi
(eτ ⊗ eτ ′ ⊗ eλi) , (2.1)

where eτ , eτ ′ , eλi are the standard K-invariant unit vectors in representations V, V ′ and
Vλi corresponding to the automorphic forms φ, φ′ and φi.

It turns out that the proportionality coefficient ai in (2.1) carries important “automor-
phic” information while the second factor carries no arithmetic information and can be
computed in terms of Γ-functions using explicit realizations of representations Vτ , Vτ ′ and
Vλ (see Appendix in [BR2] where this computation is carried out). This second factor is
responsible for the exponential decay, while the first factor ai has a polynomial behavior
in parameter λi. An explicit computation shows (see loc. cit.) that |ci|2 = 1

γ(λi)
|ai|2, and

hence di = |ai|2 (where the function γ(λ) was described in Section 1.3).

So, from now on we will deal with coefficients di and no longer refer to coefficients ai
and ci at all.

2.3. Hermitian forms. In order to estimate the quantities di, we consider the space
E = Vτ⊗Vτ ′ and use the fact that the coefficients di appear in the spectral decomposition
of the following geometrically defined non-negative Hermitian form H∆ on E (for a detailed
discussion, see [BR2]).

Consider the space C∞(X × X). The diagonal ∆ : X → X × X gives rise to the
restriction morphism r∆ : C∞(X × X) → C∞(X). We define a non-negative Hermitian
form H∆ on C∞(X × X) by setting H∆ = (r∆)∗(PX), where PX is the standard L2

Hermitian form on C∞(X) i.e.,

H∆(w) = PX(r∆(w)) =

∫
X

|r∆(w)|2dµX

for any w ∈ C∞(X×X). We call the restriction of the Hermitian form H∆ to the subspace
E ⊂ C∞(X ×X) the diagonal Hermitian form and denote it by the same letter.

We will describe the spectral decomposition of the Hermitian form H∆ in terms of Her-
mitian forms corresponding to trilinear functionals. Namely, if L is a pre-unitary represen-
tation of G with G-invariant Hermitian norm || ||L, then every G-invariant trilinear func-
tional l : V ⊗V ′⊗L→ C defines a Hermitian form H l on E by H l(w) = sup

||u||L=1

|l(w⊗u)|2 .

Here is another description of this form (see [BR2]). The functional l : V ⊗ V ′⊗L→ C
gives rise to a G-intertwining morphism T l : E → L∗ which image lies in the smooth
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part L̃∗ of L∗. Then the form H l is just the pull back of the Hermitian form on L̃∗

corresponding to the inner product on L.

Consider the orthogonal decomposition L2(X) = (
⊕

i Vi)⊕(
⊕

κ Vκ) where Vi correspond
to Maass forms and Vκ correspond to representations of discrete series. Every G-invariant
subspace L ⊂ L2(X) defines a trilinear functional l : E ⊗ L → C and hence a Hermit-
ian form H l on E. Hence, the decomposition of L2(X) gives rise to the corresponding
decomposition

H∆ =
∑

Haut
i +

∑
Haut
κ

of Hermitian forms (see [BR2]).

We denote by Hλ the model Hermitian form corresponding to the model trilinear func-
tional lmodλ : V ⊗ V ′ ⊗ Vλ → C. The uniqueness of trilinear functionals mentioned in
Section 2.2 (i.e., the formula (2.1)) implies that Haut

i = diHλi . This leads us to

The basic spectral identity

H∆ =
∑
i

diHλi +
∑
κ

Haut
κ , (2.2)

Of course, one can introduce similar model trilinear functionals for the discrete series
representations Vκ and the corresponding coefficients dκ via Haut

κ = dκHκ. We will not
need these in this paper (in fact, in this paper we are trying to avoid computations with
the discrete series representations; see Remark 8.1).

We will mostly use the fact that for every vector w ∈ E this basic spectral identity gives
us an inequality ∑

i

diHλi(w) ≤ H∆(w) (2.3)

which turns into an equality if the vector r∆(w) does not have projection to discrete series
representations (for example, if the vector w is invariant with respect to the diagonal
action of K on E).

We can use this inequality to bound coefficients di. Namely, for a given vector w ∈ E we
usually can compute the values of the weight function Hλ(w) by explicit computations in
the model of representations V, V ′, Vλ. It is usually much more difficult to get reasonable
estimates of the right hand side H∆(w) since it refers to the automorphic picture. In cases
when we manage to do this we get some bounds for the coefficients di.

2.4. Mean-value estimates. In [BR2], using the geometric properties of the diagonal
form and explicit estimates of forms Hλ, we established the mean-value bound (1.4):∑
|λi|≤T

di ≤ AT 2 . Roughly speaking, the proof of this bound is based on the fact that while

the value of the form H∆ on a given vector w ∈ E is very difficult to control, we can
show that for many vectors w the value H∆(w) can be bounded by PE(w), where PE is
the Hermitian form which defines the standard unitary structure on E.
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More precisely, consider the natural representation σ = π⊗π′ of the group G×G on the
space E. Then for a given compact neighborhood U ⊂ G×G of the identity element, there
exists a constant C such that for any vector w ∈ E, the inequality H∆(σ(g)w) ≤ CPE(w)
holds for at least half of the points g ∈ U . This follows from the fact that the average
over U of the quantity H∆(σ(g)w) is bounded by CPE(w)/2.

This allows us, for every T ≥ 1, to show the existence of a vector w ∈ E such that
H∆(w) ≤ CT 2 and Hλ(w) ≥ c for all λ satisfying |λ| ≤ T . The bound (2.3) then implies
the mean-value bound (1.4).

2.5. Bounds for sums over shorter intervals. The main starting point of our ap-
proach to the subconvexity bound is the inequality (2.3) for Hermitian forms. For a given
T > 1, we construct a test vector wT ∈ E such that the weight function λ 7→ Hλ(wT ) has
a sharp peak near |λ| = T (i.e., a vector satisfying the condition (2.6) below).

The problem is how to estimate effectively H∆(wT ). The idea is that the Hermitian form
H∆ is geometrically defined and, as a result, satisfies some non-trivial bounds, symmetries,
etc. None of the explicit model Hermitian forms Hλ satisfies similar properties. By
applying these symmetries to the vector wT , we construct a new vector w̃T and from the
geometry of the automorphic space X, we deduce the bound H∆(wT ) ≤ H∆(w̃T ).

On the other hand, the weight function Hλ(w̃T ) in the spectral decomposition H∆(w̃T ) =∑
diHλi(w̃T ) for w̃T behaves quite differently from the weight function Hλ(wT ) for wT .

Namely, the function Hλ(w̃T ) behaves regularly (i.e., satisfies condition (2.11) below),
while the weight function Hλ(wT ) has a sharp peak near |λ| = T .

The regularity of the function Hλ(w̃T ) coupled with the mean-value bound (1.4) allows
us to prove a sharp upper bound on the value of H∆(w̃T ) by purely spectral considerations
(in the cases that we consider there is no contribution from discrete series). We do not
see how to get such sharp bound by geometric considerations working on the automorphic
space X ×X.

Using this bound for H∆(w̃T ) and the inequality H∆(wT ) ≤ H∆(w̃T ), we obtain a non-
trivial bound for H∆(wT ) and, as a result, the desired bound for the coefficients di.

We now describe this strategy in more detail.

2.6. Proof of Theorem 1.3. We only consider the case of representations of the prin-
cipal series, i.e., we assume that V = Vτ , V

′ = Vτ ′ for some τ, τ ′ ∈ iR; the case of
representations of the complementary series can be treated similarly.

We denote by ν and ν ′ the corresponding automorphic realizations of V and V ′. We
choose an orthonormal basis {en}n∈2Z in V consisting of K-types and similarly an or-
thonormal basis {e′n} in V ′.

Vectors wn = en ⊗ e′−n ∈ E = V ⊗ V ′ will play an important role in our computations.
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Let us set

S = 2(|τ |+ |τ ′|) + 1 (2.4)

the constant depending on parameters of representations V and V ′ only. For a given
T ≥ S, we choose an even integer n such that |T − 2n| ≤ 10 and set

wT = wn = en ⊗ e′−n . (2.5)

In fact, all we need is that |T − 2n| remain bounded as T →∞.

By a direct computation involving stationary phase method, we show in Section 9.2 that
the following lower bound holds

First spectral bound:

There exist constants b, c > 0 such that

Hλ(wT ) ≥ c T−5/3 for |λ| ∈ IT , (2.6)

where IT is the interval of length bT 1/3 centered at the point T .

This inequality together with the bound
∑

i diHλi(wT ) ≤ H∆(wT ) (see (2.3)) imply the
bound ∑

|λi|∈IT

di ≤ CT 5/3H∆(wT ) , (2.7)

for some constant C.

Now we claim that the quantity H∆(wT ) is uniformly bounded by some constant D
which does not depend on T . Namely we can write

H∆(wT ) =

∫
X

|ν(en)|2|ν ′(e′−n)|2 dµX ≤
1

2

(
||ν(en)||4L4(X) + ||ν ′(e′−n)||4L4(X)

)
. (2.8)

Hence the necessary bound follows from the following result which, we feel, is of inde-
pendent interest.

Theorem. For a fixed class one automorphic representation ν : V → C∞(X), there
exists a constant D > 0 such that ||ν(en)||L4(X) ≤ D for all n.

This finishes the proof of Theorem 1.3. �

Remark. One would expect that L4-norms of K-types for representations of the discrete
series are uniformly bounded as well. It is a very interesting and deep question to study
dependence of the constant D in Theorem 2.6 on the parameter τ of the automorphic
representation and on the subgroup Γ (for a discussion, see Remark 6.6). Moreover, it
would be interesting to identify (as a norm on an abstract representation πτ ) the invariant
(non-Hermitian) norm which the L4-norm on X induces on the representation πτ via
automorphic isometry ντ (see a discussion in [BR1]).
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Another interesting question is an analog of the above theorem for a cuspidal repre-
sentation for a non-uniform Γ. Specifically, we would like ask if L4-norm of K-types are
bounded for a fixed cuspidal representation (compare to Remark 2, Section 7.2.2).

2.7. L4-norms of K-types. We now explain the proof of the uniform bound for L4-norm
of K-types (i.e., Theorem 2.6).

Let V̄ be the complex conjugate to V representation. The representation V̄ is also an
automorphic representation with the realization ν̄ : V̄ → C∞(X) (see details in Section
6.1). For the proof of Theorem 2.6 it is enough to consider the setup described above
(i.e., the space E, forms H∆, Hλ, etc.) for the special case when V ′ is isomorphic to the
representation V̄ .

We only consider the case of representations of the principal series, i.e., we assume
that V = Vτ and V ′ = V̄ = V−τ for some τ ∈ iR; the case of representations of the
complementary series can be treated similarly.

