## Problem assignment 1

## Analysis on Manifolds

Let $M$ denote a manifold of dimension $m$ (for example $\mathbf{R}^{m}$ ).

1. Let $f$ be a (smooth) function on $M, Z=Z(f)$ the sets of its zeroes.

Suppose that at some point $a \in M$ we have $d f \neq 0$, where $d f \in T_{a}(M)^{*}$ be the differential of the function $f$ at the point $a$.
(i) Show that near the point $a$ (i.e. in some neighborhood of $a$ in $M$ ) the subset $Z(f) \subset M$ is a submanifold of dimension $m-1$.
(ii) Show that the tangent space $T_{a}(Z)$ as a subspace of $T_{a}(M)$ is given by equation $d f=0$.
2. (i) Show that if $r>0$ then the sphere $S_{r}$ of radius $r$ in $\mathbf{R}^{n}$ is a submanifold. Describe its tangent space at every point.
(ii) Consider a subset $C \subset \mathbf{R}^{n}$ given by equation $x_{n}^{3}=\sum_{1}^{n-1} x_{i}^{2}$.

Describe at what points it is a manifold and at what points it is not.
3. Let $S^{n-1}$ be the unit sphere in $\mathbf{R}^{n}$. Consider the open set $U=S^{n-1} \backslash A$, where $A$ is the point $(0, \ldots, 0,1)$. Show that $U$ is a manifold and describe a diffeomorphism of $U$ with $\mathbf{R}^{n-1}$
4. Let $f_{1}, \ldots, f_{k}$ be a collection of smooth functions on $M$. Denote by $Z=Z\left(f_{1}, \ldots f_{k}\right)$ the set of common zeroes of functions $f_{i}$.

Suppose that at some point $a \in Z$ differentials $d f_{i}$ of functions $f_{i}$ are linearly independent. Show that then $Z$ near the point $a$ is a manifold. Describe the tangent space $T_{a}(Z)$.
5. Cut off functions. Show that for every $\delta>0$ there exists a smooth function $p$ on $\mathbf{R}^{n}$ such that
$0 \leq p \leq 1, p \equiv 0$ outside the ball $B_{1}$ of radius 1 around 0 and $p \equiv 1$ inside the ball $B_{1-\delta}$ of radius $1-\delta$ around 0 .
(Hints. First check that the function $u(t)$ in one variable given by $u(t)=$ 0 for $t \leq 0$ and $u(t)=\exp \left(-1 / t^{2}\right)$ for $t>0$ is smooth.

Then construct a monotone smooth function $h(t)$ in one variable such that $h(t) \equiv 0$ for $t \leq-\delta$ and $h(t) \equiv 1$ for $t>0$.)
6. Lagrange's lemma. Consider the Euclidean space $V \cong \mathbf{R}^{n}$ with coordinates $x_{i}$.

Show that any smooth function $f \in C^{\infty}(V)$ can be written in the form $f=f(0)+\sum x_{i} h_{i}$, where $h_{i}$ are smooth functions on $V$.

Hint. In case of one variable $x$ we can define $h(x)=\int_{0}^{1} u(t x) d t$, where $u=\frac{d f}{d x}$.