Choose an orthonormal basis {en}n∈2Z in V consisting of K-types. We denote by {e′n =
e−n = c(e−n)} the complex conjugate basis in V̄ (note that e′n is of the K-type n).

For a given n ∈ 2Z, we set

wn = en ⊗ e′−n and w̃n = wn + wn+2. (2.9)

With such a choice of test vectors we have the following bounds.

Geometric bound:

H∆(wn) ≤ H∆(w̃n) . (2.10)

Second spectral bound:

There exists a constant C ′ such that

Hλ(w̃n) ≤

{
C ′(1 + |n|)−1|λ|−1 + C ′|λ|−3 for all S ≤ |λ| ≤ 4|n| ,
C ′|λ|−3 for all |λ| > 4|n| .

(2.11)

Here S is as in (2.4).

Using the bound (2.11) we will get the following sharp estimate of H∆(w̃n) (see Propo-
sition 6.5):

H∆(w̃n) ≤ D (2.12)

with some explicit constant D > 0 (for the proof, see Section 7.1). Bounds (2.12) and
(2.10) imply the bound for the L4-norm of K-types since in this case H∆(wn) = ||ν(en)||4L4 .

The bound (2.12) follows from the identity H∆(w̃) =
∑
diHλi(w̃) (see (2.2)), the spectral

bound (2.11) and the mean-value bound (1.4) for the coefficients di. The low spectrum
contribution for |λi| ≤ S is bounded by an argument based on the Sobolev restriction
theorem (see Section 7.2.2) . We also use the fact that there are no contribution to
H∆(w̃) coming from the discrete series since the vector w̃ is ∆K-invariant.
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2.7.1. Proof of the geometric bound (2.10). The inequality (2.10) easily follows from the
pointwise bound on X. Namely, in the automorphic realization, the vector wn = en⊗ e′−n
is represented by a function whose restriction un = r∆(νE(wn)) to the diagonal is non-
negative (see also Section 6.2)

un(x) = ν(en)(x) · ν̄(e′−n)(x) = |ν(en)(x)|2 ≥ 0.

From this we see that

H∆(wT ) =

∫
X

|un(x)|2dµX ≤
∫
X

|un(x) + un+2(x)|2dµX = H∆(w̃T ) . �

2.7.2. Sketch of proof of the spectral bounds (2.6) and (2.11). Proof of these bounds is
carried out by the standard application of the stationary phase method and the Van der
Corput lemma. It constitutes the main technical bulk of the paper. We will use the explicit
form of the kernel defining Hermitian forms Hλ in the model realizations of representations
V , V ′ and Vλ. Namely, we use the standard realization of these representations in the space
C∞even(S1) of even functions on S1 (see [BR2] and Section 2.1). Under this identification,
the basis {en}n∈2Z becomes the standard basis of exponents {en = eint}, where 0 ≤ t < 2π
is the standard parameter on S1.

In [BR2], Section 5, we described how to write down an invariant functional for principal
series representations. Namely, let V = Vτ , V

′ = Vτ ′ with τ, τ ′ ∈ iR. In the circle model
of representation Vτ , Vτ ′ , Vλ, the following kernel on the space Vτ ⊗Vτ ′ ⊗Vλ ' C∞((S1)3)
defines an invariant functional kernel on (S1)3:

Kλ(x, y, z) = | sin(x− y)|
−1−τ−τ ′+λ

2 | sin(x− z)|
−1−τ+τ ′−λ

2 | sin(y − z)|
−1+τ−τ ′−λ

2 ,

where x, y, z ∈ S1. We denote this functional by lmodλ . Using the kernel Kλ(x, y, z), we
can define the Hermitian forms Hλ on E ' C∞(S1×S1) by the corresponding oscillatory
integral (over (S1)4; see Section 8.2). This allows us to use the stationary phase method
in the proof of bounds (2.6) and (2.11).

Here appears the main difference between test vectors wn and w̃n . It manifests itself
in the form of the oscillating integrals computing Hλ(wn) and Hλ(w̃n). Namely, both of
these integrals have the same phase function which has a degenerate critical point. The
main difference between them is that for the vector wT the corresponding integral has a
non-zero amplitude at this critical point (this gives the crucial lower bound (2.6)) and for
w̃T the amplitude vanishes at the critical point (resulting in bounds (2.11)).

In fact, we will use the values of Hλ(w) only for ∆K-invariant vectors w ∈ E. This
considerably simplifies our computations since we can reduce them to two repeated inte-
grations in one variable and use the stationary phase method in one variable.

Remarks. 1. The existence of vectors satisfying spectral conditions (2.6) and (2.11)
allows us to shorten the summation over the spectrum, comparatively to the range of
the summation in the convexity bound (1.4). This is necessary if one wants to deduce
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a subconvexity bound from the Bessel inequality of Hermitian forms (2.3) since the con-
vexity bound (1.4) is essentially sharp (see [Re1]). This approach to the subconvexity is
reminiscent of the classical amplification method introduced by Selberg (see [Mi], [MiV]
for the review of the state of the art subconvexity results). Usually one uses a variant of a
trace formula to control the so-called off-diagonal terms arising after shortening the sum.
In our approach there is no use of the Selberg or the Kuznetsov trace formulas. Instead,
we use the hidden symmetries of the diagonal form H∆.

2. The origin of our exponent 5/3 = 2(1/2 + 1/3) in the main Theorem 1.3 (i.e.,
the bound (1.5)) is directly related to the exponent 1/3 in the well-known properties of
the Airy function. In fact, we reduce the proof of the crucial lower bound (2.6) to the
asymptotic of the Airy integral (see Proposition 9.1).

3. After obtaining results presented in this paper, we realized that there exists another
possible approach to bounds for triple and other periods of automorphic functions. It
is based on the notion of strong Gelfand pairs (see [Gr] and references therein). This
approach is presented in [Re2].

There is one technical complication in the approach based on Gelfand pairs, though.
We where not able to produce the desired family of test vectors which is also ∆K ×∆K-
invariant. Without this property one has to consider terms in the spectral decomposition
(2.2) coming from the discrete series representations. It is more cumbersome to study
model trilinear functionals on discrete series as these representations do not have nice
geometric models. As a result, in this paper we use another property of the form H∆ , the
extra positivity provided by the Cauchy-Schwartz inequality (see Section 2.7.1), instead
of the associated Gelfand pairs structure. We hope to return to this subject elsewhere.

3. Representation-theoretic setting

3.1. We recall the standard connection between Maass forms and representation theory
of PGL2(R) (see [G6]). Most of the material in the next three sections is taken from
[BR2], where it is discussed in more detail.

3.1.1. Automorphic space. Let H be the upper half plane with the hyperbolic metric of
constant curvature −1. The group SL2(R) acts on H by fractional linear transformations.
This action allows to identify the group PSL2(R) with the group of all orientation pre-
serving motions of H. For reasons explained below (see Remark 4.2), we would like to
work with the group G of all motions of H; this group is isomorphic to PGL2(R). Hence
throughout the paper we consider the group G = PGL2(R) and denote by K its standard
maximal compact subgroup K = PO(2). We have natural identification G/K = H.

We fix a discrete co-compact subgroup Γ ⊂ G and set X = Γ \G. We fix the unique G-
invariant measure µX on X of total mass one. The group G acts on X (from the right) and
hence on the space of functions on X. Let L2(X) = L2(X, dµX) be the space of square
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integrable functions and (ΠX , G, L
2(X)) the corresponding unitary representation. We

will denote by PX the Hermitian form on L2(X) given by the inner product.

3.1.2. Automorphic representations. Let (π,G, V ) be an irreducible smooth Fréchet rep-
resentation of G (see [Ca] where they are called smooth representations of moderate
growth).

Definition. An automorphic structure on (π, V ) is a continuous G-morphism ν : V →
C∞(X).

We call an automorphic representation a pair (π, ν) of a representation and the au-
tomorphic structure on it. In this paper we always assume that (π, V ) is irreducible,
admissible and also assume that (π, V ) is unitary. This means that V is equipped with a
G-invariant positive definite Hermitian form P , and V is the space of smooth vectors in
the completion L of V with respect to P . An automorphic structure ν : V → C∞(X) is
assumed to be normalized, i.e., we assume that P = ν∗(PX).

3.1.3. Automorphic representations and Maass forms. Let (πλ, G, Vλ) be a representation
of the generalized principal series corresponding to λ ∈ C. The space Vλ is the space of
smooth even homogeneous functions on R2 \ 0 of the homogeneous degree λ − 1 (which
means that f(ax, ay) = |a|λ−1f(x, y) for all a ∈ R \ 0) with the action of GL(2,R) given
by πλ(g)f(x, y) = f(g−1(x, y))| det g|(λ−1)/2 (see [G5]).

In explicit computations it is often convenient to pass from the plane model to a circle
model. Namely, the restriction of functions in Vλ to the unit circle S1 ⊂ R2 defines an
isomorphism of the space Vλ with the space C∞even(S1) of even smooth functions on S1,
so we can think about vectors in Vλ as functions on S1. The constant function 1 on S1

corresponds to the standard unit K-invariant vector eλ ∈ Vλ. We normalize the invariant
Hermitian for P by the condition P (eλ) = 1. For λ ∈ iR, this corresponds to the standard
Hermitian form 〈f, g〉Vλ = 1/2π

∫
S1 fḡdθ on (even) functions on S1.

Suppose ν : V → C∞(X) is an automorphic structure on Vλ. Then φλ = ν(eλ) ∈
C∞(X)K = C∞(Y ) is a Maass form with the eigenvalue µ = 1−λ2

4
.

This construction, which is due to Gelfand and Fomin, gives a one-to-one correspondence
between Maass forms and class one automorphic representations (and more generally
between automorphic forms and automorphic representations of G). We refer to [G6] for
a more detailed discussion (see also [BR2]).

3.1.4. Decomposition of the representation (ΠX , G, L
2(X)). It is well-known that for a

compact X, the representation (ΠX , G, L
2(X)) decomposes into a direct (infinite) sum of

irreducible representations of G with finite multiplicities (see [G6]). We will fix one such
decomposition and call it the automorphic spectrum of X. We can write

L2(X) = (⊕iLi)⊕ (⊕κLκ) ,
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where Li are irreducible representations corresponding to Maass forms (including the
trivial representation), and Lκ are irreducible representations of discrete series.

For us it will be convenient to write this decomposition as the following decomposition
of the Hermitian form PX on C∞(X)

PX =
∑
i

Pi +
∑
κ

Pκ , (3.1)

where Pi = pr∗i (PX) and Pκ = pr∗κ(PX).

4. Triple products

We introduce now our main object of study.

4.1. Automorphic triple products. Suppose we are given three automorphic repre-
sentations (πj, Vj, νj), j = 1, 2, 3 of G

νj : Vj → C∞(X) .

We define the G-invariant trilinear form lautV1,V2,V3
: V1 ⊗ V2 ⊗ V3 → C by the formula

lautV1,V2,V3
(v1 ⊗ v2 ⊗ v3) =

∫
X

φv1(x)φv2(x)φv3(x)dµX ,

where φvj = νj(vj) ∈ C∞(X) for any vj ∈ Vj.
Let (π, V, ν) and (π′, V ′, ν ′) be two fixed automorphic representations of class one. For

any automorphic representation (πi, Vλi , νi) of class one, we have the automorphic trilinear
functional

lautV,V ′,Vλi
: V ⊗ V ′ ⊗ Vλi → C .

In particular, the triple periods ci in (1.2) can be expressed in terms of this form as

ci = lautV,V ′,Vλi
(e⊗ e′ ⊗ eλi) , (4.1)

where e ∈ V , e′ ∈ V ′, eλi ∈ Vλi , are standard K-fixed unit vectors.

4.2. Uniqueness of triple products. The central fact about invariant trilinear func-
tionals is the following uniqueness result:

Theorem. Let (πj, Vj), where j = 1, 2, 3, be three irreducible smooth admissible repre-
sentations of G. Then dim HomG(V1 ⊗ V2 ⊗ V3,C) ≤ 1.

Remark. The uniqueness statement was proven by A. Oksak in [O] for the group
SL(2,C) and the proof could be adopted for PGL2(R) as well (see also [Mo] and [Lo]).
For the p-adic GL(2), more refined results were obtained by D. Prasad (see [P]). He also
proved the uniqueness when at least one representation is a discrete series representation
of GL2(R).
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There is no uniqueness of trilinear functionals for representations of SL2(R) (the space
is two-dimensional). This is the reason why we prefer to work with PGL2(R).

We note, however, that the absence of uniqueness does not pose any serious problem
for the method we present. All what is really needed for our method is the fact that the
space of invariant functionals is finite dimensional.

4.3. Model triple products. In Section 8.1, we use an explicit model for representa-
tions (π, V ), (π′, V ′) and (πi, Vi) to construct a model invariant trilinear functional. The
model functional will be given by an explicit formula. We call it the model triple product
and denote it by lmodV,V ′,Vλi

, or simply lmodλi
, if π and π′ are fixed.

These model functionals are defined for any three irreducible unitary representation of
principal series of G, even if these are not automorphic.

By the uniqueness principle for representations π, π′, πi, there exists a constant ai =
aV,V ′,Vλi such that:

lautV,V ′,Vi
= ai · lmodV,V ′,Vλi

. (4.2)

The constant ai depends on the automorphic realization of abstract representations π, π′

and πλi , and on the choice of the model functional lmodλi
= lmodV,V ′,Vλi

.

From now on we will work with the coefficients di = |ai|2.

4.3.1. Exponential decay. Relations (4.1) and (4.2) give rise to a formula for the triple
product coefficients ci

ci = lautλi
(e⊗ e′ ⊗ eλi) = ai · lmodλi

(e⊗ e′ ⊗ eλi) .
Let us explain how one can deduce the exponential decay for the coefficients ci using this
identity.

The value of the model triple product functional lmodλi
(e ⊗ e′ ⊗ eλi) constructed in Sec-

tion 8.1 is given by an explicit integral. In [BR2], Appendix A, we evaluated this integral
in terms of the standard Euler Γ-function by a direct computation in the model and
showed that |lmodλ (eτ ⊗ eτ ′ ⊗ eλ)|2 = 1/γ(λ), where γ(λ) is as in Section 1.3. After apply-
ing the Stirling formula to that expression, one sees that it has an exponential decay in
|λ|. Hence, in order to obtain bounds on the coefficients ci, one needs to bound coeffi-
cients di = |ai|2. In [BR2] we showed that the coefficients di are at most polynomial. This
explains the exponential decay of coefficients ci. We note that the coefficients di encode
deep arithmetic information, e.g., special values of L-functions.

5. Hermitian forms

5.1. Hermitian forms and trilinear coefficients di. We explain now how to obtain
bounds for the coefficients di
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Our method is based on the fact that these coefficients appear in the spectral decompo-
sition of some geometrically defined Hermitian form on the space E which is essentially
the tensor product of spaces V and V ′. This form plays a crucial role in what follows.

More precisely, denote by L and L′ the Hilbert completions of spaces V and V ′, consider
the unitary representation (Π, G × G,L ⊗ L′) of the group G × G and denote by E its
smooth part; so E is a smooth completion of V ⊗ V ′.

Denote by H(E) the (real) vector space of continuous Hermitian forms on E and by
H+(E) the cone of nonnegative Hermitian forms.

We will describe several classes of Hermitian forms on E; some of them have spectral
description, others are described geometrically.

Let W be a smooth unitary admissible representation of G. Any G-invariant functional
l : V ⊗V ′⊗W → C defines a G-intertwining morphism T l : V ⊗V ′ → W ∗ which extends
to a G-morphism

T l : E → W ,

where we have identified the complex conjugate space W with the smooth part of the
space W ∗ (see Section 6.1).

The standard Hermitian form (scalar product) P = PW on the space W induces the
Hermitian form P̄ on W . Using the operator T l we define the Hermitian form H l on the
space E by H l = (T l)∗(P̄ ), i.e., H l(u) = P̄ (T l(u)) for any u ∈ E.

Remark. We note that if the representation of G in the space W is irreducible and l 6= 0,
then starting with the Hermitian form H l, we can reconstruct the space W , the functional
l, and the morphism T l uniquely up to an isomorphism.

5.1.1. Forms Hλ. Let us introduce a special notation for the particular case we are
interested in. For any λ ∈ iR ∪ (0, 1), consider the class one representation W = Vλ,
choose the model trilinear functional lmodλ : V ⊗V ′⊗Vλ → C described in Section 8.1 and
denote the corresponding Hermitian form on E by Hmod

λ or simply by Hλ. Accordingly, let
Haut
i be the form corresponding to the automorphic functional. We have Haut

i = di ·Hmod
λi

,
where di = |ai|2 = |aV,V ′,Vi |2 are as in (4.2). This is the definition of the coefficients di we
are going to work with.

5.2. Diagonal form H∆. Consider the space C∞(X × X). The diagonal ∆ : X →
X ×X gives rise to the restriction morphism r∆ : C∞(X ×X) → C∞(X). We define a
nonnegative Hermitian form H∆ on C∞(X ×X) by H∆ = (r∆)∗(PX), i.e.,

H∆(u) = PX(r∆(u)) =

∫
X

|r∆(u)|2dµX

for any u ∈ C∞(X ×X).

We say that H∆ is the diagonal form.
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We now consider the spectral decomposition of the Hermitian for H∆ (for a detailed
discussion, see [BR2]). Using the spectral decomposition (3.1) PX =

∑
i Pi +

∑
κ Pκ we

can write H∆ =
∑

iH
aut
i +

∑
κH

aut
κ . We have seen before that Haut

i = diHλi . Hence we
have the following spectral identity (which is a version of the Parseval identity)

H∆ =
∑
i

diHλi +
∑
κ

Haut
κ .

Here the summation on the right is over all irreducible unitary automorphic representa-
tions appearing in the decomposition of L2(X) (see (3.1)). The first sum is over the class
one automorphic representations (including the trivial one) and the second sum is over
the discrete series automorphic representations.

Remark. For most of the proof we will need just the inequality (the Bessel inequality)∑
i

diHλi ≤ H∆ . (5.1)

In order to avoid computations with discrete series, we consider only vectors w ∈ E
which are ∆K-invariant under the natural diagonal action of ∆G ⊂ G × G on E. For
such vectors, the inequality (5.1) becomes the equality

H∆(w) =
∑
i

Haut
i (w) =

∑
i

diHλi(w) . (5.2)

Here the summation is over all automorphic representations of class one.

This follows from the simple fact that for a ∆K-invariant vector w ∈ E, the restriction
onto the diagonal ∆X of the automorphic realization ν ⊗ ν̄(w) is a K-invariant function
on X, and hence orthogonal to discrete series representations appearing in L2(X).

6. L4-norm of K-types

In this section we prove Theorem 2.6. We assume, for simplicity, that the representation
V is a representation of the principal series.

6.1. Complex conjugate representation. Our proof of Theorem 2.6 is spectral, it is
based on the basic spectral identity (2.2) applied to the case when the representation V ′

coincides with the complex conjugate V̄ of the representation V .

We recall that for any complex vector space V we can define the complex conjugate space
V̄ . By definition, V̄ is the same real vector space as V , i.e., we have a canonical bijection
c : V → V̄ , and the structure of the complex vector space is given by λc(v) = c(λ̄v),
λ ∈ C. In particular, c is an antilinear bijection.

The complex conjugate representation (π̄, G, V̄ ) naturally corresponds to any represen-
tation (π,G, V ); unitary structure on V defines a unitary structure on V̄ .
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Let us note that for τ ∈ iR, the representation V̄τ is canonically isomorphic to the
representation Vτ̄ when we consider them as spaces of functions on R2\0 (see Section 3.1.3).
The isomorphism is given by the complex conjugation c(v) = v̄.

An Hermitian form on a space V gives rise to the morphism V → V +, where V + := (V ∗)
is the complex conjugate of the dual space.

6.2. Complex conjugate representation in automorphic picture. Suppose now
that we fixed an automorphic structure ν : V → C∞(X) on the representation V . Then
it defines the canonical automorphic structure ν̄ : V̄ → C∞(X) on the complex conjugate

representation by the formula ν̄(c(v)) = ν(v).

We will consider the representation E = V ⊗ V̄ of the group G × G and denote by
νE = E → C∞(X×X) the corresponding automorphic structure on E (here νE = ν⊗ ν̄).
We have the following basic claim (compare with 2.7.1).

Claim. For any vector v ∈ V consider the vector w = v ⊗ v̄ = v ⊗ c(v) ∈ E and the
corresponding function νE(w) on X × X. Then the restriction u = r∆(νE(w)) of this
function to the diagonal ∆X is a non-negative function on X, and H∆(w) = ||u||2L2(X) =

||ν(v)||4L4(X).

This follows from the observation that u(x) = ν(v)(x) · ν(v)(x) = |ν(v)(x)|2. �

6.3. K-types. We assume that V = Vτ is a representation of the principal series. All the
necessary computations will be done in the circle model Vτ ' C∞even(S1) (i.e., we realize a
vector in V as a smooth function f of the angular parameter t ∈ R such that f(t+ π) =
f(t)). The invariant unitary Hermitian form on V is given by ||f ||2 = 1

π

∫ π
0
|f(t)|2dt.

Let en = exp(int), where n ∈ 2Z, be an orthonormal basis of K-types in the space Vτ
(all weights are even since we work with the group G = PGL2(R)).

Consider the space V̄τ . We have a natural identification V̄τ ' V−τ induced by the
realization of these spaces as spaces of functions on R2 \ 0.

We denote by {e′n = e−n}n∈2Z the corresponding complex conjugate basis for V̄τ ' V−τ .
Under the natural identification V−τ ' C∞even(S1), we have e′n = exp(int) as before.

6.4. Test vectors. In the Introduction (see formula (2.9)) we defined two families of
test vectors central for our proof of the subconvexity. We repeat this construction.

For any n ∈ 2Z, n ≥ 0, we consider two vectors in E = Eτ = Vτ ⊗ V−τ given by

wn = en ⊗ e′−n ,

and

w̃n = wn + wn+2 .
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We note that in the model Vτ ⊗ V−τ ' C∞even,even(S1 × S1) these vectors are represented

by the functions wn(x, y) = ein(x−y) and w̃n(x, y) = (1 + ei2(x−y))ein(x−y).

In Section 2.7.1 we have proven the basic geometric bound (2.10) for these vectors

H∆(wn) ≤ H∆(w̃n) . (?)

6.5. Main Proposition. Our main claim is the following

Proposition. There exists a positive constant D such that

H∆(w̃n) ≤ D , (\)

for all n.
We prove this proposition in Section 7.2.

Remark. The bound (?) is of a geometric nature as it concerns the form H∆ defined
on the automorphic space X and appeals to the automorphic realization of V in C∞(X).
On the other hand, our proof of the bound (\) is purely spectral, despite its geometric
appearance.

6.6. Proof of Theorem 2.6. Proposition 6.5 and the geometric bound H∆(wn) ≤
H∆(w̃n) (see (2.10)) imply the bound in Theorem 2.6 for L4-norm of K-types. Namely,
from Claim 6.2 we see that

||ν(en)||4L4(X) = H∆(wn) ≤ H∆(w̃n) ≤ D , (6.1)

for some D independent of n. �

Remark. From the proof in the next section it could be seen that the bound for the
constant D in Theorem 2.6 (and in Proposition 6.5) that we obtain depends on geometry
of the Riemann surface Y = X/K and on the parameter τ of the representation V .
Namely, we have the following bound

D ≤ C · vol(Y )

vol(Bi(Y ))
· (1 + |τ |)2 ,

for some absolute constant C > 0. Here Bi(Y ) is a hyperbolic ball of the radius equal to
the injectivity radius i(Y ) of Y .

7. Proof of Proposition 6.5

7.1. Spectral Lemma. Our proof is based on the following spectral bounds (these are
bounds (2.11) from the Introduction).

Recall that we set S = 2(|τ | + |τ ′|) + 1 (in fact in this section we can assume that
τ ′ = −τ).

Lemma. There exists a constant C such that for any n ∈ 2Z, the following spectral
bounds hold
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(II1): Hλ(w̃n) ≤ C · (1 + |n|)−1|λ|−1 + C|λ|−3 for all λ satisfying S ≤ |λ| ≤ 4|n|,
(II2): Hλ(w̃n) ≤ C|λ|−3 for all λ satisfying |λ| ≥ 4|n|.

The model Hermitian forms Hλ on E are defined explicitly for every λ ∈ iR as in Section
8.1. The proof of the lemma amounts to a routine application of the stationary phase
method and the van der Corput lemma (see Section 9.3 ). In fact, the restriction |λ| ≥ S

is purely technical. One can obtain good bounds for the value of Hλ(w̃n) for all λ. We
will not need this in what follows. The constant C in the lemma above satisfies a bound
C ≤ C ′S for some absolute constant C ′.

7.2. Proof of Proposition 6.5. For any given n, the function νE(w̃n) is a bounded
smooth function on X ×X and hence H∆(w̃n) is well-defined. We have to show that it is
bounded by some constant D independent of n.

As could be seen from our construction in Section 6.4, vectors w̃n are ∆K-invariant. It
follows from the discussion in Remark 5.2 that for such vectors, we have the following
Parseval identity (5.2)

H∆(w̃n) =
∑
i

Haut
i (w̃n) =

∑
i

diHλi(w̃n) .

Here the sum is over the spherical spectrum I = {λ0, λ1, ...}. Let k0 ∈ N be such
that 2k0 ≤ S ≤ 2k0+1. We decompose the spherical spectrum I as a union of subsets
Ik0 , Ik0+1, ... (dyadic intervals) according to the absolute value of |λ|, and estimate the
contribution of each of these subsets.

Namely, we consider subsets Ik of the spectrum I defined by Ik0 = {λ ∈ I | |λ| < 2k0+1}
and Ik = {λ ∈ I | |λ| ∈ [2k, 2k+1)} for k > k0.

Notice that all exceptional spectra that correspond to representations of the comple-
mentary series and to the trivial representation is contained in the interval Ik0 (we call
it the low spectrum). All the other intervals contain only imaginary values of λ which
correspond to representations of the principal series.

We have H∆(w̃n) =
∑

k≥k0 Hk, where Hk =
∑

λi∈Ik diHλi(w̃n) .

7.2.1. Estimate of Hk for k > k0. The idea of the proof is that on the interval Ik the
function Hλ(w̃n) is more or less constant, so we will not lose much when we replace it by
its maximal value.

According to the bound (II2), Lemma 7.1, we see that for λ ∈ Ik we have a bound
Hλ(w̃n) ≤ Mk where Mk = C(n−12−k + 2−3k) for k satisfying 2k < 4n, and Mk = C2−3k

for k satisfying 2k ≥ 4n. Here C is a universal constant that depends only on τ .
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According to the mean-value bound (1.4) we have
∑

λi∈Ik di ≤ A 22k. Hence we arrive

at the bound Hk ≤ 2kAMk. This implies that

∑
k>k0

Hk ≤ AC

(∑
k>0

2−k +
∑

2k<4n

2kn−1

)
≤ AC(1 + 8) .

7.2.2. Estimate of the low spectrum contribution Hk0. We claim that the sum Hk0 is
bounded by some constant D′ which depends only on the geometry of the space Y . In
principle we can apply to this case the spectral argument similar to the one described
above. However this would lead to some unpleasant computations with the exceptional
spectrum. For that reason we prefer to give the following more geometric argument.

The vector w̃n ∈ E is a ∆K-invariant vector. Hence the corresponding function b =
νE(w̃n)|∆X = |φn|2 + |φn+2|2 is a K-invariant function and we can view it as a function
on Y . Moreover, we can compute its L1-norm on Y

||b||L1(Y ) =

∫
Y

(
|φn|2 + |φn+2|2

)
dv = 2 .

Consider the subspace R = span{φλi | |λi| < 2k0} ⊂ C∞(Y ). This is a finite-dimensional
vector space consisting of smooth functions. Since the space R is finite-dimensional we can
bound the supremum norm on this space || · ||∞ by L2-norm, i.e., there exists a constant
CR such that ||f ||∞ ≤ CR||f ||L2(Y ) for all functions f ∈ R.

Claim. Hk0 ≤ 4C2
R.

Indeed, by definition Hk0 = ||a||2L2(Y ), where the vector a ∈ R is the orthogonal projec-

tion a = prR(b) of the vector b onto the subspace R ⊂ L2(Y ).

Thus we have

H2
k0

= | < a, a > |2 = | < b, a > |2 ≤ ||b||2L1(Y ) · ||a||2∞ ≤ 4C2
R · ||a||2L2(Y ) = 4C2

R ·Hk0 .

This implies the claim and finishes the proof of the proposition. �

Remarks. 1. The constant CR from the proof can be effectively bounded in terms of
the geometry of the Riemann surface Y and of the parameter S. Namely, consider the
second Sobolev norm N on the space C∞(Y ) given by N(f)2 =

∫
Y

(|∆f |2 + |f |2)dv, where
∆ is the Laplace operator. The Sobolev embedding theorem tells that ||f ||∞ ≤ CYN(f)
for some Sobolev constant CY that depends only on the geometry of the surface Y . In
particular, one have a simple bound C2

Y ≤ vol(Y )/vol(Bi(Y )), where Bi(Y ) is the ball of the
injectivity radius i(Y ) of Y . We claim that C2

R ≤ (2+S2)C2
Y and thus Hk0 ≤ 4(2+S2)C2

Y .

Indeed, all the eigenvalues of the Laplace operator ∆ on the space R are bounded by
1
4

+ S2. This implies that for f ∈ R we have N(f)2 ≤ (2 + S2)||f ||2L2 . Thus we see that
C2
R ≤ (2 + S2)C2

Y and hence Hk0 ≤ 4(2 + S2)C2
Y .
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2. The proof of Proposition 6.5 given above could be easily extended to the case of a
general finite co-volume lattice Γ ⊂ G. In fact, the only place where we implicitly used
compactness of X is in the proof of the mean-value bound (1.4) which we quoted from
[BR2]. However, in [BR1] we proved similar bound for a general finite co-volume lattice
and cuspidal functions φ and φ′.

For a general finite co-volume lattice, the spectral decomposition of the Laplace-Beltrami
operator on Y = Γ\H is given by a collection of eigenfunctions φz, where the parameter z
runs through some set Z with the Plancherel measure dµ. The spectral set Z has discrete
points which correspond to eigenfunctions (Maass forms) φz ∈ L2(Y ) and continuous
part which corresponds to eigenfunctions coming from the unitary Eisenstein series. The
collection {φz}z∈Z defines a transform û(z) =< u, φz > for every u ∈ C∞c (Y ). The main
property of this transform is the Plancherel formula ||u||2L2(Y ) =

∫
Z
|û(z)|2dµ.

Let us fix two Maass cusp forms φ and φ′ on Y . For every z ∈ Z, we define the parameter
λz ∈ C and the coefficient dz in the same way as before. In [KS] the following mean-value
bound was obtained (improving on our result in [BR1])∫

T≤|λz |≤2T

dz dµ ≤ A (ln(T ))
3
2 · T 2 .

The proof given in present paper, together with the above mean-value bound, gives the
following bound for L4-norm of K-types in a fixed cuspidal representation ν : V → C∞(X)

||ν(en)||L4(X) ≤ D (ln(2 + |n|))
3
2 for all n.

This is our analog of Theorem 2.6 for non-uniform lattices. In particular we do not know
if L4-norm of K-types are uniformly bounded for a non-uniform lattice.

The bound on L4-norm of K-types implies as before that the following subconvexity
bound holds for a general finite co-volume lattice∫

ZT

dz dµ ≤ B (ln(T ))
3
2 · T 5/3 , where ZT = {z ∈ Z | |λz| ∈ IT} .

The rest of the paper is devoted to the proof of spectral bounds (II1,2) from Lemma 7.1
and the lower bound (2.6). This will be done using computations in the explicit model
of irreducible representations. As a preparation we start with an explicit construction of
model Hermitian forms Hλ.

8. Model trilinear functionals

8.1. Model trilinear functionals. In this section we briefly recall our construction
from [BR2] of model trilinear invariant functionals.
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For every λ ∈ C, we denote by (πλ, Vλ) the smooth class one representation of the
generalized principle series of the group G = PGL2(R) described in Section 3.1.3. As a
vector space Vλ is isomorphic to the space of smooth even functions C∞even(S1) on S1.

We describe the model invariant trilinear functional using this geometric model. Namely,
for three given complex numbers τ, τ ′, λ, we explicitly construct a nontrivial trilinear
functional lmod : Vτ ⊗ Vτ ′ ⊗ Vλ → C by means of its kernel. In the circle model, the
trilinear functional on the triple Vτ , Vτ ′ , Vλ is given by the following integral:

lmodπ,π′,πλ
(f1 ⊗ f2 ⊗ f3) = (2π)−3

∫
(S1)3

f1(x)f2(y)f3(z)Kτ,τ ′,λ(x, y, z)dxdydz ,

with the kernel

Kτ,τ ′,λ(x, y, z) = | sin(x − y)|
−τ−τ ′+λ−1

2 | sin(x − z)|
−τ+τ ′−λ−1

2 | sin(y − z)|
τ−τ ′−λ−1

2 . (8.1)

Here x, y, z are the standard angular parameters on the circle S1. As we verified in
[BR2] this defines a non-zero G-invariant functional.

Remark. 1. For an arbitrary representation the integral defining the trilinear functional
is often divergent and the functional should be defined using regularization of this integral.
There are standard procedures how to make such a regularization (see [G1]). Fortunately,
in the case of class one unitary representations, all integrals converge absolutely, so we
will not discuss the regularization procedure.

2. We do not have a similar simple formula for the trilinear invariant functional when
at least one representation is a representation of discrete series. This is because we do not
know a simple “geometric” model for representations of discrete series. As a result it is
more cumbersome to carry out explicit computations in that case. Another problem we
have to face is that the results of [BR2] have not been extended yet to cover the discrete
series.

Nevertheless, we expect our methods to carry out for discrete series as well and to
produce corresponding subconvexity bounds, and bound for L4-norms of K-types.

8.2. Reduction for ∆K-invariant vectors. In what follows, we only need to deal with
∆K-invariant vectors in E ' Vτ ⊗ Vτ ′ . For such vectors, we can reduce the integral (8.1)
representing the model invariant functional, and hence the Hermitian form Hλ to the
integral of one variable.

Namely, let lmodλ : E⊗Vλ → C be the model trilinear functional introduced in Section 8.1,
Tλ = Tmodλ : E → V−λ be the corresponding map, and Hλ the model Hermitian form on E
obtained from the composition of Tλ with the invariant unitary form on V−λ. We assume
that Vλ is a representation of the principal series since we are only interested in the case
when |λ| ≥ S. In this case, the unitary form on Vλ ' C∞even(S1) is the standard normalized
unitary form on L2(S1).
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Let w ∈ E ' C∞even,even(S1 × S1) be a ∆K-invariant vector. Since it is ∆K-invariant
it can be represented by a function of one variable c = x − y: w(x, y) = u(c), where
u ∈ C∞even(S1). We claim that the estimate of Hλ(w) could be reduced to an estimate of
an integral in one variable. Namely, on the space of ∆K-invariant vectors in E the form
Hλ has rank 1, i.e., it is equal to the absolute value squared of some functional bλ on
C∞(S1). More precisely, we have the following

Lemma. Fix τ, τ ′ ∈ iR as before and assume that λ ∈ iR. There exists an L1

function lλ on S1 such that for any function u ∈ C∞even(S1) and for the corresponding
vector w(x, y) = u(x− y) ∈ E, we have Hλ(w) = |bλ(u)|2 where bλ(u) =

∫
lλ(c)u(c)dc.

Proof. Since the vector w is ∆K-invariant its image Tλ(w) ∈ Vλ is proportional to the
standard unit K-invariant vector eλ. The proportionality coefficient bλ(u) equals

Tλ(w)(0) = (1/2π)2

∫
Kτ,τ ′,λ(x, y, 0)w(x, y)dxdy = 1/2π

∫
S1

lλ(c)u(c)dc ,

where

lλ(c) =
1

2π

∫
S1

Kλ(y + c, y, 0)dy (8.2)

and Kλ(x, y, z) is the kernel of the model trilinear functional defined in (8.1).

Thus we see that Hλ(w) = ||Tλ(w)||2 = |bλ(u)|2. �

Remark. Uniqueness of trilinear functionals implies that b−λ = a(λ) · bλ for some scalar
a(λ) ∈ C×. It is also easy to see that |a(λ)| = 1.

9. Proof of spectral bounds

9.0.1. A convention. In what follows we will study asymptotic behavior for various oscil-
lating integrals. We will consider expansions consisting of a main term and a remainder.
We will bound corresponding remainders in terms of CN -norms.

We will use the following notations. We consider functionals on C∞(R) of the form
IΛ(φ) =

∫
R kΛ(x)φ(x)dx where φ ∈ C∞(R) (usually with compact support). Here kΛ(x) ∈

L1(R) is a kernel function depending on a set of parameters Λ ∈ Rn. We consider
approximations of such functionals of the form IΛ(φ) = I0

Λ(φ) + RIΛ(φ) where we call
I0

Λ(φ) the main term and RIΛ(φ) the remainder. Usually, the main term will be given
by the stationary phase method (i.e., it will be given by a functional which is a weighted
sum of δ-functions at points corresponding to critical points of the phase of kΛ). We
will consider bounds for RIΛ(φ) in terms for CN -norms of function φ. For φ ∈ C∞(a, b)
and an integer N ≥ 0, we will denote by ||φ||CN the CN -norm of φ defined by ||φ||CN =

sup
0≤m≤N, x∈(a,b)

|φ(m)(x)|.



26 JOSEPH BERNSTEIN AND ANDRE REZNIKOV

9.1. Estimate of the functional bλ. In Section 8.2 we have reduced estimates of the
form Hλ to the estimates of the functional bλ. We will be interested in the case when the
function u from Lemma 8.2 has a form u(c) = φ(c)einc, where φ is a fixed smooth function
and n ∈ 2Z is a parameter. We can consider the expression bλ(u) as a functional Fλ,n on
the space C∞(S1) which depends on two parameters λ and n. This functional is given by

Fλ,n(φ) :=

∫
S1

lλ(c)e
incφ(c)dc . (9.1)

The main technical difficulty in evaluating this functional is that we have to give esti-
mates for the values of this functional that are uniform in two parameters λ and n.

Recall that we set S = 2(|τ | + |τ ′|) + 1 and assume that |λ| ≥ S. Using the symmetry
of functional Fλ,n, we will show that it is enough to consider the case when n ∈ 2Z+ and
λ = it, t ≥ S. It turns out that under these conditions the functional Fλ,n is almost
proportional to an elementary functional φ 7→ φ(c0) where c0 = π/2.

We have the following

Proposition. Consider the functional Fλ,n when n ∈ 2Z+ and λ = it, t ≥ S. We have
the following estimates of the values of this functional in terms of CN -norms on C∞(S1).
There exists C > 0 such that

(1) If t ≥ 4n then |Fλ,n(φ)| ≤ C||φ||C3 · t− 3
2 .

(2) If t < 4n we have an approximation Fλ,n(φ) = F 0
λ,n(φ) +RFλ,n(φ) ,

with the main term given by F 0
λ,n(φ) = A(λ, n)φ(c0), for A(λ, n) = t−

5
6A(t−

1
3 (2n − t)).

The error term satisfies a bound

|RFλ,n(φ)| ≤ C||φ||C2 · t−
1
2 (1 + n)−

1
2 + C||φ||C3 · t−

3
2 .

Here A is the classical Airy function (see [Mag], [He, Section 7.6]).

We will prove this proposition in Section 10 by carefully estimating the oscillating inte-
gral defining the functional Fλ,n(φ). For the constant C above we can obtain a bound of
the form C ≤ C ′S for some absolute constant C ′.

9.2. Proof of the spectral bound (2.6). We repeat the construction of the test vector
wT in (2.5). We assume that V = Vτ , V

′ = Vτ ′ for some τ, τ ′ ∈ iR. We choose
an orthonormal basis {en}n∈2Z in V consisting of K-types and similarly an orthonormal
basis {e′n} in V ′.

For a given T ≥ S, we choose even n ≥ 0 such that |T−2n| ≤ 10, and set wT := en⊗e′−n.

Using the reduction from Section 8.2, we see that the vector w = wT corresponds to a
function u(c) = einc. Hence we have Hλ(w) = |Fλ,n(φ)|2, where φ ≡ 1.

From (2) in Proposition 9.1 we see that Fλ,n(φ) = A(λ, n)φ(c0) + RFλ,n(φ). In this
case we have |RFλ,n(φ)| ≤ C(1 + |n|)−1, φ(c0) = 1. The Airy function A is a smooth
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non-vanishing at 0 function ([Mag], [He, Section 7.6]). Hence there are constants b, c > 0
such that |A(x)| ≥ c for all |x| ≤ b. This implies that |A(it, n)| ≥ ct−5/6 for |2n − t| ≤
bt−

1
3 . Hence in the approximation of Fλ,n(φ) stated in Proposition 9.1 (2), the main term

A(it, n)φ(c0) dominates the reminder RFλ,n(φ). The lower bound (2.6) follows. �

9.3. Proof of Lemma 7.1, (II1,2). We assume that V ′ ' V , i.e., τ = −τ ′. Let
n ∈ 2Z and λ ∈ iR, |λ| ≥ S, and w̃ = w̃n as in Section 6.4. As in Section 9.2, we have

Hλ(w̃) = |Fλ,n(φ̃)|2, where φ̃(c) = 1 + e2ic. This time we are looking for a uniform in n
upper bound valid for all |λ| ≥ S.

We need to bound the integral Fλ,n(φ̃). From the form of integral (9.1) it follows that
it is enough to consider the case of n ≥ 0 and Im(λ) ≥ 0. Indeed, using the change of
variables c 7→ −c in integral (9.1), we can assume that n ≥ 0. Considering the complex
conjugate to lλ, we can assume that Im(λ) ≥ 0.

Hence we can apply Proposition 9.1. We have φ̃(c0) = 0, and Fλ,n(φ̃) = RFλ,n(φ̃). Thus
estimates in Lemma 7.1 (II1,2), directly follow from the Proposition 9.1. �

10. Proof of Proposition 9.1

10.1. Proof of Proposition 9.1. The functional Fλ,n is defined using the oscillating
integral Fλ,n(φ) =

∫
lλ(c)e

incφ(c)dc . One of the difficulties in evaluating this functional
is that its kernel function lλ is not an elementary function.

However, since this function itself is defined by an oscillating integral, we can approxi-
mate it by an elementary function kλ which is the sum of main term contributions from
critical points of this oscillating integral.

10.1.1. Approximation of the kernel lλ. We have the following
Lemma. Fix τ, τ ′ ∈ iR and S as before and assume that λ ∈ iR, |λ| ≥ S. There exists
a constant C > 0 depending on τ and τ ′, such that we have the following approximation

lλ(c) = aλ · |λ|−
1
2kλ(c) + rλ(c) , (10.1)

where aλ = ei
π
4 21+λ

2 and the kernel kλ(c) is given by an explicit formula kλ(c) = A(c)mλ(c)
with

A(c) = | sin(c)|
−τ−τ ′−1

2 , mλ(c) = | sin(c/2)|−
λ
2 | cos(c/2)|

λ
2 , (10.2)

and the error term rλ(u) satisfies the bound

|rλ(c)| ≤ C|λ|−
3
2 | sin(c)|−

1
2 | ln(| sin(c/2) cos(c/2)|)| . (10.3)

We will prove this lemma in Section 10.2. For the constant C above we can obtain a
bound of the form C ≤ C ′S for some absolute constant C ′.
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Using this approximation we can approximate the functional Fλ,n by a simpler functional
defined for n ∈ 2Z and φ ∈ C∞even(S1), by

Gλ,n(φ) :=

∫
S1

kλ(c)e
incφ(c)dc = 2

∫ π

0

kλ(c)e
incφ(c)dc . (10.4)

The lemma above implies
Corollary. There exists a constant C ′ = C ′(τ, τ ′) > 0 such that

|Fλ,n(φ)− aλ|λ|−
1
2 ·Gλ,n(φ)| ≤ C ′||φ||L∞(S1) · |λ|−3/2 , (10.5)

for all |λ| ≥ S.

Hence Proposition 9.1 follows from an appropriate estimate for the functional Gλ,n(φ).

10.1.2. Estimate for Gλ,n(φ). We have the following estimate for the functional Gλ,n

defined in (10.4).

Proposition. Consider the functional Gλ,n when n ∈ 2Z+ and λ = it, t ≥ S. There
exists a constant C > 0 depending on τ and τ ′, such that we have the following estimates

(1) If t ≥ 4n then |Gλ,n(φ)| ≤ C||φ||C3 · t−3,
(2) If t < 4n then we have an approximation Gλ,n(φ) = G0

λ,n(φ) +RGλ,n(φ) ,

with the main term given by G0
λ,n(φ) = A(λ, n)φ(c0), for A(λ, n) = t−

1
3A(t−

1
3 (2n − t)).

The error term RGλ,n(φ) satisfies a bound

|RGλ,n(φ)| ≤ C||φ||C2 · (1 + n)−1/2 + C||φ||C3 · t−
3
2 .

Here A is the classical Airy function.

This proposition and bound (10.5) imply Proposition 9.1. This finishes the proof of
Proposition 9.1. �

10.2. Proof of Lemma 10.1.1. We prove the claims in the lemma by essentially
straightforward application of the stationary phase method in the form explained in Ap-
pendix A. In order to estimate the error of this approximation we use the standard
integration by parts argument.

To compute the approximation kλ of lλ, we consider for fixed τ, τ ′ ∈ iR and for |λ| ≥ S,
λ ∈ iR, the integral (8.2):

lλ(c) = (2π)−
1
2

∫
S1

Kτ,τ ′,λ(y + c, y, 0)dy

= (2π)−
1
2 | sin(c)|

−τ−τ ′+λ−1
2 ·

∫
S1

| sin(y + c)|
−τ+τ ′−λ−1

2 | sin(y)|
τ−τ ′−λ−1

2 dy

= | sin(c)|
−τ−τ ′+λ−1

2 l′λ(c) ,
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where the kernel Kτ,τ ′,λ is as in (8.1), and we denote by l′λ (suppressing the dependence
on τ, τ ′) the function

l′λ(c) = (2/π)
1
2

∫
t∈R/πZ

| sin(t+ c/2)|
−τ+τ ′−λ−1

2 | sin(t− c/2)|
τ−τ ′−λ−1

2 dt . (10.6)

To find the asymptotic of the integrals of the type of l′λ(c) is a problem in classical analysis.
We view the integral (10.6) as a one-dimensional integral (in t) with parameters λ and c.
We treat such integrals in Appendix A where we show that the main term (i.e., the term
Mλ(c) below) in the asymptotic of such integrals is given by the stationary phase method
with respect to the parameter λ → ∞ while the parameter c is fixed (c 6= 0, π). In
our case, by a straightforward calculation, we find out that there are two non-degenerate
critical points of the phase at t = 0 and t = π/2. Hence the main term is a sum of two
terms (see equation (10.8)). We estimate the remainder uniformly in c for c 6= 0, π. This
is done by reducing the problem to the standard Beta type integrals. We explain this
reduction in Section A.1.

Proposition A.1 implies that integral (10.6) has the following uniform asymptotic ex-
pansion in λ ∈ iR, |λ| ≥ S and c (c 6= 0, π) for fixed τ, τ ′,

l′λ(c) = ei
π
4 |λ|−

1
2 ·Mλ(c) + r′λ(c) , (10.7)

where the main term Mλ(c) comes from stationary points of the phase at t = 0, π/2 and
is given by

Mλ(c) =
∣∣∣sin( c

2

)∣∣∣−λ +
∣∣∣cos

( c
2

)∣∣∣−λ ; (10.8)

and for c 6= 0, π, the remainder r′λ(c) satisfies the bound

|r′λ(c)| ≤ C|λ|−3/2| ln(| sin(c/2) cos(c/2)|)| (10.9)

with a constant C > 0 depending on τ, τ ′, but not on c and λ.

Let mλ(c) = | sin(c/2)|−λ2 | cos(c/2)|λ2 . After elementary manipulations with (10.8), we
arrive at

lλ(c) = | sin(c)|
−τ−τ ′+λ−1

2 l′λ(c)

= ei
π
4 2

λ
2 |λ|−

1
2 | sin(c)|

−τ−τ ′−1
2 [mλ(c) +m−λ(c)] + | sin(c)|−τ−τ

′−1
2 r′λ(c).

The function lλ has the period equal to π. We note that mλ(c+ π) = m−λ(c).

In (8.2) we integrate lλ(c) against a function u with a period equal to π. Hence we
obtain the asymptotic formula (10.1). �

10.3. Proof of Proposition 10.1.2. The functional Gλ,n was defined in (10.4) through
the kernel kλ as in (10.1)

Gλ,n(φ) =

∫
R/πZ

φ(c)| sin(c)|
−τ−τ ′−1

2 | sin(c/2)|−
λ
2 | cos(c/2)|

λ
2 einc dc (10.10)
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for φ ∈ C∞even(S1), λ = it ∈ iR, t ≥ S, and all n ∈ 2Z+. We consider this integral as
a functional on the space of functions φ ∈ C∞(S1). This functional depends on “large”
parameters λ and n, and on axillary parameters τ and τ ′. Our goal is to find a good
approximation for values of this functional and give an estimate of the error term.

Let us denote by Sλ,n(c) = λ
2
(− ln(| sin(c/2))|+ln(| cos(c/2)|))+ inc the phase of the os-

cillating integral (10.10) and by a(c) = | sin(c)|−τ−τ
′−1

2 its amplitude. Then the functional
(10.10) takes the form

Gλ,n(φ) =

∫
R/πZ

φ(c)a(c)eSλ,n(c)dc . (10.11)

A direct computation shows that the critical points of the phase function Sλ,n are solu-
tions of the equation sin(c) = δ, where δ = 2in/λ = 2n/t. This shows that the functional
(10.10) has different asymptotic behavior for different values of parameter δ. Let us list
what we can expect; note that we consider only the case δ ≥ 0 (i.e., that n ≥ 0 and
t ≥ S).

(1) For δ > 1 the phase function Sλ,n has two critical points of Morse type; in this
case we can estimate the integral using the stationary phase method.

(2) When δ approaches 1 these critical points collide at the point c0 = π/2. In order
to get uniform bounds in this region we use properties of the Airy function.

(3) When δ < 1 the critical points disappear. In this case we will show that the
integral (10.10) is rapidly decaying.

Our goal is to show that the functional Gλ,n(φ) can be approximated by a functional
proportional to the delta function at c0 (i.e., by A(λ, n)φ(c0)). We will also give explicit
uniform bounds for the error term RGλ,n(φ) = Gλ,n(φ)− A(λ, n)φ(c0).

We rewrite the phase function Sλ,n in the form Sλ,n(c) = λ
2
Sδ(c), where δ = 2in/λ. We

will think about integrals Gλ,n(φ) as a oscillatory integrals with “large” parameter λ and
additional parameter δ.

Using the partition of unity we see that to prove the proposition it is enough to consider
separately two cases:

(1) The function φ is supported in a small neighborhood of the point c0 = π/2.
(2) The function φ vanishes in a neighborhood of the point c0 = π/2.

Case 1. Let φ be supported in a small enough neighborhood of the point c0 = π/2. We
claim that for such φ, the following bound holds

|Git,n(φ)− A(it, δ)φ(c0)| ≤ C||φ||C2 · t−
2
3 . (10.12)

Here A(it, δ) = t−
1
3A(t

2
3 (δ−1)) = t−

1
3A(t−

1
3 (2n− t)), and A is the classical Airy function.

The condition 1 + ε ≥ δ ≥ 1 − ε implies that n � |λ|. Hence the above bound implies
that Proposition 10.1.2 holds for such φ.
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We now specify the size of the support of φ and prove bound (10.12). For any 0.01 >
ε > 0, there exists a neighborhood Uε ⊂ [c0 − 0.1, c0 + 0.1] of the point c0 which does
not contain critical points of Sδ for δ 6∈ [1 − ε, 1 + ε]. We assume that φ is supported in
this neighborhood for ε to be specified latter. Integration by part implies then that for
δ 6∈ [1− ε, 1 + ε], the bound |Gλ,n(φ)| � |λ|−N holds for any N > 0. Hence we only need
to consider the case 1 + ε ≥ δ ≥ 1 − ε. We claim that in this case there exists a change
of variables which transforms the integral Gλ,n(φ) to the Airy type integral. Namely, a

direct computation shows that ∂
∂c
Sδ|c0 = ∂2

∂c2
Sδ|c0 = 0 and ∂3

∂c3
Sδ|c0 6= 0. (In fact, it is easy

to see that the dependence of Sδ on δ is non-degenerate. Namely, the family of functions
{Sδ} is a versal deformation of the function (c − c0)3 in the sense of [Ar].) We now can
quote a classical result on oscillating integrals of the Airy type. Namely, Theorem 7.7.18,
[He] evidently implies the following claim

Claim. Let f ∈ C∞(R2) be a real valued smooth compactly supported function such

that ∂f
∂x

= ∂2f
∂x2

= 0 and ∂3f
∂x3
6= 0 at the point (x, y) = (0, 0). Then there exist ε > 0

and smooth real valued functions a(y), b(y) defined on the interval (−ε, ε), such that
a(0) = 0, b(0) = f(0) and∣∣∣∣∫ u(x)eiωf(x,y)dx− eiωb(y) · A

(
a(y)ω

2
3

)
ω−

1
3 · u(0)

∣∣∣∣ ≤ C||u||C2 · ω−
2
3 ,

for all real ω ≥ 1. Here A is the classical Airy function.

The above claim implies bound (10.12) for Gλ,n(φ). Namely, fix ε > 0 such that the
above claim is applicable to f(x, y) = Sy+1(x) for y ∈ [−ε, ε] (i.e., for δ ∈ [1 − ε, 1 + ε]).
Let Uε be a neighborhood of the point c0 which does not contain critical points of Sδ
for δ 6∈ [1 − ε, 1 + ε]. We assume that supp(φ) ⊂ Uε. Applying the above claim for
δ ∈ [1− ε, 1 + ε], we obtain the bound (10.12).

Case 2. Let φ be a function vanishing in a neighborhood of the point c0 = π/2. In this
case we have upper bounds

|Gλ,n(φ)| ≤
{
C ′||φ||C2 · |λ|− 1

2 , for δ > 0.9,
C ′N ||φ||CN · |λ|−N , for 0 < δ ≤ 0.9,

(10.13)

for any N > 0 and some constants C ′, C ′N , which could be explicitly bounded in terms of τ
and τ ′. These bounds immediately follow from the van der Corput lemma and integration
by parts as explained in Section B.3. �

Appendix A. Beta integrals

In this appendix we explain how to prove asymptotic expansion for certain oscillat-
ing integrals which we call Beta integrals. We use these asymptotic in the proof of
Lemma 10.1.1.



32 JOSEPH BERNSTEIN AND ANDRE REZNIKOV

A.1. Beta integrals. Fix a function h ∈ C∞(R) such h(0) = 0, h′ > 0. Fix σ, σ′ ∈ C
such that Re(σ), Re(σ′) > −1 and Re(σ) + Re(σ′) = −1. (In fact, in this paper we will
need only the case Re(σ) = Re(σ′) = −1

2
). We consider following integrals

Hλ,c(φ) =

∫
R
|h(t− c)|σ+λ|h(t+ c)|σ′+λφ(t)dt , (A.1)

where φ ∈ C∞(R), and λ ∈ iR. We are interested in the uniform asymptotic of such
integrals in c, c 6= 0, and for |λ| sufficiently large. Moreover, we will assume that both
supp(φ) (containing 0) and values of c are sufficiently small, depending on the function h.

We write the integral Hλ,c(φ) =
∫
R φ(t)aσ,σ′(c; t)e

λS(c;t)dt in the standard form customary
in the stationary phase method. Here φ(t)aσ,σ′(c; t) is the amplitude and S(c; t) is the
phase in this oscillating integral, both depending on the parameter c and some auxiliary
parameters σ, σ′ which we consider fixed. For any fixed c 6= 0 and smooth φ of compact
support, one can obtain the asymptotic in |λ| → ∞ for Hλ,c(φ) from the stationary phase
method (see [He, Theorem 7.7.6]). We choose the range of the parameter c and the
support of φ small enough so that for all c 6= 0, the following conditions are satisfied.
There exists the unique critical point tc (in variable t) of the phase S(c; t), this critical
point is non-degenerate, and it is disjoint from singularities of the amplitude aσ,σ′ at points
t = ±c (in fact if h is odd, as in our case, then tc = 0 for all c 6= 0). We denote by H0

λ,c(φ)
the main term of the contribution from the critical point tc to the asymptotic of Hλ,c(φ)
given by the stationary phase method. (In particular, we will show that for large |λ| and

fixed c, |H0
λ,c(φ)| = A|λ|− 1

2 and |Hλ,c(φ)− H0
λ,c(φ)| ≤ B|λ|−3/2.)

Our aim is to obtain a meaningful bound for the remainder

RHλ,c(φ) = Hλ,c(φ)− H0
λ,c(φ) ,

which is uniform in λ and c. Recall that we set S = 2(|τ | + |τ ′|) + 1. We claim the
following bound

Proposition. Fix h ∈ C∞(R) as before. There are constants C1, C2 > 0, and intervals
(−ε, ε) and [−d, d] depending on the function h, such that the remainder satisfies the
bound

|RHλ,c(φ)| ≤ C1||φ||C1 · |λ|−
3
2 + C2||φ||C2 · | ln |c|| · |λ|−2 (A.2)

for any |λ| ≥ S, c ∈ (−ε, ε), c 6= 0, and for any smooth function φ such that supp(φ) ⊂
[−d, d].

In fact the method we present allows one to give the asymptotic expansion to any order
with the explicit bound on the remainder.

A.2. Proof of Proposition A.1. We show that it is enough to consider the special
case of h(t) = t. Namely, we claim there exists a smooth change of variables (t, c) to the
new set of variables (x, a), where c depends on a only, such that it transforms the kernel
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function |h(t − c)|σ+λ|h(t + c)|σ′+λ to the homogenous kernel |x − a|σ+λ|x + a|σ′+λ times
some smooth function mildly depending on a.

A.2.1. Reduction to the special case. Let g ∈ C∞c (R) be a function such that h(t) = tg(t)
and g(0) > 0. We denote by f(t, c) = h(t− c)h(t+ c). The necessary change of variables
is given by the following lemma.

Lemma. There exists a change of variables (x, a) = (x(t, c), a(t, c)) in a neighborhood
of the point (0, 0) such that

(1) The variable a is a function of c only,
(2) f(t, c) = (x+ a)(x− a) in new coordinates, and
(3) h(t−c) = (x−a)g1(x, a) and h(t+c) = (x+a)g2(x, a), where g1 and g2 are smooth

functions not vanishing near the point (0, 0).

Using this lemma, we can rewrite the integral

Hλ,c(φ) =

∫
R
|h(t− c)|σ+λ|h(t+ c)|σ′+λφ(t)dt =

∫
R
|x− a|σ+λ|x+ a|σ′+λψ(x)dx , (A.3)

where ψ is a smooth function such that ψ(0) = φ(0) and Cn-norms of ψ are bounded by
those of φ. Explicitly ψ(x) = φ(t(x, a))|g1(x, a)|σ|g2(x, a)|σ′

∣∣∂x
∂t

∣∣.
We introduce integrals

Hλ,a(ψ) =

∫
R
|x− a|σ+λ|x+ a|σ′+λψ(x)dx . (A.4)

Lemma A.2.1 implies that Hλ,c(φ) = Hλ,a(ψ) for an appropriate function ψ (see (A.3)).
Here parameters c and a are related via the change of variables in Lemma A.2.1.

The integral Hλ,a(ψ) also has an asymptotic expansion (in λ for every fixed a) with the
main term H0

λ,a(ψ) given by the stationary phase method at x = 0, and a remainder
RHλ,a(ψ). We want to compare asymptotic expansions of Hλ,c(φ) and of Hλ,a(ψ). Our
considerations are based on the well-known invariancy of terms obtained by the stationary
phase method (see [Ar], [St]). Namely, we have H0

λ,a(ψ) = H0
λ,c(φ). Since integrals

themselves are also equal we have the equality of remaindersRHλ,a(ψ) = RHλ,c(φ). Hence,
we can use the estimate for the remainder for the integral Hλ,a which we obtained in
(A.8), Corollary A.3. Note that the function h enters into the main term H0

λ,a(ψ) and the
remainder RHλ,a(ψ) via the function ψ.

Parameters a and c belong to a bounded set. Hence CN -norms of ψ could be bounded
independently of a in terms of ||φ||CN and of ||h||CN . This implies that the constant in
the bound (A.2) for the remainder RHλ,a(ψ) could be chosen independently of c. This
finishes the proof of Proposition A.1. �
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A.3. Standard Beta integrals. Consider following standard Beta integrals

Hλ,σ,σ′(φ) =

∫
R
|y − 1|σ+λ|y + 1|σ′+λφ(y)dy , (A.5)

where φ ∈ C∞(R), λ ∈ iR, and σ, σ′ are as before. We apply the stationary phase method
and the elementary method of integration by parts as described in Section B.1 in order
to obtain the following bound.

Let R = R\[−0.5, 0.5] and ξ = y ∂
∂y

. The phase function in integral (A.5) has the unique

stationary point at y = 0 which is non-degenerate. Let H0
λ,σ,σ′(φ) be the main term in the

asymptotic of Hλ,σ,σ′(φ) as |λ| → ∞ (i.e., H0
λ,σ,σ′(φ) = αφ(0) · |λ|− 1

2 with α =
(
π
i

) 1
2 given

by the stationary phase method).

Lemma. There are constants C1, C2 > 0 such that the bound∣∣Hλ,σ,σ′(φ)−H0
λ,σ,σ′(φ)

∣∣ ≤ C1||φ||C1([−0.9,0.9]) · |λ|−
3
2 + C2RH(φ) · |λ|−2

holds for any |λ| ≥ S, and for any smooth compactly supported function φ. Here the

reminder is given by RH(φ) =
∫
R

2∑
i=0

|ξi(φ)| dy|y| .

Proof. It is enough to treat separately the case of φ supported near zero (e.g., in the
interval [−0.9, 0.9]) and that of φ vanishing near zero (e.g., vanishing on [−0.5, 0.5]).

Case 1. Function φ supported near zero. The stationary phase method (see [He, Theo-
rem 7.7.6]) implies that

|Hλ,σ,σ′(φ)−H0
λ,σ,σ′(φ)| ≤ C1||φ||C1 · |λ|−

3
2 , (A.6)

with an explicit constant C1. Such a bound is enough for our purposes.

Case 2. Function φ vanishes near zero. We rewrite the integral Hλ,σ,σ′(φ) in the form
IF from (B.1), Appendix B, with

F (y;λ, σ, σ′) = y|y − 1|σ|y + 1|σ′|y − 1|λ|y + 1|λ, (A.7)

and the form ω = dy/y.

Consider the vector field ξ = y ∂
∂y

. A straightforward computation shows that G :=

ξ(F )/F = λ( y
y+1

+ y
y−1

) + gσ,σ′(y), where the function gσ,σ′ is bounded on the set R =

R \ [−0.5, 0.5]. Hence, for |λ| ≥ S, the function H = G−1 is uniformly bounded in λ
and y ∈ R \ [−0.5, 0.5]. Moreover, if we make a change of variable z = y−1, then the
function H and the vector field ξ are smooth on the interval J = [−1, 1] (including
at zero, after extending H and ξ by continuity). Via compactness, this implies that all
functions ξi(H) are uniformly bounded (in the coordinate z) on J , and hence are bounded
on R \ [−0.5, 0.5] (in the original coordinate y). This allows us to estimate the integral
IF (φ) and finishes the proof of the lemma. �
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We will use the bound described in the lemma in order to estimate the integral Hλ,a as
defined in (A.4). Clearly we can reduce the integral Hλ,a to the standard Beta integral
Hλ,σ,σ′ . Namely,

Hλ,a(ψ) =

∫
R
|x− a|σ+λ|x+ a|σ′+λψ(x)dx = |a|σ+σ′−1+2λ

∫
R
|y − 1|σ+λ|y + 1|σ′+λψ(ay)dy .

Let H0
λ,a(ψ) be the main term in the asymptotic of Hλ,a(ψ) which is given by the

stationary phase method for a 6= 0 fixed. Applying the above lemma to the last integral
we obtain the following bound.

Corollary. Let ψ be a compactly supported smooth function. There are constants
C3, C4 > 0, depending on ψ such that the bound∣∣Hλ,a(ψ)−H0

λ,a(ψ)
∣∣ ≤ C3||ψ||C1([−0.9,0.9]) · |λ|−

3
2 + C4| ln(a)| · |λ|−2 (A.8)

holds for all |λ| ≥ S and a ∈ (0, 0.1].

We have H0
λ,a(ψ) = |a|σ+σ′−1+2λα|λ|− 1

2ψ(0). Note that we assumed that Re(σ+σ′− 1 +

2λ) = 0 and hence |H0
λ,a(ψ)| = |αψ(0)| · |λ|− 1

2 .

Proof. Let supp(ψ) ⊂ [−A, A] and denote by ψa(y) = ψ(ay). We note that sup |ξi(ψa)| ≤
sup |ξi(ψ)| for any a ∈ (0, 0.1]. Hence we have

|RH(ψa)| ≤ C1|λ|−n
∑
i

∫
|F |ξi(ψ(ay)u(y))||ω|

≤ C2|λ|−n
∑
i

∫ a−1A

1
2

|F ||ω| ≤ C3|λ|−n| ln(a)| ,

for any n and for some explicit constants C1,2,3 depending on derivatives of ψ. Here we
use the fact that |F | is bounded as y → ±∞ and that ω = dy/y. �

A.3.1. Proof of Lemma A.2.1. The proof is based on the theory of normal forms of
differentiable functions and on Hadamard’s lemma (see [Ar], [Ma]).

Consider a smooth family of functions f(t, c) = h(t−c)h(t+c) = (t2−c2)g(t−c)g(t+c),
where we view t as a variable and c as a parameter. For c = 0 the function f(t, 0)
is equivalent (under a smooth change of variable t) to the function t2. The theory of
versal deformations then implies that there is a change of variable x = x(t, c) such that
f(x, c) = u(c) + x2 for some smooth function u (see [Ar]). On the other hand, the
differential of f(t, c) with respect to c vanishes for all t and f(0, c) < 0. This implies that
we can write u(c) = −c2ũ2(c) with ũ(c) > 0. Hence there exists a new parameter a = a(c)
such that f(x, a) = x2 − a2 = (x− a)(x+ a).

By Hadamard’s lemma (see [Ma]) h(t − c) is divisible by (x − a) since these functions
have the same zeroes (one of the branches of zero set for the function f(x, a) = x2 − a2).
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Hence we can write h(t − c) = (x − a)g1(x, a). It is clear that g1 is invertible near 0.
Similarly for the function h(t+ c). �

Appendix B. Integration by parts and Van der Corput lemma

B.1. Integration by parts. We want to study integrals of the form

IF (φ) =

∫
R
F (y;λ, r)φ(y)ω , (B.1)

where ω is a one-form in y, F is a certain kernel depending on a large parameter λ ∈ iR
and on some additional (multi)parameter r ∈ Rm. We would like to obtain estimates of
IF for |λ| → ∞. We are interested in uniform in r estimates given in terms of Ck-norms
of the function φ (i.e., we want to estimate a Ck-norm of the functional IF ). We have the
following elementary method based on the integration by parts.

First we note that there is a trivial estimate by the absolute value: |IF (φ)| ≤ RF (φ),
where RF (φ) =

∫
R |F (y;λ, r)φ(y)||ω|. We use the integration by parts to bootstrap this

estimate.

Let ξ be a vector field such that

i: H · ξ(F ) = λ · F , where H is a smooth in all parameters function such that
ii: for some n > 0, absolute values of functions H, ξH, . . . , ξnH are bounded by a

constant C > 0, uniformly in all parameters,
iii: ξω = 0.

Proposition. For ξ and H as above, we have the following bound

|IF (φ)| ≤ |λ|−n · Cn

n∑
i=0

RF (ξiφ) . (B.2)

Proof. We have the following functional equation

IF (φ) = −λ−1 · IF (ξ(Hφ)) . (B.3)

Indeed, we have

IF (ξ(Hφ)) =

∫
F · ξ(Hφ)ω = −

∫
ξ(F )Hφ ω = −λ

∫
Fφω = −λIF (φ) .

Iterating this we obtain IF (φ) = (−1)n|λ|nIF (Dn(φ)), where D(φ) = ξ(Hφ). Clearly we
have Dn(φ) =

∑
0≤i0,...,in+1≤n

[H i0 · (ξ(H))i1 · (ξ2(H))i2 . . . (ξn(H))in ] · ξin+1(φ) , where the

summation is over an appropriate set of indexes. Hence we arrive at the desired bound

|IF (φ)| ≤ |λ|−n · Cn

n∑
i=0

∫
|F ||ξi(φ)||ω| . (B.4)



SUBCONVEXITY OF TRIPLE L-FUNCTIONS 37

�

Let φ and f be real valued and smooth in the interval [a, b] functions. Consider the
following integral

I(φ, f) =

∫ b

a

eif(x)φ(x)dx . (B.5)

We first consider the special case of f = tα, where t > 1 is a parameter and α such
that α′ has no zeroes on the support supp(φ) b (a, b) of φ. The bound (B.2) implies the
following

Corollary. The following bound holds

|I(φ, tα)| ≤ CN t
−N (B.6)

for any N > 0 and a constant CN depending on α and φ.

B.2. Van der Corput lemma. Let I(φ, f) be as in (B.5). Consider the case when
f ′ has zeroes. For an integer k ≥ 1 denote by mk(f) = min

x∈[a,b]
|f (k)(x)| and let M(φ) =

|φ(b)|+
∫ b
a
|φ′(x)|dx be the variance of φ. We have the following general estimate essentially

due to van der Corput (see [St, p. 332]).

Lemma. Let k ≥ 1 be such that mk(f) > 0. There exists a constant ck such that the
following bound holds

|I(φ, f)| ≤ ck ·mk(f)−
1
k ·M(φ)

provided

(1) k ≥ 2, or
(2) k = 1 and f ′ is monotone on [a, b].

The constant ck depends only on k and is independent of φ, f and of the interval [a, b].

We use this lemma with k = 1 or 2, so we can assume that ck is a universal constant.

B.3. Throughout the paper we consider integrals of the form
∫
u(x)|x|−iteis·g(x)dx. In

this section we explain how to obtain meaningful upper bounds for these integrals. We
claim that the necessary type of bounds follow directly from the integration by parts and
from the van der Corput lemma.

Let

I(s, t) =

∫ 1

−1

u(x)|x|−
1
2
−iteis·g(x)dx , (B.7)

where we assume that 1 ≤ t ≤ s, g is smooth and monotonic, 0.99 < g′(x) < 1.01 (i.e.,
bounded away from 0 and∞), |g′′(x)| ≤ 1

2
for all x (this insures that there is no degenerate

critical points of the phase), and u is smooth of compact support in (−1, 1).
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There is a simple bound if the phase has no critical points. Let us denote by b the ratio
b = s/t. Integration by parts shows that if the phase function bg(x)− ln |x| in the integral
(B.7) has no critical points (e.g., |t| � |s|) then the bound (B.6) reads as

|I(s, t)| ≤ CN |t|−N (B.8)

for any N > 0 and some constant CN depending on N, u and g.

In the complementary situation we have

Lemma. Under the above assumptions on g, the following uniform bound holds

|I(s, t)| ≤ Bs−
1
2 ,

where the constant B is independent of s and of t.

Proof. We denote by a the ratio a = t/s and consider the integral over the interval (0, 1)
(and the similar integral over (−1, 0))

I(s, a) =

∫ 1

0

u(x)|x|−
1
2 eis(g(x)−a ln |x|)dx .

We are interested in the uniform (in s) bound for this integral for the values of the
parameter a satisfying the bound s−1 ≤ a ≤ 1.

In order to apply the van der Corput lemma, we break the interval (0, 1) into 4 intervals
J1 = (2a, 1), J2 = (1

2
a, 2a), J3 = (1

2
s−1, 1

2
a) and J4 = (0, 1

2
s−1) (for a ≥ 1

2
the first

interval is missing). Denote by fa(x) = g(x)− a ln |x|, φ(x) = u(x)|x|− 1
2 and consider the

corresponding integrals Ij(s, a) =
∫
Jj
u(x)|x|− 1

2 eisfa(x)dx.

On the interval J1 we have |sf ′a(x)| ≥ s. Hence from the van der Corput lemma (with
k = 1) we have |I1(s, a)| ≤ B1s

−1.

On the interval J2 the phase fa has zero of the first derivative, but satisfies the bound
|sf ′′a (x)| > 1

2
a−1s and M(φ) ≤ 10|a|− 1

2 . Hence on the interval J2 the van der Corput

lemma with k = 2 implies |I2(s, a)| ≤ B2s
− 1

2 .

To bound the integral I3(s, a), we note that |sf ′a(x)| ≥ 1
2
s and that the variation of the

amplitude satisfies M(φ) ≤ |1
2
a|− 1

2 +
∫ 1

2
a

1
2
s−1 |x|−3/2dx ≤ cs

1
2 on J3. The van der Corput

lemma with k = 1 implies that |I3(s, a)| ≤ B3s
− 1

2 .

Bounding the integral over J4 by the integral of the absolute value, we see that trivially
|I4(s, a)| ≤ B4s

− 1
2 . �
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